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Some of the exercises here are taken from other resources, including May’s “A Concise Course in Algebraic
Topology” and Hatcher’s “Algebraic Topology”.

Thursday, 11 July 2024: Pointed maps and higher homotopy groups

1. How does changing the basepoint affect πn(X)?

2. Argue that π0(X) is exactly the set of path components of X. This set has a natural basepoint (how?)
but no natural group structure. Why don’t our constructions of products on higher homotopy groups
give a group structure when n = 0?

3. Let In be the n-dimensional solid unit cube, and let ∂In denote its boundary. Think about why
In/∂In ∼= Sn. Hint: Think about the quotient of the closed unit ball Dn by its boundary ∂Dn = Sn−1.

4. We argued using a picture that πn(X) is always Abelian for n ≥ 2. Why doesn’t our pictorial argument
apply to show that π1(X) is Abelian?

5. Return to Question 7 from Monday, about calculating π1(S
1). Can you use these ideas to prove that

πn(S
1) = 0 for n > 1?

6. A useful lemma about functions: Suppose f : A → B and g : B → C are functions between sets and
suppose that g ◦ f is an isomorphism/bijection. Show that f is injective and g is surjective.

The reduced suspension of a based space X is the quotient of the suspension SX by the line x × I where
x ∈ X is the basepoint. We denote this by ΣX.

7. Explain why ΣSn = Sn+1.

8. Describe the reduced suspension of a wedge of two circles.

The loop space of a based space X is the collection of loops at the basepoint,

ΩX = {γ : I → X | γ(0) = γ(1) = x}.

Take a minute to think about why this is a different notion than the fundamental group.

9. Let X and Y be based spaces. Show that there is an isomorphism of sets,

[ΣX,Y ] ∼= [X,ΩY ].

Hint: Start by thinking about maps rather than based homotopy classes of maps

10. Prove that [ΣX,Y ] is a group.
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