
Exercises for PCMI Undergraduate Course 2024

Anna Marie Bohmann and Chloe Lewis

Summer 2024

Some of the exercises here are taken from other resources, including May’s “A Concise Course in Algebraic
Topology” and Hatcher’s “Algebraic Topology”.

Monday, 8 July 2024: Homotopy equivalence and fundamental groups

1. Show that homotopy is an equivalence relation on the set of continuous maps between two spaces X and
Y . That is, show:

(a) Reflexivity: f ' f for any f : X ! Y

(b) Symmetry: if f ' g, then g ' f for any f, g : X ! Y

(c) Transitivity: if f ' g and g ' h, then f ' h, where f, g, h : X ! Y

2. Let X be a space and let f, g : I ! X be paths in X, where the end point of f is the starting point of
g. Recall that f · g is the “concatenated path” defined by

(f · g)(s) =
(
f(2s) 0  s  1

2

g(2s� 1) 1
2  s  1

(a) Now let h : I ! X be a third path such that the starting point of h is the end point of g. Find an
explicit homotopy showing that

(f · g) · h ' f · (g · h).

(b) Recall that f�1 is the path f run “backwards”. If the starting point of f is x 2 X, find an explicit
homotopy showing that f · f�1 is homotopic to the constant path at x.

3. Consider the definition of f · g given above. How much flexibility do we have in choosing how to
concatenate paths? Define a new concatenation product and decide whether or not Question 2 still
works with your new definition. For example, you might choose to do the first path for a larger or
smaller portion of the concatenated interval. Or you might choose to run one of the paths extra fast for
a while. Does this change the homotopy class of the concatenated path?

4. Show that homotopy equivalence is an equivalence relation on topological spaces.

5. Let X be any space that is contractible: there is a homotopy H : X ⇥ I ! X from the identity on X to
a constant map at a point x. Show that ⇡1(X,x) = 0. What are some spaces that this applies to?

6. Let f : D2 ! D
2 be continuous and have no fixed point. Let r : D2 ! S

1 be the function that takes x
to the point on the ray from f(x) to x where this ray intersects S1. Find a concrete formula for r(x) in
terms of f(x).

7. Fill in this sketch of the proof that ⇡1(S1
, 1) ⇠= Z. We identify S

1 with the complex numbers of norm 1.
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(a) For each n, define a loop fn in S
1 by fn(s) = e

2⇡ins. Observe this loop “wraps around the circle
around itself n times”—it is the composite of the loop I ! S

1 identifying both endpoints of I with
1 and the nth power map on S

1. Check that [fm][fn] = [fm+n].

This allows us to define a homomorphism i : Z ! S
1 by n 7! [fn]. We must check this is an isomorphism.

To do this, we lift paths to R.
(b) Define p : R ! S

1 by p(s) = e
2⇡is. This map wraps each interval [n, n+ 1] once around the circle,

starting at 1 2 S
1. Let f̃n : R ! R be defined by f̃n(s) = sn. Check that fn = p � f̃n. We can think

of f̃n as a “lift” of fn along the map p.

(c) Now let f : I ! S
1 be any path with f(0) = 1. Show that there is a unique path f̃ : I ! R such

that f̃(0) = 0 and f = p� f̃ . Hint: Use the fact that the inverse image under p of a su�ciently small
connected neighborhood in S

1 is just a disjoint union of copies of that neighborhood contained in
intervals of the form (r + n, r + n+ 1) for all n and for some r 2 [0, 1). Since I is compact, we can
subdivide I into finitely many closed subintervals so that f takes each of these subintervals into
one of these neighborhoods. Show that the lift on each of these subintervals is just determined by
where we lifted its initial point.

(d) We can thus define a function j : ⇡1(S1
, 1) ! Z by j[f ] = f̃(1), the endpoint of the lifted path.

Show that this integer is independent of the equivalence class of [f ] by arguing that a homotopy
H : I ⇥ I ! S

1 lifts uniquely to homotopy I ⇥ I ! R. Hint: Use the fact that I ⇥ I is compact to
divide into little subsquares; construct the lift subsquare by subsquare.

(e) Observe that j[fn] = n by explicit construction. Check that j � i is the identity on Z. This implies
that i is one-to-one and j is onto. Now check that j is also one-to-one, which shows that i and j

are both isomorphisms.

8. Use the fact that ⇡1(S1) = Z to prove the fundamental theorem of algebra as follows. For a map
f : S1 ! S

1, we have an induced map

⇡1(S
1)

f⇤�! ⇡1(S
1).

While a priori this depends on a choice of basepoint, the fact that ⇡1(S1) is Abelian means it is in
fact independent of this choice. (Check this!) Now define the degree of f to be the integer n such that
f⇤(◆) = n◆, where ◆ is the homotopy class of the identity loop on S

1. You can also think of this as the
image of 1 2 Z after identifying ⇡1(S1) ⇠= Z.
(a) Show that if f ' g, then deg(f) = deg(g).

(b) Show that the degree of x 7! x
n is n. Show that any constant map has degree 0.

Now suppose that f(x) = x
n + c1x

n�1 + · · · + cn�1x + cn is a polynomial of degree n with complex
coe�cients, where n � 1. We will show f must have a root. Assume f has no root on S

1 This means
that g(x) = f(x)

|f(x)| is a well-defined continuous function from S
1 to itself and we can calculate the degree

of g

(c) Assume f(x) 6= 0 for |x|  1. Show that the degree of g must be zero by defining a homotopy from
g to a constant map.

(d) Assume f(x) 6= 0 for |x| � 1. Show that the degree of g must be n by defining a homotopy from g

to the map x 7! x
n.

Since n 6= 0, these assumptions can’t both be true, and thus f has a zero! By induction, we can thus
prove that any polynomial of degree n has n roots, counted with multiplicity.

9. Show that any continuous map f : S1 ! S
1 of degree 6= 1 has a fixed point.

10. Let G be a topological group and take its identity element e as a basepoint. Define the pointwise product
of loops ↵(t) and �(t) in G by (↵�)(t) = ↵(t)�(t). Show that ↵� is equivalent to the composition of
path � · ↵. Use this fact to deduce that ⇡1(G, e) is Abelian.
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Review questions about topological spaces.

Recall that a topological space is a set X together with a collection T of subsets of X that satisfy:

• ; and X are both in T
• if U1, . . . , Un are in T , then so is

Tn
i=1 Ui

• if {U↵}↵2A is a collection of elements of T , then
S

↵ U↵ is in T .

Here T is called a topology on X. The elements of T are called open sets in X (with this topology).

In algebraic topology, we often consider spaces up to homotopy equivalence, which means we don’t
actually need to consider all the details and nuances of topological spaces. Here are some questions to
help you get a sense of how the general definition relates to the more familiar example of metric spaces
or of Rn.

11. Suppose (X, d) is a metric space. Define a topology Td on X by declaring that a set U ⇢ X is open in
Td if either U is empty or

• for every x 2 U , there exists � > 0 such that the ball Bd(x, �) = {y 2 X | d(x, y) < �} is a subset
of U .

That is, whenever U contains a point x, it must contain a little open ball around x. Show that Td
satisfies the definition of a topology. This is called the metric topology on X. (Hint: for the intersection
condition, it’s useful to just think of the intersection of two balls to start with.)

You can also think of these sets U as all the sets you build as unions of open balls in the metric—check
that these are the same!

One of the key ideas in topology is that of continuous functions. The topological definition is as follows: a
function f : X ! Y is continuous if whenever V ⇢ Y is an open set in Y , then f

�1(V ) is an open set in X.

12. Show that if (X, dX) and (Y, dY ) are metric spaces, a function f : X ! Y is continuous in using this
open set definition if and only if it satisfies the “"–� definition of continuity:” f is continuous i↵ for
every x 2 X and for every " > 0 there exists a � > 0 such that if dX(x, y) < �, then dY (f(x), f(y)) < ".

Tuesday, 9 July 2024: More about the fundamental group

1. Recall that for a path a from x to y in X, we have a basechange homomorphism �[a] : ⇡1(X,x) !
⇡1(X, y). Show that ⇡1(X,x) is Abelian i↵ all the basechange homomorphisms depend only on the
endpoints of paths, not the choice of path itself.

2. Find an example of a space where taking a di↵erent basepoint gives a di↵erent fundamental group.

The free product G ⇤H of groups G and H is the set of sequences (or “words”) in the elements of G and H

that are either

• empty

• just one element of either G or H

• alternating, in the sense that they start with an element of either G or H and then alternate elements
from each of G and H, e.g. g1h1g2h2 · · · gnhn

The product is given by concatenating words and then multiplying elements of the same group until you get
to one of the above forms.

3. Show that the free product of Z with itself n times is the free group on n generators.
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4. Show that the free product of Z/2 with itself is infinite.

Van Kampen’s theorem says the following: Let X be the union of two (path connected) open sets A and B

such that x 2 A\B and A\B is also path connected and contractible. Then ⇡1(X,x) ⇠= ⇡1(A, x)⇤⇡1(B, x).

5. Use this theorem to compute the fundamental group of a wedge of two circles.

Let G, H and K be groups and suppose we have homomorphisms f1 : K ! G and f2 : K ! H. The
amalgamated free product G ⇤K H of G and H over K is quotient (G ⇤H)/N where the normalizer of the
set of elements of the form f1(k)f2(k)�1 for k 2 K.

Van Kampen’s Theorem, version 2: Suppose X = A[B where A and B are path connected open subsets of
X where A \B is path connected and x 2 A \B. Then ⇡1(X,x) = ⇡1(A, x) ⇤⇡1(A\B,x) ⇡1(B, x).

6. Use this version of van Kampen’s theorem to calculate ⇡1(S2) (with any basepoint).

7. Calculate the fundamental group of a wedge of S2’s.

8. What is the fundamental group of the torus? What about many-holed tori?

9. We showed thatD2 is contractible and so ⇡1(D2) = 0. In a previous exercise, you showed that ⇡1(S2) = 0.
Do you think S

2 is also contractible? Why or why not?

Thursday, 11 July 2024: Pointed maps and higher homotopy groups

1. How does changing the basepoint a↵ect ⇡n(X)?

2. Argue that ⇡0(X) is exactly the set of path components of X. This set has a natural basepoint (how?)
but no natural group structure. Why don’t our constructions of products on higher homotopy groups
give a group structure when n = 0?

3. Let I
n be the n-dimensional solid unit cube, and let @I

n denote its boundary. Think about why
I
n
/@I

n ⇠= S
n. Hint: Think about the quotient of the closed unit ball Dn by its boundary @D

n = S
n�1.

4. We argued using a picture that ⇡n(X) is always Abelian for n � 2. Why doesn’t our pictorial argument
apply to show that ⇡1(X) is Abelian?

5. Return to Question 7 from Monday, about calculating ⇡1(S1). Can you use these ideas to prove that
⇡n(S1) = 0 for n > 1?

6. A useful lemma about functions: Suppose f : A ! B and g : B ! C are functions between sets and
suppose that g � f is an isomorphism/bijection. Show that f is injective and g is surjective.

The reduced suspension of a based space X is the quotient of the suspension SX by the line x ⇥ I where
x 2 X is the basepoint. We denote this by ⌃X.

7. Explain why ⌃Sn = S
n+1.

8. Describe the reduced suspension of a wedge of two circles.

The loop space of a based space X is the collection of loops at the basepoint,

⌦X = {� : I ! X | �(0) = �(1) = x}.

Take a minute to think about why this is a di↵erent notion than the fundamental group.

9. Let X and Y be based spaces. Show that there is an isomorphism of sets,

[⌃X,Y ] ⇠= [X,⌦Y ].

Hint: Start by thinking about maps rather than based homotopy classes of maps

10. Prove that [⌃X,Y ] is a group.
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Friday, 12 July 2024: Fibrations and covers

1. For n � 1, define real projective space RPn to be the quotient of Sn given by identifying each point
with its antipode. That is, if Sn = {x 2 Rn+1 | |x| =}, then RPn is given by identifying x with �x.
Show that RP 1 is homeomorphic to S

1. For n � 2, RPn 6' S
n as we’ll see below. Why doesn’t your

argument work for n � 2?

2. Suppose p : E ! B is a fibration and let Fb = p
�1(b) be the fiber over the point b 2 B. Suppose we

have a path � : I ! B so that �(0) = b and �(1) = b
0. By definition, there is a lift e� that fits into the

following diagram:

Fb ⇥ {0} E

Fb ⇥ I I B

ib

⇡2

e�

�

(a) Use this lift to define a map ⌧ [�] : Fb ! Fb0 , where Fb0 is the fiber over b0. This allows us to compare
Fb and Fb0 .

(b) The definition of a fibration also allows us to show that if the path � is equivalent to another path ↵

(via a based homotopy), then ⌧ [↵] is homotopic to ⌧ [�]. Show that this means ⌧ [�] is a a homotopy
equivalence with homotopy inverse ⌧ [��1]. Hint: if cb is the constant path, what is ⌧ [cb]?

(c) (Challenge!) See if you can show the assertion in the previous problem: that the homotopy class of
⌧ [�] only depends on the equivalence class of �.

3. Let f : X ! Y be any map. Let Y
I denote (unbased) maps I ! Y . Define Nf = {(x,�) 2 X ⇥ Y

I |
�(1) = f(x)}—that is, the space of pairs of a point in X and a path in Y that ends at f(x). Let
⌫ : X ! Nf be given by ⌫(x) = (x, cf(x)) and ⇢ : Nf ! Y be given by ⇢(x,�) = �(1). Show that
f = ⇢ � ⌫.

4. Let p : X ! Y be a map and let Np be as in the previous question. Recall that the definition of p begin
a fibration is that whenever we have maps f and h making the solid diagram commute

Z X

Z ⇥ I Y

f

h

h̃

there is a lift h̃. Show that f is a fibration i↵ there is a map s : Np ! X
I so that s(x,�)(0) = x and

p � s(x,�) = �. Hint: start by unpacking what it means for s to land in X
I so that you can make sense

of the problem statement. Then note that we can identify the lift we’re looking for with a map Z ! X
I .

5. A map p : E ! B is a cover if it is surjective and for each point b 2 B, we can find a neighborhood V

of b so that p�1(V ) is an open set in E that is disjoint union sets each of which is homeomorphic to V

when we apply p. For example, this is the case for our map f : R ! S
1 from Monday’s exercises.

(a) For a point b 2 B and a point e 2 p
�1(b), show that a path q : I ! B with q(0) = b lifts uniquely

to a path I ! E starting at e. Moreover, equivalent paths lift to equivalent paths.

(b) Use this property to argue that a cover E ! B is an example of a fibration.

6. Show that S2 ! RP 2 is a cover.

Monday, 15 July 2024: Long Exact Sequences in Homotopy

1. Use the long exact sequence in homotopy to show that ⇡1(RP 2) ⇠= Z/2Z and ⇡n(RP 2) ⇠= ⇡n(S2) for
n � 2. Now find a similar identification for ⇡n(RPm). What happens when m = 1?
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2. We used the fact that ⇡n(⌦X) ⇠= ⇡n+1(X) to construct the long exact sequence of a fibration. However,
as an exercise with using this long exact sequence, apply it to the fibration ⌦X ! PX ! X to observe
this isomorphism here.

3. Show that for n � 2,

⇡n(X _ Y ) ⇠= ⇡n(X)� ⇡n(Y )� ⇡n+1(X ⇥ Y,X _ Y ).

When using the long exact sequence associated to a pair (X,A), you may find the following identification
useful. Set Jn to be the subset of @In given by @I

n�1⇥I[I
n�1⇥{0} (and set J0 = {0}). Then we can write

⇡n(X,A, ⇤) = [(In, @In, Jn), (X,A, ⇤), where this means maps and homotopies taking I
n to X, @In to A and

J
n to ⇤. (These are known as “maps of triples.”) You can then understand the map @ : ⇡n(X,A) ! ⇡n�1(A)

as just restriction to I
n�1 ⇥ {1}. It really helps to draw a picture for n = 2 here!

4. Go back to last week’s exercises and tackle any ones you didn’t get a chance to think about.

Tuesday, 16 July 2024: n-connectedness and Freudenthal suspension

Homotopy excision allows us to induce an isomorphism on homotopy from the inclusion of pairs (A,A\B) !
(X,B), under some assumptions about n-connectedness.

1. Show that this inclusion does not induce an isomorphism in general by considering X = S
2 _ S

2 with
A being the two northern hemispheres and B the two southern hemispheres. Hint: generate two long
exact sequences and recall that ⇡2(X) must be abelian.

2. Prove that ⇡n(S3) ⇠= ⇡n(S2) for n � 3.

3. Let X be a path-connected space and define the cone on X to be CX = X ^ I (stop and think - how is
this related to the suspension of X that we talked about last week?). Use the long exact sequence for
the pair (CX,X) to show that ⇡n(CX;X, ⇤) ⇠= ⇡n�1(X, ⇤) for n � 1.

We say that a space Y is simply connected if Y is path connected and ⇡1(Y ) = 0.

4. Use the Freudenthal suspension theorem to prove that if a space X is path connected, then its suspension
⌃X is simply connected.

5. Consider the inclusion of S1 into R3 as the unit circle in the xy-plane. A tubular neighborhood of this
embedding is a solid torus with this circle as its center (say of radius 1/4 for concreteness).

(a) Identify what the tangent space and normal space to a point x 2 S
1 look like here.

(b) Think about why the tubular neighborhood can be identified with the normal bundle

(c) Can you find two ways of framing the normal bundle (that is, choosing a basis for each normal
space that varies continuously as you move around the circle)?

(d) I claim that one of these framings gives the Hopf map S
3 ! S

2 under the Pontryagin–Thom
construction. This is not super easy to see, but think about it!

Thursday, 18 July 2024: CW complexes

1. Find a CW complex structure on S
q ⇥ S

q that has one 0-cell, two q-cells, and one 2q-cell. (Hint: try
S
1 ⇥ S

1 first!) More generally, show that if X and Y are CW complexes, so is X ⇥ Y .

2. Describe a CW complex structure on RPn.

3. Let X be a CW complex and let Xn be its n-skeleton (i.e. Xn is all the cells of dimension  n). Show
that the inclusion X

n
,! X is an n-equivalence (i.e. an isomorphism on homotopy groups of dimension

< n and a surjection on ⇡n). Hint: use an approximation theorem.
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4. Use Question 1 above and Question 3 from Monday to calculate ⇡n(Sn _ S
n) for n � 2.

5. First, observe that a compact CW complex has finitely many cells. Now consider X = {0}[{ 1
n | n 2 Z+}

as a subspace of R. Show that there is no CW complex Y such that X is homotopy equivalent to Y .
(We say “X does not have the homotopy type of a CW complex” for this property.) Why doesn’t this
contradict our CW approximation theorem?

6. Give a CW structure on the Klein bottle. Can you find a second one?

Friday, 19 July 2024: Chain complexes and homology

1. Compute the homology of each chain complex below:

(a) ... ! Z ! Z ! ... ! Z ! Z ! 0 where every di↵erential dn is the zero map.

(b) ... ! Z ! Z ! ... ! Z ! Z ! 0 where every di↵erential dn is the identity map.

(c) 0 ! Z d1�! Z ! 0 where d1 is multiplication by 2.

(d) 0 ! Z d2�! Z� Z d1�! Z ! 0 where d2(1) = (1, 1) and d1(a, b) = a� b.

(e) 0 ! Zhxi � Zhyi d2�! Zhai � Zhbi � Zhci d1�! Z ! 0 where d2(x) = d2(y) = a + b � c and
d1(a) = d1(b) = d1(c) = 0.

2. For a CW-complex X, the map dn : Cn(X) ! Cn�1(X) in the cellular chain complex of X can also be
described in terms of “degree.”

(a) Show that a group homomorphism � : Z ! Z is entirely determined by �(1).

(b) Show that the (unbased) homotopy class of a map f : Sn ! S
n is entirely determined by f⇤(id),

where f⇤ : ⇡n(Sn) ! ⇡n(Sn). This integer is called the degree of the map f .

(c) Observe that a choice of k-cell in X
k comes with a map S

k�1 ! X
k�1 and a surjection X

k
/X

k�1 !
S
k.

(d) Given an n-cell enj with map S
n�1 ! X

n�1 and an n�1 cell en�1
i with surjection ⇡i : Xn�1

/X
n�2 !

S
n�1, we have a composite

S
n�1 ! X

n�1 ! X
n�1

/X
n�2 ⇡i�! S

n�1
.

Let the degree of this map be aji 2 Z. Try to convince yourself that the map dn : Cn(X) ! Cn�1(X)
can be specified by sending the generator of Cn(X) corresponding to e

n
j to the sum

P
i aji[i], where

[i] is the generator of Cn�1(X) corresponding to e
n�1
i .

3. Using either the description of dn from the previous question or the description from lecture, calculate
H⇤(S2) where we give S

2 the CW complex structure with two 0-cells, two 1-cells, and two 2-cells.

4. Calculate the homology of RP 2 using the CW complex structure you found yesterday.

5. A map of chain complexes C⇤ ! D⇤ consists of maps fq : Cq ! Dq for each q 2 Z such that this diagram
commutes

Cq Dq

Cq�1 Dq�1

fq

dq dq

fq�1

(One often writes f � d = d � f , leaving the subscripts implicit.) Show that such a map induces a map
f⇤ : Hn(C⇤) ! Hn(D⇤) on homology in each degree.
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