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Some of the exercises here are taken from other resources, including May’s “A Concise Course in Algebraic
Topology” and Hatcher’s “Algebraic Topology”.

Friday, 26 July 2024: Wrapping up

1. Recall the Real projective space RPn, which we can think of as the quotient of Sn by the antipodal
action.

(a) Give a CW structure on RPn and use it to determine the fiber of the fibration (in fact, the covering
map) Sn → RPn.

Your CW structure should show that there is an inclusion RPn ↪→ RPn+1 for each n. We can thus
consider the colimit of inclusions of real projective spaces and define RP∞ = colimn RPn. Similarly,
define S∞ = colimn S

n.

(b) Determine a CW structure on RP∞ and S∞.

(c) Prove that S∞ ≃ ∗.

2. Let CP 2 be the complex projective plane (the space of complex lines through the origin in C3). We can
put a CW structure on this space consisting of one 0-cell, one 2-cell, and one 4-cell. Let’s compare CP 2

with S2 ∨ S4.

(a) Calculate π1(CP 2) - cellular approximation might be useful here. Compare this with the funda-
mental group of S2 ∨ S4.

(b) Compute the homology of CP 2 using a chain complex. Compare this with the homology of S2∨S4.

The universal coefficients theorem gives us one way to relate the homology and cohomology of a space
X. In particular, it says that we get a short exact sequence for each q,

0 → Ext(Hq−1(X),Z) → Hq(X) → Hom(Hq(X),Z) → 0.

Here are two helpful facts about Ext: Ext(0,Z) = 0 and Ext(Z,Z) = 0.

(c) Use the universal coefficients theorem to calculate the cohomology of CP 2. Compare this with the
cohomology of S2 ∨ S4.

So are these two spaces the homotopy equivalent? Recall that one reason cohomology is a useful invariant
is that it comes equipped with a ring structure. In the cohomology ring of CP 2, this structure is given
by H∗(CP 2) ∼= Z[x]/x3 where the generator x has degree 2.

(d) The product on H∗(S2 ∨ S4) is of the form Hp(S2 ∨ S4)×Hq(S2 ∨ S4) → Hp+q(S2 ∨ S4). There
is only one choice of p and q that could make this product non-zero. What is it?

(e) Are the ring structures on H∗(CP 2) and H∗(S2 ∨ S4) isomorphic? What does this tell you about
the spaces CP 2 and S2 ∨ S4?
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