
Exercises for PCMI Undergraduate Course 2024

Anna Marie Bohmann and Chloe Lewis

Summer 2024

Some of the exercises here are taken from other resources, including May’s “A Concise Course in Algebraic
Topology” and Hatcher’s “Algebraic Topology”.

Monday, 8 July 2024: Homotopy equivalence and fundamental groups

1. Show that homotopy is an equivalence relation on the set of continuous maps between two spaces X and
Y . That is, show:

(a) Reflexivity: f ≃ f for any f : X → Y

(b) Symmetry: if f ≃ g, then g ≃ f for any f, g : X → Y

(c) Transitivity: if f ≃ g and g ≃ h, then f ≃ h, where f, g, h : X → Y

2. Let X be a space and let f, g : I → X be paths in X, where the end point of f is the starting point of
g. Recall that f · g is the “concatenated path” defined by

(f · g)(s) =

{
f(2s) 0 ≤ s ≤ 1

2

g(2s− 1) 1
2 ≤ s ≤ 1

(a) Now let h : I → X be a third path such that the starting point of h is the end point of g. Find an
explicit homotopy showing that

(f · g) · h ≃ f · (g · h).

(b) Recall that f−1 is the path f run “backwards”. If the starting point of f is x ∈ X, find an explicit
homotopy showing that f · f−1 is homotopic to the constant path at x.

3. Consider the definition of f · g given above. How much flexibility do we have in choosing how to
concatenate paths? Define a new concatenation product and decide whether or not Question 2 still
works with your new definition. For example, you might choose to do the first path for a larger or
smaller portion of the concatenated interval. Or you might choose to run one of the paths extra fast for
a while. Does this change the homotopy class of the concatenated path?

4. Show that homotopy equivalence is an equivalence relation on topological spaces.

5. Let X be any space that is contractible: there is a homotopy H : X × I → X from the identity on X to
a constant map at a point x. Show that π1(X,x) = 0. What are some spaces that this applies to?

6. Let f : D2 → D2 be continuous and have no fixed point. Let r : D2 → S1 be the function that takes x
to the point on the ray from f(x) to x where this ray intersects S1. Find a concrete formula for r(x) in
terms of f(x).

7. Fill in this sketch of the proof that π1(S
1, 1) ∼= Z. We identify S1 with the complex numbers of norm 1.
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(a) For each n, define a loop fn in S1 by fn(s) = e2πins. Observe this loop “wraps around the circle
around itself n times”—it is the composite of the loop I → S1 identifying both endpoints of I with
1 and the nth power map on S1. Check that [fm][fn] = [fm+n].

This allows us to define a homomorphism i : Z → S1 by n 7→ [fn]. We must check this is an isomorphism.
To do this, we lift paths to R.
(b) Define p : R → S1 by p(s) = e2πis. This map wraps each interval [n, n+ 1] once around the circle,

starting at 1 ∈ S1. Let f̃n : R → R be defined by f̃n(s) = sn. Check that fn = p ◦ f̃n. We can think
of f̃n as a “lift” of fn along the map p.

(c) Now let f : I → S1 be any path with f(0) = 1. Show that there is a unique path f̃ : I → R such
that f̃(0) = 0 and f = p◦ f̃ . Hint: Use the fact that the inverse image under p of a sufficiently small
connected neighborhood in S1 is just a disjoint union of copies of that neighborhood contained in
intervals of the form (r + n, r + n+ 1) for all n and for some r ∈ [0, 1). Since I is compact, we can
subdivide I into finitely many closed subintervals so that f takes each of these subintervals into
one of these neighborhoods. Show that the lift on each of these subintervals is just determined by
where we lifted its initial point.

(d) We can thus define a function j : π1(S
1, 1) → Z by j[f ] = f̃(1), the endpoint of the lifted path.

Show that this integer is independent of the equivalence class of [f ] by arguing that a homotopy
H : I × I → S1 lifts uniquely to homotopy I × I → R. Hint: Use the fact that I × I is compact to
divide into little subsquares; construct the lift subsquare by subsquare.

(e) Observe that j[fn] = n by explicit construction. Check that j ◦ i is the identity on Z. This implies
that i is one-to-one and j is onto. Now check that j is also one-to-one, which shows that i and j
are both isomorphisms.

8. Use the fact that π1(S
1) = Z to prove the fundamental theorem of algebra as follows. For a map

f : S1 → S1, we have an induced map

π1(S
1)

f∗−→ π1(S
1).

While a priori this depends on a choice of basepoint, the fact that π1(S
1) is Abelian means it is in

fact independent of this choice. (Check this!) Now define the degree of f to be the integer n such that
f∗(ι) = nι, where ι is the homotopy class of the identity loop on S1. You can also think of this as the
image of 1 ∈ Z after identifying π1(S

1) ∼= Z.
(a) Show that if f ≃ g, then deg(f) = deg(g).

(b) Show that the degree of x 7→ xn is n. Show that any constant map has degree 0.

Now suppose that f(x) = xn + c1x
n−1 + · · · + cn−1x + cn is a polynomial of degree n with complex

coefficients, where n ≥ 1. We will show f must have a root. Assume f has no root on S1 This means

that g(x) = f(x)
|f(x)| is a well-defined continuous function from S1 to itself and we can calculate the degree

of g

(c) Assume f(x) ̸= 0 for |x| ≤ 1. Show that the degree of g must be zero by defining a homotopy from
g to a constant map.

(d) Assume f(x) ̸= 0 for |x| ≥ 1. Show that the degree of g must be n by defining a homotopy from g
to the map x 7→ xn.

Since n ̸= 0, these assumptions can’t both be true, and thus f has a zero! By induction, we can thus
prove that any polynomial of degree n has n roots, counted with multiplicity.

9. Show that any continuous map f : S1 → S1 of degree ̸= 1 has a fixed point.

10. Let G be a topological group and take its identity element e as a basepoint. Define the pointwise product
of loops α(t) and β(t) in G by (αβ)(t) = α(t)β(t). Show that αβ is equivalent to the composition of
path β · α. Use this fact to deduce that π1(G, e) is Abelian.
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Review questions about topological spaces.

Recall that a topological space is a set X together with a collection T of subsets of X that satisfy:

� ∅ and X are both in T
� if U1, . . . , Un are in T , then so is

⋂n
i=1 Ui

� if {Uα}α∈A is a collection of elements of T , then
⋃

α Uα is in T .

Here T is called a topology on X. The elements of T are called open sets in X (with this topology).

In algebraic topology, we often consider spaces up to homotopy equivalence, which means we don’t
actually need to consider all the details and nuances of topological spaces. Here are some questions to
help you get a sense of how the general definition relates to the more familiar example of metric spaces
or of Rn.

11. Suppose (X, d) is a metric space. Define a topology Td on X by declaring that a set U ⊂ X is open in
Td if either U is empty or

� for every x ∈ U , there exists δ > 0 such that the ball Bd(x, δ) = {y ∈ X | d(x, y) < δ} is a subset
of U .

That is, whenever U contains a point x, it must contain a little open ball around x. Show that Td
satisfies the definition of a topology. This is called the metric topology on X. (Hint: for the intersection
condition, it’s useful to just think of the intersection of two balls to start with.)

You can also think of these sets U as all the sets you build as unions of open balls in the metric—check
that these are the same!

One of the key ideas in topology is that of continuous functions. The topological definition is as follows: a
function f : X → Y is continuous if whenever V ⊂ Y is an open set in Y , then f−1(V ) is an open set in X.

12. Show that if (X, dX) and (Y, dY ) are metric spaces, a function f : X → Y is continuous in using this
open set definition if and only if it satisfies the “ε–δ definition of continuity:” f is continuous iff for
every x ∈ X and for every ε > 0 there exists a δ > 0 such that if dX(x, y) < δ, then dY (f(x), f(y)) < ε.

Tuesday, 9 July 2024: More about the fundamental group

1. Recall that for a path a from x to y in X, we have a basechange homomorphism γ[a] : π1(X,x) →
π1(X, y). Show that π1(X,x) is Abelian iff all the basechange homomorphisms depend only on the
endpoints of paths, not the choice of path itself.

2. Find an example of a space where taking a different basepoint gives a different fundamental group.

The free product G ∗H of groups G and H is the set of sequences (or “words”) in the elements of G and H
that are either

� empty

� just one element of either G or H

� alternating, in the sense that they start with an element of either G or H and then alternate elements
from each of G and H, e.g. g1h1g2h2 · · · gnhn

The product is given by concatenating words and then multiplying elements of the same group until you get
to one of the above forms.

3. Show that the free product of Z with itself n times is the free group on n generators.
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4. Show that the free product of Z/2 with itself is infinite.

Van Kampen’s theorem says the following: Let X be the union of two (path connected) open sets A and B
such that x ∈ A∩B and A∩B is also path connected and contractible. Then π1(X,x) ∼= π1(A, x)∗π1(B, x).

5. Use this theorem to compute the fundamental group of a wedge of two circles.

Let G, H and K be groups and suppose we have homomorphisms f1 : K → G and f2 : K → H. The
amalgamated free product G ∗K H of G and H over K is quotient (G ∗H)/N where the normalizer of the
set of elements of the form f1(k)f2(k)

−1 for k ∈ K.

Van Kampen’s Theorem, version 2: Suppose X = A∪B where A and B are path connected open subsets of
X where A ∩B is path connected and x ∈ A ∩B. Then π1(X,x) = π1(A, x) ∗π1(A∩B,x) π1(B, x).

6. Use this version of van Kampen’s theorem to calculate π1(S
2) (with any basepoint).

7. Calculate the fundamental group of a wedge of S2’s.

8. What is the fundamental group of the torus? What about many-holed tori?

9. We showed thatD2 is contractible and so π1(D
2) = 0. In a previous exercise, you showed that π1(S

2) = 0.
Do you think S2 is also contractible? Why or why not?

Thursday, 11 July 2024: Pointed maps and higher homotopy groups

1. How does changing the basepoint affect πn(X)?

2. Argue that π0(X) is exactly the set of path components of X. This set has a natural basepoint (how?)
but no natural group structure. Why don’t our constructions of products on higher homotopy groups
give a group structure when n = 0?

3. Let In be the n-dimensional solid unit cube, and let ∂In denote its boundary. Think about why
In/∂In ∼= Sn. Hint: Think about the quotient of the closed unit ball Dn by its boundary ∂Dn = Sn−1.

4. We argued using a picture that πn(X) is always Abelian for n ≥ 2. Why doesn’t our pictorial argument
apply to show that π1(X) is Abelian?

5. Return to Question 7 from Monday, about calculating π1(S
1). Can you use these ideas to prove that

πn(S
1) = 0 for n > 1?

6. A useful lemma about functions: Suppose f : A → B and g : B → C are functions between sets and
suppose that g ◦ f is an isomorphism/bijection. Show that f is injective and g is surjective.

The reduced suspension of a based space X is the quotient of the suspension SX by the line x × I where
x ∈ X is the basepoint. We denote this by ΣX.

7. Explain why ΣSn = Sn+1.

8. Describe the reduced suspension of a wedge of two circles.

The loop space of a based space X is the collection of loops at the basepoint,

ΩX = {γ : I → X | γ(0) = γ(1) = x}.

Take a minute to think about why this is a different notion than the fundamental group.

9. Let X and Y be based spaces. Show that there is an isomorphism of sets,

[ΣX,Y ] ∼= [X,ΩY ].

Hint: Start by thinking about maps rather than based homotopy classes of maps

10. Prove that [ΣX,Y ] is a group.
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Friday, 12 July 2024: Fibrations and covers

1. For n ≥ 1, define real projective space RPn to be the quotient of Sn given by identifying each point
with its antipode. That is, if Sn = {x ∈ Rn+1 | |x| =}, then RPn is given by identifying x with −x.
Show that RP 1 is homeomorphic to S1. For n ≥ 2, RPn ̸≃ Sn as we’ll see below. Why doesn’t your
argument work for n ≥ 2?

2. Suppose p : E → B is a fibration and let Fb = p−1(b) be the fiber over the point b ∈ B. Suppose we

have a path β : I → B so that β(0) = b and β(1) = b′. By definition, there is a lift β̃ that fits into the
following diagram:

Fb × {0} E

Fb × I I B

ib

π2

β̃

β

(a) Use this lift to define a map τ [β] : Fb → Fb′ , where Fb′ is the fiber over b
′. This allows us to compare

Fb and Fb′ .

(b) The definition of a fibration also allows us to show that if the path β is equivalent to another path α
(via a based homotopy), then τ [α] is homotopic to τ [β]. Show that this means τ [β] is a a homotopy
equivalence with homotopy inverse τ [β−1]. Hint: if cb is the constant path, what is τ [cb]?

(c) (Challenge!) See if you can show the assertion in the previous problem: that the homotopy class of
τ [β] only depends on the equivalence class of β.

3. Let f : X → Y be any map. Let Y I denote (unbased) maps I → Y . Define Nf = {(x, χ) ∈ X × Y I |
χ(1) = f(x)}—that is, the space of pairs of a point in X and a path in Y that ends at f(x). Let
ν : X → Nf be given by ν(x) = (x, cf(x)) and ρ : Nf → Y be given by ρ(x, χ) = χ(1). Show that
f = ρ ◦ ν.

4. Let p : X → Y be a map and let Np be as in the previous question. Recall that the definition of p begin
a fibration is that whenever we have maps f and h making the solid diagram commute

Z X

Z × I Y

f

h

h̃

there is a lift h̃. Show that f is a fibration iff there is a map s : Np → XI so that s(x, χ)(0) = x and
p ◦ s(x, χ) = χ. Hint: start by unpacking what it means for s to land in XI so that you can make sense
of the problem statement. Then note that we can identify the lift we’re looking for with a map Z → XI .

5. A map p : E → B is a cover if it is surjective and for each point b ∈ B, we can find a neighborhood V
of b so that p−1(V ) is an open set in E that is disjoint union sets each of which is homeomorphic to V
when we apply p. For example, this is the case for our map f : R → S1 from Monday’s exercises.

(a) For a point b ∈ B and a point e ∈ p−1(b), show that a path q : I → B with q(0) = b lifts uniquely
to a path I → E starting at e. Moreover, equivalent paths lift to equivalent paths.

(b) Use this property to argue that a cover E → B is an example of a fibration.

6. Show that S2 → RP 2 is a cover.

Monday, 15 July 2024: Long Exact Sequences in Homotopy

1. Use the long exact sequence in homotopy to show that π1(RP 2) ∼= Z/2Z and πn(RP 2) ∼= πn(S
2) for

n ≥ 2. Now find a similar identification for πn(RPm). What happens when m = 1?
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2. We used the fact that πn(ΩX) ∼= πn+1(X) to construct the long exact sequence of a fibration. However,
as an exercise with using this long exact sequence, apply it to the fibration ΩX → PX → X to observe
this isomorphism here.

3. Show that for n ≥ 2,

πn(X ∨ Y ) ∼= πn(X)⊕ πn(Y )⊕ πn+1(X × Y,X ∨ Y ).

When using the long exact sequence associated to a pair (X,A), you may find the following identification
useful. Set Jn to be the subset of ∂In given by ∂In−1×I∪In−1×{0} (and set J0 = {0}). Then we can write
πn(X,A, ∗) = [(In, ∂In, Jn), (X,A, ∗), where this means maps and homotopies taking In to X, ∂In to A and
Jn to ∗. (These are known as “maps of triples.”) You can then understand the map ∂ : πn(X,A) → πn−1(A)
as just restriction to In−1 × {1}. It really helps to draw a picture for n = 2 here!

4. Go back to last week’s exercises and tackle any ones you didn’t get a chance to think about.

Tuesday, 16 July 2024: n-connectedness and Freudenthal suspension

Homotopy excision allows us to induce an isomorphism on homotopy from the inclusion of pairs (A,A∩B) →
(X,B), under some assumptions about n-connectedness.

1. Show that this inclusion does not induce an isomorphism in general by considering X = S2 ∨ S2 with
A being the two northern hemispheres and B the two southern hemispheres. Hint: generate two long
exact sequences and recall that π2(X) must be abelian.

2. Prove that πn(S
3) ∼= πn(S

2) for n ≥ 3.

3. Let X be a path-connected space and define the cone on X to be CX = X ∧ I (stop and think - how is
this related to the suspension of X that we talked about last week?). Use the long exact sequence for
the pair (CX,X) to show that πn(CX;X, ∗) ∼= πn−1(X, ∗) for n ≥ 1.

We say that a space Y is simply connected if Y is path connected and π1(Y ) = 0.

4. Use the Freudenthal suspension theorem to prove that if a space X is path connected, then its suspension
ΣX is simply connected.

5. Consider the inclusion of S1 into R3 as the unit circle in the xy-plane. A tubular neighborhood of this
embedding is a solid torus with this circle as its center (say of radius 1/4 for concreteness).

(a) Identify what the tangent space and normal space to a point x ∈ S1 look like here.

(b) Think about why the tubular neighborhood can be identified with the normal bundle

(c) Can you find two ways of framing the normal bundle (that is, choosing a basis for each normal
space that varies continuously as you move around the circle)?

(d) I claim that one of these framings gives the Hopf map S3 → S2 under the Pontryagin–Thom
construction. This is not super easy to see, but think about it!

Thursday, 18 July 2024: CW complexes

1. Find a CW complex structure on Sq × Sq that has one 0-cell, two q-cells, and one 2q-cell. (Hint: try
S1 × S1 first!) More generally, show that if X and Y are CW complexes, so is X × Y .

2. Describe a CW complex structure on RPn.

3. Let X be a CW complex and let Xn be its n-skeleton (i.e. Xn is all the cells of dimension ≤ n). Show
that the inclusion Xn ↪→ X is an n-equivalence (i.e. an isomorphism on homotopy groups of dimension
< n and a surjection on πn). Hint: use an approximation theorem.
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4. Use Question 1 above and Question 3 from Monday to calculate πn(S
n ∨ Sn) for n ≥ 2.

5. First, observe that a compact CW complex has finitely many cells. Now consider X = {0}∪{ 1
n | n ∈ Z+}

as a subspace of R. Show that there is no CW complex Y such that X is homotopy equivalent to Y .
(We say “X does not have the homotopy type of a CW complex” for this property.) Why doesn’t this
contradict our CW approximation theorem?

6. Give a CW structure on the Klein bottle. Can you find a second one?

Friday, 19 July 2024: Chain complexes and homology

1. Compute the homology of each chain complex below:

(a) ... → Z → Z → ... → Z → Z → 0 where every differential dn is the zero map.

(b) ... → Z → Z → ... → Z → Z → 0 where every differential dn is the identity map.

(c) 0 → Z d1−→ Z → 0 where d1 is multiplication by 2.

(d) 0 → Z d2−→ Z⊕ Z d1−→ Z → 0 where d2(1) = (1, 1) and d1(a, b) = a− b.

(e) 0 → Z⟨x⟩ ⊕ Z⟨y⟩ d2−→ Z⟨a⟩ ⊕ Z⟨b⟩ ⊕ Z⟨c⟩ d1−→ Z → 0 where d2(x) = d2(y) = a + b − c and
d1(a) = d1(b) = d1(c) = 0.

2. For a CW-complex X, the map dn : Cn(X) → Cn−1(X) in the cellular chain complex of X can also be
described in terms of “degree.”

(a) Show that a group homomorphism ϕ : Z → Z is entirely determined by ϕ(1).

(b) Show that the (unbased) homotopy class of a map f : Sn → Sn is entirely determined by f∗(id),
where f∗ : πn(S

n) → πn(S
n). This integer is called the degree of the map f .

(c) Observe that a choice of k-cell in Xk comes with a map Sk−1 → Xk−1 and a surjection Xk/Xk−1 →
Sk.

(d) Given an n-cell enj with map Sn−1 → Xn−1 and an n−1 cell en−1
i with surjection πi : X

n−1/Xn−2 →
Sn−1, we have a composite

Sn−1 → Xn−1 → Xn−1/Xn−2 πi−→ Sn−1.

Let the degree of this map be aji ∈ Z. Try to convince yourself that the map dn : Cn(X) → Cn−1(X)
can be specified by sending the generator of Cn(X) corresponding to enj to the sum

∑
i aji[i], where

[i] is the generator of Cn−1(X) corresponding to en−1
i .

3. Using either the description of dn from the previous question or the description from lecture, calculate
H∗(S

2) where we give S2 the CW complex structure with two 0-cells, two 1-cells, and two 2-cells.

4. Calculate the homology of RP 2 using the CW complex structure you found yesterday.

5. A map of chain complexes C∗ → D∗ consists of maps fq : Cq → Dq for each q ∈ Z such that this diagram
commutes

Cq Dq

Cq−1 Dq−1

fq

dq dq

fq−1

(One often writes f ◦ d = d ◦ f , leaving the subscripts implicit.) Show that such a map induces a map
f∗ : Hn(C∗) → Hn(D∗) on homology in each degree.
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Monday, 22 July 2024: Hurewicz and cohomology

1. Use the long exact sequence in homology of pairs to argue that

Hq(X) = Hq(X, ∅) =

{
H̃q(X) q ̸= 0

H̃q(X)⊕ Z q = 0

2. Think about what’s going on topologically in the Hurewicz theorem for the case X = S∨S1. Here, the
theorem says that h : π1(S

1 ∨ S1) → H̃1(S
1 ∨ S1) is abelianization. Can you see this from the definition

of the map h and the definition of CW-homology?

One can state the following relative version of the Hurewicz theorem: Let (X,A) be an (n − 1)-connected
pair (n ≥ 2) such that A is simply connected and non-empty. Then Hi(X,A) = 0 for i ≤ n and there is an
isomorphism πn(X,A) ∼= Hn(X,A).

3. Show that this relative Hurewicz theorem in dimension n implies the non-relative one in dimension
(n− 1) by considering the pair (CX,X).

4. Define an acyclic space X to be a space where Hq(X) = Z and the homology groups in all non-zero
dimensions are trivial.

(a) Show that the suspension of an acyclic space is also acyclic.

(b) Prove that the suspension of an acyclic CW complex X is contractible. (Hint: you will need to use
a fact we proved last week: if X is simply connected, so is ΣX.

5. Let X be an n-dimensional CW complex containing a subcomplex Y which is homotopy equivalent to
an n-sphere. Use the Hurewicz theorem to prove that the map πn(Y ) → πn(X) is injective for n ≥ 2.

6. Show that H̃q(
∨

i Xi) ∼=
⊕

i H̃q(Xi) from the corresponding facts for unreduced homology and homology
of pairs.

7. Let X ∨X → X be the “fold map,” sending each copy of X in the wedge to X via the identity. Argue
that H̃q(X)⊕ H̃q(X) ∼= H̃q(X ∨X) → H̃q(X) is the addition map.

8. We explored the chain complex below on Friday. Today, we’ll take Hom(−,Z) of the chain complex.

0 → Z 0−→ Z 2−→ Z 0−→ Z → 0

(a) For an abelian group G, define Hom(G,Z) to be the set of group homomorphism G → Z. Verify
that Hom(G,Z) is always an abelian group.

(b) Let α : G → G′ be a group homomorphism. Show that there is an induced homomorphism
α∗ : Hom(G′,Z) → Hom(G,Z).

(c) Now apply Hom(−,Z) to each group and each map in the chain complex

0 → Z 0−→ Z 2−→ Z 0−→ Z → 0

to find the associated cochain complex. (A “cochain complex” is just like a chain complex except
that the differential d goes up in degree—dn : Cn−1 → Cn. You can still take the homology of a
cochain complex in the same way as a chain complex because you still have a d ◦ d = 0 condition.)

(d) Calculate the homology of the cochain complex to find the cohomology of the chain complex.
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Tuesday, 23 July 2024: Eilenberg–MacLane spaces and cohomology

Here is another approach to constructing Eilenberg–MacLane spaces.

1. Let n ≥ 1 and let G be an abelian group. Construct a connected CW complex M(G,n) such that

H̃q(M(G,n);Z) ∼=

{
G q = n

0 q ̸= n

A space with this property is called a Moore space—hence the letter M !
Hint: build M(G,n) as the mapping cone Cf of a map f between wedges of spheres.

2. Let n ≥ 1 and let G be an abelian group. Construct a connected CW complex K(G,n) such that

πq(K(G,n)) ∼=

{
G q = n

0 q ̸= n

Hint: Start with M(G,n) from the previous problem, apply the Hurewicz theorem, and then add cells
to kill higher homotopy groups.

3. Suppose X is any connected CW complex with the property that its only nonzero homotopy group
is πn(X) = G. Construct a homotopy equivalence K(G,n) → X, where K(G,n) is the Eilenberg–
MacLane space you constructed in the previous problem. This shows that Eilenberg–MacLane spaces
are uniquely characterized (up to homotopy equivalence) by being CW complexes with their specified
homotopy groups.

4. Can you find concrete examples of a space that is a K(Z, 1), and K(Z/2, 1)? What about a K(Z, 2)?

5. Go back and tackle any questions you didn’t get to yesterday or last week.

6. Along the lines of Question 8 from yesterday, can you compute the associated cochain complexes to the
other examples of chain complexes from Question 1 on Friday?

7. Apply −⊗ Z/2 to the chain complex

0 → Z 0−→ Z 2−→ Z 0−→ Z → 0

to get a new chain complex. What is the homology of this new chain complex? Contemplate how
changing coefficient groups changes the information that homology gives.

Thursday, 25 July 2024: Generalized cohomology theories

1. One way to formulate the exactness axiom for a reduced cohomology theory on all (nicely) based spaces
is as follows: if g : X → Y is a based map and Cg is the mapping cone Y ∪g CX, then the sequence of
maps X → Y → Cg induces an exact sequence:

Ẽq(Cg) → Ẽq(Y ) → Ẽq(X)

Show if there’s a space Z such that Ẽq(X) = [X,Z], then this axiom must hold.

2. For any based space Z, find a “multiplication” map ΩZ×ΩZ → ΩZ that is associative up to homotopy.
Now let Z = ΩY . Show that your multiplication Ω2Y × Ω2Y → Ω2Y is commutative up to homotopy.
(Hint: think about how we defined multiplication on π1 and how we showed π2 is commutative.)

3. Use the previous question to argue that if {En} is a spectrum, then [X,En] is an abelian group for all n.
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4. Suppose A1
f1−→ A2

f2−→ A3
f3−→ · · · is a sequence of homomorphisms of abelian groups. Define A =

⨿Ai/ ∼, where ∼ is the equivalence relation given by identifying x ∈ Ai with fi(x) ∈ Ai+1 for each i.

(a) Observe that there is a homomorphism ri : Ai → A for each i.

(b) Suppose we have another abelian group B and homomorphisms Ai
gi−→ B for each i and that the

diagrams

Ai Ai+1

B

fi

gi gi+1

commute for each i. Show that there is a single homomorphism ϕ : A → B so that the composite

Ai
ri−→ A

ϕ−→ B is gi.

These properties mean A is the colimit of the sequence and we write A = colimi Ai.

(c) If all the maps fi are isomorphisms, what is A? What if each map fi is an inclusion of a subgroup?

5. Let X be a space and define Tn = ΣnX. Observe that the identity map ΣTn = Σ(ΣnX) → Tn+1 gives
a map Tn → ΩTn+1. This map probably isn’t a homotopy equivalence, but just having maps like this
means {Tn} is a “prespectrum.” Show that colimn πq+n(Tn) is the qth stable homotopy group of X.

Friday, 26 July 2024: Wrapping up

1. Recall the Real projective space RPn, which we can think of as the quotient of Sn by the antipodal
action.

(a) Give a CW structure on RPn and use it to determine the fiber of the fibration (in fact, the covering
map) Sn → RPn.

Your CW structure should show that there is an inclusion RPn ↪→ RPn+1 for each n. We can thus
consider the colimit of inclusions of real projective spaces and define RP∞ = colimn RPn. Similarly,
define S∞ = colimn S

n.

(b) Determine a CW structure on RP∞ and S∞.

(c) Prove that S∞ ≃ ∗.

2. Let CP 2 be the complex projective plane (the space of complex lines through the origin in C3). We can
put a CW structure on this space consisting of one 0-cell, one 2-cell, and one 4-cell. Let’s compare CP 2

with S2 ∨ S4.

(a) Calculate π1(CP 2) - cellular approximation might be useful here. Compare this with the funda-
mental group of S2 ∨ S4.

(b) Compute the homology of CP 2 using a chain complex. Compare this with the homology of S2∨S4.

The universal coefficients theorem gives us one way to relate the homology and cohomology of a space
X. In particular, it says that we get a short exact sequence for each q,

0 → Ext(Hq−1(X),Z) → Hq(X) → Hom(Hq(X),Z) → 0.

Here are two helpful facts about Ext: Ext(0,Z) = 0 and Ext(Z,Z) = 0.

(c) Use the universal coefficients theorem to calculate the cohomology of CP 2. Compare this with the
cohomology of S2 ∨ S4.

So are these two spaces the homotopy equivalent? Recall that one reason cohomology is a useful invariant
is that it comes equipped with a ring structure. In the cohomology ring of CP 2, this structure is given
by H∗(CP 2) ∼= Z[x]/x3 where the generator x has degree 2.
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(d) The product on H∗(S2 ∨ S4) is of the form Hp(S2 ∨ S4)×Hq(S2 ∨ S4) → Hp+q(S2 ∨ S4). There
is only one choice of p and q that could make this product non-zero. What is it?

(e) Are the ring structures on H∗(CP 2) and H∗(S2 ∨ S4) isomorphic? What does this tell you about
the spaces CP 2 and S2 ∨ S4?
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