Exercises for PCMI Undergraduate Course 2024

Anna Marie Bohmann and Chloe Lewis

Summer 2024

Some of the exercises here are taken from other resources, including May's "A Concise Course in Algebraic Topology" and Hatcher's "Algebraic Topology".

Friday, 26 July 2024: Wrapping up

- 1. Recall the Real projective space $\mathbb{R}P^n$, which we can think of as the quotient of S^n by the antipodal action.
 - (a) Give a CW structure on $\mathbb{R}P^n$ and use it to determine the fiber of the fibration (in fact, the covering map) $S^n \to \mathbb{R}P^n$.

Your CW structure should show that there is an inclusion $\mathbb{R}P^n \hookrightarrow \mathbb{R}P^{n+1}$ for each n. We can thus consider the colimit of inclusions of real projective spaces and define $\mathbb{R}P^{\infty} = \operatorname{colim}_n \mathbb{R}P^n$. Similarly, define $S^{\infty} = \operatorname{colim}_n S^n$.

- (b) Determine a CW structure on $\mathbb{R}P^{\infty}$ and S^{∞} .
- (c) Prove that $S^{\infty} \simeq *$.
- 2. Let $\mathbb{C}P^2$ be the complex projective plane (the space of complex lines through the origin in \mathbb{C}^3). We can put a CW structure on this space consisting of one 0-cell, one 2-cell, and one 4-cell. Let's compare $\mathbb{C}P^2$ with $S^2 \vee S^4$.
 - (a) Calculate $\pi_1(\mathbb{C}P^2)$ cellular approximation might be useful here. Compare this with the fundamental group of $S^2 \vee S^4$.
 - (b) Compute the homology of $\mathbb{C}P^2$ using a chain complex. Compare this with the homology of $S^2 \vee S^4$.

The universal coefficients theorem gives us one way to relate the homology and cohomology of a space X. In particular, it says that we get a short exact sequence for each q,

$$0 \to \operatorname{Ext}(H_{q-1}(X), \mathbb{Z}) \to H^q(X) \to \operatorname{Hom}(H_q(X), \mathbb{Z}) \to 0.$$

Here are two helpful facts about Ext: $Ext(0, \mathbb{Z}) = 0$ and $Ext(\mathbb{Z}, \mathbb{Z}) = 0$.

(c) Use the universal coefficients theorem to calculate the cohomology of $\mathbb{C}P^2$. Compare this with the cohomology of $S^2 \vee S^4$.

So are these two spaces the homotopy equivalent? Recall that one reason cohomology is a useful invariant is that it comes equipped with a ring structure. In the cohomology ring of $\mathbb{C}P^2$, this structure is given by $H^*(\mathbb{C}P^2) \cong \mathbb{Z}[x]/x^3$ where the generator x has degree 2.

- (d) The product on $H^*(S^2 \vee S^4)$ is of the form $H^p(S^2 \vee S^4) \times H^q(S^2 \vee S^4) \to H^{p+q}(S^2 \vee S^4)$. There is only one choice of p and q that could make this product non-zero. What is it?
- (e) Are the ring structures on $H^*(\mathbb{C}P^2)$ and $H^*(S^2 \vee S^4)$ isomorphic? What does this tell you about the spaces $\mathbb{C}P^2$ and $S^2 \vee S^4$?