
Exercises for PCMI Undergraduate Course 2024

Anna Marie Bohmann and Chloe Lewis

Summer 2024

Some of the exercises here are taken from other resources, including May’s “A Concise Course in Algebraic
Topology” and Hatcher’s “Algebraic Topology”.

Monday, 8 July 2024: Homotopy equivalence and fundamental groups

1. Show that homotopy is an equivalence relation on the set of continuous maps between two spaces X and
Y . That is, show:

(a) Reflexivity: f ≃ f for any f : X → Y

(b) Symmetry: if f ≃ g, then g ≃ f for any f, g : X → Y

(c) Transitivity: if f ≃ g and g ≃ h, then f ≃ h, where f, g, h : X → Y

2. Let X be a space and let f, g : I → X be paths in X, where the end point of f is the starting point of
g. Recall that f · g is the “concatenated path” defined by

(f · g)(s) =

{
f(2s) 0 ≤ s ≤ 1

2

g(2s− 1) 1
2 ≤ s ≤ 1

(a) Now let h : I → X be a third path such that the starting point of h is the end point of g. Find an
explicit homotopy showing that

(f · g) · h ≃ f · (g · h).

(b) Recall that f−1 is the path f run “backwards”. If the starting point of f is x ∈ X, find an explicit
homotopy showing that f · f−1 is homotopic to the constant path at x.

3. Consider the definition of f · g given above. How much flexibility do we have in choosing how to
concatenate paths? Define a new concatenation product and decide whether or not Question 2 still
works with your new definition. For example, you might choose to do the first path for a larger or
smaller portion of the concatenated interval. Or you might choose to run one of the paths extra fast for
a while. Does this change the homotopy class of the concatenated path?

4. Show that homotopy equivalence is an equivalence relation on topological spaces.

5. Let X be any space that is contractible: there is a homotopy H : X × I → X from the identity on X to
a constant map at a point x. Show that π1(X,x) = 0. What are some spaces that this applies to?

6. Let f : D2 → D2 be continuous and have no fixed point. Let r : D2 → S1 be the function that takes x
to the point on the ray from f(x) to x where this ray intersects S1. Find a concrete formula for r(x) in
terms of f(x).

7. Fill in this sketch of the proof that π1(S
1, 1) ∼= Z. We identify S1 with the complex numbers of norm 1.
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(a) For each n, define a loop fn in S1 by fn(s) = e2πins. Observe this loop “wraps around the circle
around itself n times”—it is the composite of the loop I → S1 identifying both endpoints of I with
1 and the nth power map on S1. Check that [fm][fn] = [fm+n].

This allows us to define a homomorphism i : Z → S1 by n 7→ [fn]. We must check this is an isomorphism.
To do this, we lift paths to R.
(b) Define p : R → S1 by p(s) = e2πis. This map wraps each interval [n, n+ 1] once around the circle,

starting at 1 ∈ S1. Let f̃n : R → R be defined by f̃n(s) = sn. Check that fn = p ◦ f̃n. We can think
of f̃n as a “lift” of fn along the map p.

(c) Now let f : I → S1 be any path with f(0) = 1. Show that there is a unique path f̃ : I → R such
that f̃(0) = 0 and f = p◦ f̃ . Hint: Use the fact that the inverse image under p of a sufficiently small
connected neighborhood in S1 is just a disjoint union of copies of that neighborhood contained in
intervals of the form (r + n, r + n+ 1) for all n and for some r ∈ [0, 1). Since I is compact, we can
subdivide I into finitely many closed subintervals so that f takes each of these subintervals into
one of these neighborhoods. Show that the lift on each of these subintervals is just determined by
where we lifted its initial point.

(d) We can thus define a function j : π1(S
1, 1) → Z by j[f ] = f̃(1), the endpoint of the lifted path.

Show that this integer is independent of the equivalence class of [f ] by arguing that a homotopy
H : I × I → S1 lifts uniquely to homotopy I × I → R. Hint: Use the fact that I × I is compact to
divide into little subsquares; construct the lift subsquare by subsquare.

(e) Observe that j[fn] = n by explicit construction. Check that j ◦ i is the identity on Z. This implies
that i is one-to-one and j is onto. Now check that j is also one-to-one, which shows that i and j
are both isomorphisms.

8. Use the fact that π1(S
1) = Z to prove the fundamental theorem of algebra as follows. For a map

f : S1 → S1, we have an induced map

π1(S
1)

f∗−→ π1(S
1).

While a priori this depends on a choice of basepoint, the fact that π1(S
1) is Abelian means it is in

fact independent of this choice. (Check this!) Now define the degree of f to be the integer n such that
f∗(ι) = nι, where ι is the homotopy class of the identity loop on S1. You can also think of this as the
image of 1 ∈ Z after identifying π1(S

1) ∼= Z.
(a) Show that if f ≃ g, then deg(f) = deg(g).

(b) Show that the degree of x 7→ xn is n. Show that any constant map has degree 0.

Now suppose that f(x) = xn + c1x
n−1 + · · · + cn−1x + cn is a polynomial of degree n with complex

coefficients, where n ≥ 1. We will show f must have a root. Assume f has no root on S1 This means

that g(x) = f(x)
|f(x)| is a well-defined continuous function from S1 to itself and we can calculate the degree

of g

(c) Assume f(x) ̸= 0 for |x| ≤ 1. Show that the degree of g must be zero by defining a homotopy from
g to a constant map.

(d) Assume f(x) ̸= 0 for |x| ≥ 1. Show that the degree of g must be n by defining a homotopy from g
to the map x 7→ xn.

Since n ̸= 0, these assumptions can’t both be true, and thus f has a zero! By induction, we can thus
prove that any polynomial of degree n has n roots, counted with multiplicity.

9. Show that any continuous map f : S1 → S1 of degree ̸= 1 has a fixed point.

10. Let G be a topological group and take its identity element e as a basepoint. Define the pointwise product
of loops α(t) and β(t) in G by (αβ)(t) = α(t)β(t). Show that αβ is equivalent to the composition of
path β · α. Use this fact to deduce that π1(G, e) is Abelian.
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Review questions about topological spaces.

Recall that a topological space is a set X together with a collection T of subsets of X that satisfy:

� ∅ and X are both in T
� if U1, . . . , Un are in T , then so is

⋂n
i=1 Ui

� if {Uα}α∈A is a collection of elements of T , then
⋃

α Uα is in T .

Here T is called a topology on X. The elements of T are called open sets in X (with this topology).

In algebraic topology, we often consider spaces up to homotopy equivalence, which means we don’t
actually need to consider all the details and nuances of topological spaces. Here are some questions to
help you get a sense of how the general definition relates to the more familiar example of metric spaces
or of Rn.

11. Suppose (X, d) is a metric space. Define a topology Td on X by declaring that a set U ⊂ X is open in
Td if either U is empty or

� for every x ∈ U , there exists δ > 0 such that the ball Bd(x, δ) = {y ∈ X | d(x, y) < δ} is a subset
of U .

That is, whenever U contains a point x, it must contain a little open ball around x. Show that Td
satisfies the definition of a topology. This is called the metric topology on X. (Hint: for the intersection
condition, it’s useful to just think of the intersection of two balls to start with.)

You can also think of these sets U as all the sets you build as unions of open balls in the metric—check
that these are the same!

One of the key ideas in topology is that of continuous functions. The topological definition is as follows: a
function f : X → Y is continuous if whenever V ⊂ Y is an open set in Y , then f−1(V ) is an open set in X.

12. Show that if (X, dX) and (Y, dY ) are metric spaces, a function f : X → Y is continuous in using this
open set definition if and only if it satisfies the “ε–δ definition of continuity:” f is continuous iff for
every x ∈ X and for every ε > 0 there exists a δ > 0 such that if dX(x, y) < δ, then dY (f(x), f(y)) < ε.

Tuesday, 9 July 2024: More about the fundamental group

1. Recall that for a path a from x to y in X, we have a basechange homomorphism γ[a] : π1(X,x) →
π1(X, y). Show that π1(X,x) is Abelian iff all the basechange homomorphisms depend only on the
endpoints of paths, not the choice of path itself.

2. Find an example of a space where taking a different basepoint gives a different fundamental group.

The free product G ∗H of groups G and H is the set of sequences (or “words”) in the elements of G and H
that are either

� empty

� just one element of either G or H

� alternating, in the sense that they start with an element of either G or H and then alternate elements
from each of G and H, e.g. g1h1g2h2 · · · gnhn

The product is given by concatenating words and then multiplying elements of the same group until you get
to one of the above forms.

3. Show that the free product of Z with itself n times is the free group on n generators.
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4. Show that the free product of Z/2 with itself is infinite.

Van Kampen’s theorem says the following: Let X be the union of two (path connected) open sets A and B
such that x ∈ A∩B and A∩B is also path connected and contractible. Then π1(X,x) ∼= π1(A, x)∗π1(B, x).

5. Use this theorem to compute the fundamental group of a wedge of two circles.

Let G, H and K be groups and suppose we have homomorphisms f1 : K → G and f2 : K → H. The
amalgamated free product G ∗K H of G and H over K is quotient (G ∗H)/N where the normalizer of the
set of elements of the form f1(k)f2(k)

−1 for k ∈ K.

Van Kampen’s Theorem, version 2: Suppose X = A∪B where A and B are path connected open subsets of
X where A ∩B is path connected and x ∈ A ∩B. Then π1(X,x) = π1(A, x) ∗π1(A∩B,x) π1(B, x).

6. Use this version of van Kampen’s theorem to calculate π1(S
2) (with any basepoint).

7. Calculate the fundamental group of a wedge of S2’s.

8. What is the fundamental group of the torus? What about many-holed tori?

9. We showed thatD2 is contractible and so π1(D
2) = 0. In a previous exercise, you showed that π1(S

2) = 0.
Do you think S2 is also contractible? Why or why not?

Thursday, 11 July 2024: Pointed maps and higher homotopy groups

1. How does changing the basepoint affect πn(X)?

2. Argue that π0(X) is exactly the set of path components of X. This set has a natural basepoint (how?)
but no natural group structure. Why don’t our constructions of products on higher homotopy groups
give a group structure when n = 0?

3. Let In be the n-dimensional solid unit cube, and let ∂In denote its boundary. Think about why
In/∂In ∼= Sn. Hint: Think about the quotient of the closed unit ball Dn by its boundary ∂Dn = Sn−1.

4. We argued using a picture that πn(X) is always Abelian for n ≥ 2. Why doesn’t our pictorial argument
apply to show that π1(X) is Abelian?

5. Return to Question 7 from Monday, about calculating π1(S
1). Can you use these ideas to prove that

πn(S
1) = 0 for n > 1?

6. A useful lemma about functions: Suppose f : A → B and g : B → C are functions between sets and
suppose that g ◦ f is an isomorphism/bijection. Show that f is injective and g is surjective.

The reduced suspension of a based space X is the quotient of the suspension SX by the line x × I where
x ∈ X is the basepoint. We denote this by ΣX.

7. Explain why ΣSn = Sn+1.

8. Describe the reduced suspension of a wedge of two circles.

The loop space of a based space X is the collection of loops at the basepoint,

ΩX = {γ : I → X | γ(0) = γ(1) = x}.

Take a minute to think about why this is a different notion than the fundamental group.

9. Let X and Y be based spaces. Show that there is an isomorphism of sets,

[ΣX,Y ] ∼= [X,ΩY ].

Hint: Start by thinking about maps rather than based homotopy classes of maps

10. Prove that [ΣX,Y ] is a group.
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Friday, 12 July 2024: Fibrations and covers

1. For n ≥ 1, define real projective space RPn to be the quotient of Sn given by identifying each point
with its antipode. That is, if Sn = {x ∈ Rn+1 | |x| =}, then RPn is given by identifying x with −x.
Show that RP 1 is homeomorphic to S1. For n ≥ 2, RPn ̸≃ Sn as we’ll see below. Why doesn’t your
argument work for n ≥ 2?

2. Suppose p : E → B is a fibration and let Fb = p−1(b) be the fiber over the point b ∈ B. Suppose we

have a path β : I → B so that β(0) = b and β(1) = b′. By definition, there is a lift β̃ that fits into the
following diagram:

Fb × {0} E

Fb × I I B

ib

π2

β̃

β

(a) Use this lift to define a map τ [β] : Fb → Fb′ , where Fb′ is the fiber over b
′. This allows us to compare

Fb and Fb′ .

(b) The definition of a fibration also allows us to show that if the path β is equivalent to another path α
(via a based homotopy), then τ [α] is homotopic to τ [β]. Show that this means τ [β] is a a homotopy
equivalence with homotopy inverse τ [β−1]. Hint: if cb is the constant path, what is τ [cb]?

(c) (Challenge!) See if you can show the assertion in the previous problem: that the homotopy class of
τ [β] only depends on the equivalence class of β.

3. Let f : X → Y be any map. Let Y I denote (unbased) maps I → Y . Define Nf = {(x, χ) ∈ X × Y I |
χ(1) = f(x)}—that is, the space of pairs of a point in X and a path in Y that ends at f(x). Let
ν : X → Nf be given by ν(x) = (x, cf(x)) and ρ : Nf → Y be given by ρ(x, χ) = χ(1). Show that
f = ρ ◦ ν.

4. Let p : X → Y be a map and let Np be as in the previous question. Recall that the definition of p begin
a fibration is that whenever we have maps f and h making the solid diagram commute

Z X

Z × I Y

f

h

h̃

there is a lift h̃. Show that f is a fibration iff there is a map s : Np → XI so that s(x, χ)(0) = x and
p ◦ s(x, χ) = χ. Hint: start by unpacking what it means for s to land in XI so that you can make sense
of the problem statement. Then note that we can identify the lift we’re looking for with a map Z → XI .

5. A map p : E → B is a cover if it is surjective and each for each point b ∈ B, we can find a neighborhood
V of b so that p−1(V ) is an open set in E that is disjoint union sets each of which is homeomorphic to
V when we apply p. For example, this is the case for our map f : R → S1 from Monday’s exercises.

(a) For a point b ∈ B and a point e ∈ p−1(b), show that a path q : I → B with q(0) = b lifts uniquely
to a path I → E starting at e. Moreover, equivalent paths lift to equivalent paths.

(b) Use this property to argue that a cover E → B is an example of a fibration.

6. Show that S2 → RP 2 is a cover.

Monday, 15 July 2024: Long Exact Sequences in Homotopy

1. Use the long exact sequence in homotopy to show that π1(RP 2) ∼= Z/2Z and πn(RP 2) ∼= πn(S
2) for

n ≥ 2. Now find a similar identification for πn(RPm). What happens when m = 1?
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2. We used the fact that πn(ΩX) ∼= πn+1(X) to construct the long exact sequence of a fibration. However,
as an exercise with using this long exact sequence, apply it to the fibration ΩX → PX → X to observe
this isomorphism here.

3. Show that for n ≥ 2,
πn(X ∨ Y ) ∼= πn(X)⊕ πn(Y )⊕ πn(X × Y,X ∧ Y ).

When using the long exact sequence associated to a pair (X,A), you may find the following identification
useful. Set Jn to be the subset of ∂In given by ∂In−1×I∪In−1×{0} (and set J0 = {0}). Then we can write
πn(X,A, ∗) = [(In, ∂In, Jn), (X,A, ∗), where this means maps and homotopies taking In to X, ∂In to A and
Jn to ∗. (These are known as “maps of triples.”) You can then understand the map ∂ : πn(X,A) → πn−1(A)
as just restriction to In−1 × {1}. It really helps to draw a picture for n = 2 here!

4. Go back to last week’s exercises and tackle any ones you didn’t get a chance to think about.
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