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Some of the exercises here are taken from other resources, including May’s “A Concise Course in Algebraic
Topology.”

Monday, 8 July 2024: Homotopy equivalence and fundamental groups

1. Show that homotopy is an equivalence relation on the set of continuous maps between two spaces X and
Y . That is, show:

(a) Reflexivity: f ≃ f for any f : X → Y

(b) Symmetry: if f ≃ g, then g ≃ f for any f, g : X → Y

(c) Transitivity: if f ≃ g and g ≃ h, then f ≃ h, where f, g, h : X → Y

2. Let X be a space and let f, g : I → X be paths in X, where the end point of f is the starting point of
g. Recall that f · g is the “concatenated path” defined by

(f · g)(s) =

{
f(2s) 0 ≤ s ≤ 1

2

g(2s− 1) 1
2 ≤ s ≤ 1

(a) Now let h : I → X be a third path such that the starting point of h is the end point of g. Find an
explicit homotopy showing that

(f · g) · h ≃ f · (g · h).

(b) Recall that f−1 is the path f run “backwards”. If the starting point of f is x ∈ X, find an explicit
homotopy showing that f · f−1 is homotopic to the constant path at x.

3. Consider the definition of f · g given above. How much flexibility do we have in choosing how to
concatenate paths? Define a new concatenation product and decide whether or not Question 2 still
works with your new definition. For example, you might choose to do the first path for a larger or
smaller portion of the concatenated interval. Or you might choose to run one of the paths extra fast for
a while. Does this change the homotopy class of the concatenated path?

4. Show that homotopy equivalence is an equivalence relation on topological spaces.

5. Let X be any space that is contractible: there is a homotopy H : X × I → X from the identity on X to
a constant map at a point x. Show that π1(X,x) = 0. What are some spaces that this applies to?

6. Let f : D2 → D2 be continuous and have no fixed point. Let r : D2 → S1 be the function that takes x
to the point on the ray from f(x) to x where this ray intersects S1. Find a concrete formula for r(x) in
terms of f(x).

7. Fill in this sketch of the proof that π1(S
1, 1) ∼= Z. We identify S1 with the complex numbers of norm 1.
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(a) For each n, define a loop fn in S1 by fn(s) = e2πins. Observe this loop “wraps around the circle
around itself n times”—it is the composite of the loop I → S1 identifying both endpoints of I with
1 and the nth power map on S1. Check that [fm][fn] = [fm+n].

This allows us to define a homomorphism i : Z → S1 by n 7→ [fn]. We must check this is an isomorphism.
To do this, we lift paths to R.
(b) Define p : R → S1 by p(s) = e2πis. This map wraps each interval [n, n+ 1] once around the circle,

starting at 1 ∈ S1. Let f̃n : R → R be defined by f̃n(s) = sn. Check that fn = p ◦ f̃n. We can think
of f̃n as a “lift” of fn along the map p.

(c) Now let f : I → S1 be any path with f(0) = 1. Show that there is a unique path f̃ : I → R such
that f̃(0) = 0 and f = p◦ f̃ . Hint: Use the fact that the inverse image under p of a sufficiently small
connected neighborhood in S1 is just a disjoint union of copies of that neighborhood contained in
intervals of the form (r + n, r + n+ 1) for all n and for some r ∈ [0, 1). Since I is compact, we can
subdivide I into finitely many closed subintervals so that f takes each of these subintervals into
one of these neighborhoods. Show that the lift on each of these subintervals is just determined by
where we lifted its initial point.

(d) We can thus define a function j : π1(S
1, 1) → Z by j[f ] = f̃(1), the endpoint of the lifted path.

Show that this integer is independent of the equivalence class of [f ] by arguing that a homotopy
H : I × I → S1 lifts uniquely to homotopy I × I → R. Hint: Use the fact that I × I is compact to
divide into little subsquares; construct the lift subsquare by subsquare.

(e) Observe that j[fn] = n by explicit construction. Check that j ◦ i is the identity on Z. This implies
that i is one-to-one and j is onto. Now check that j is also one-to-one, which shows that i and j
are both isomorphisms.

8. Use the fact that π1(S
1) = Z to prove the fundamental theorem of algebra as follows. For a map

f : S1 → S1, we have an induced map

π1(S
1)

f∗−→ π1(S
1).

While a priori this depends on a choice of basepoint, the fact that π1(S
1) is Abelian means it is in

fact independent of this choice. (Check this!) Now define the degree of f to be the integer n such that
f∗(ι) = nι, where ι is the homotopy class of the identity loop on S1. You can also think of this as the
image of 1 ∈ Z after identifying π1(S

1) ∼= Z.
(a) Show that if f ≃ g, then deg(f) = deg(g).

(b) Show that the degree of x 7→ xn is n. Show that any constant map has degree 0.

Now suppose that f(x) = xn + c1x
n−1 + · · · + cn−1x + cn is a polynomial of degree n with complex

coefficients, where n ≥ 1. We will show f must have a root. Assume f has no root on S1 This means

that g(x) = f(x)
|f(x)| is a well-defined continuous function from S1 to itself and we can calculate the degree

of g

(c) Assume f(x) ̸= 0 for |x| ≤ 1. Show that the degree of g must be zero by defining a homotopy from
g to a constant map.

(d) Assume f(x) ̸= 0 for |x| geq1. Show that the degree of g must be n by defining a homotopy from g
to the map x 7→ xn.

Since n ̸= 0, these assumptions can’t both be true, and thus f has a zero! By induction, we can thus
prove that any polynomial of degree n has n roots, counted with multiplicity.

9. Show that any continuous map f : S1 → S1 of degree ̸= 1 has a fixed point.

10. Let G be a topological group and take its identity element e as a basepoint. Define the pointwise product
of loops α(t) and β(t) in G by (αβ)(t) = α(t)β(t). Show that αβ is equivalent to the composition of
path β · α. Use this fact to deduce that π1(G, e) is Abelian.
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Review questions about topological spaces.

Recall that a topological space is a set X together with a collection T of subsets of X that satisfy:

� ∅ and X are both in T
� if U1, . . . , Un are in T , then so is

⋂n
i=1 Ui

� if {Uα}α∈A is a collection of elements of T , then
⋃

α Uα is in T .

Here T is called a topology on X. The elements of T are called open sets in X (with this topology).

In algebraic topology, we often consider spaces up to homotopy equivalence, which means we don’t
actually need to consider all the details and nuances of topological spaces. Here are some questions to
help you get a sense of how the general definition relates to the more familiar example of metric spaces
or of Rn.

11. Suppose (X, d) is a metric space. Define a topology Td on X by declaring that a set U ⊂ X is open in
Td if either U is empty or

� for every x ∈ U , there exists δ > 0 such that the ball Bd(x, δ) = {y ∈ X | d(x, y) < δ} is a subset
of U .

That is, whenever U contains a point x, it must contain a little open ball around x. Show that Td
satisfies the definition of a topology. This is called the metric topology on X. (Hint: for the intersection
condition, it’s useful to just think of the intersection of two balls to start with.)

You can also think of these sets U as all the sets you build as unions of open balls in the metric—check
that these are the same!

One of the key ideas in topology is that of continuous functions. The topological definition is as follows: a
function f : X → Y is continuous if whenever V ⊂ Y is an open set in Y , then f−1(V ) is an open set in X.

12. Show that if (X, dX) and (Y, dY ) are metric spaces, a function f : X → Y is continuous in using this
open set definition if and only if it satisfies the “ε–δ definition of continuity:” f is continuous iff for
every x ∈ X and for every ε > 0 there exists a δ > 0 such that if dX(x, y) < δ, then dY (f(x), f(y)) < ε.
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