Exercises for PCMI Undergraduate Course 2024

Anna Marie Bohmann and Chloe Lewis

Summer 2024

Some of the exercises here are taken from other resources, including May's "A Concise Course in Algebraic Topology" and Hatcher's "Algebraic Topology".

Thursday, 25 July 2024: Generalized cohomology theories

1. One way to formulate the exactness axiom for a reduced cohomology theory on all (nicely) based spaces is as follows: if $g: X \to Y$ is a based map and Cg is the mapping cone $Y \cup_g CX$, then the sequence of maps $X \to Y \to Cg$ induces an exact sequence:

$$\widetilde{E}^q(Cg) \to \widetilde{E}^q(Y) \to \widetilde{E}^q(X)$$

Show if there's a space Z such that $\widetilde{E}^q(X) = [X, Z]$, then this axiom must hold.

- 2. For any based space Z, find a "multiplication" map $\Omega Z \times \Omega Z \to \Omega Z$ that is associative up to homotopy. Now let $Z = \Omega Y$. Show that your multiplication $\Omega^2 Y \times \Omega^2 Y \to \Omega^2 Y$ is commutative up to homotopy. (Hint: think about how we defined multiplication on π_1 and how we showed π_2 is commutative.)
- 3. Use the previous question to argue that if $\{E_n\}$ is a spectrum, then $[X, E_n]$ is an abelian group for all n.
- 4. Suppose $A_1 \xrightarrow{f_1} A_2 \xrightarrow{f_2} A_3 \xrightarrow{f_3} \cdots$ is a sequence of homomorphisms of abelian groups. Define $A = \prod A_i / \infty$, where \sim is the equivalence relation given by identifying $x \in A_i$ with $f_i(x) \in A_{i+1}$ for each *i*.
 - (a) Observe that there is a homomorphism $r_i: A_i \to A$ for each *i*.
 - (b) Suppose we have another abelian group B and homomorphisms $A_i \xrightarrow{g_i} B$ for each i and that the diagrams

$$\begin{array}{ccc} A_i & \xrightarrow{f_i} & A_{i+1} \\ & & & \downarrow^{g_i} \\ & & & B \end{array}$$

commute for each *i*. Show that there is a single homomorphism $\phi: A \to B$ so that the composite $A_i \xrightarrow{r_i} A \xrightarrow{\phi} B$ is g_i .

These properties mean A is the *colimit* of the sequence and we write $A = \operatorname{colim}_i A_i$.

(c) If all the maps f_i are isomorphisms, what is A? What if each map f_i is an inclusion of a subgroup?

5. Let X be a space and define $T_n = \Sigma^n X$. Observe that the identity map $\Sigma T_n = \Sigma(\Sigma^n X) \to T_{n+1}$ gives a map $T_n \to \Omega T_{n+1}$. This map probably isn't a homotopy equivalence, but just having maps like this means $\{T_n\}$ is a "prespectrum." Show that $\operatorname{colim}_n \pi_{q+n}(T_n)$ is the *q*th stable homotopy group of X. (Here the colim of maps of abelian groups means that we should take the abelian group