Exercises for PCMI Undergraduate Course 2024

Anna Marie Bohmann and Chloe Lewis

Summer 2024

Some of the exercises here are taken from other resources, including May's "A Concise Course in Algebraic Topology" and Hatcher's "Algebraic Topology".

Monday, 8 July 2024: Homotopy equivalence and fundamental groups

- 1. Show that homotopy is an equivalence relation on the set of continuous maps between two spaces X and Y. That is, show:
 - (a) Reflexivity: $f \simeq f$ for any $f: X \to Y$
 - (b) Symmetry: if $f \simeq g$, then $g \simeq f$ for any $f, g: X \to Y$
 - (c) Transitivity: if $f \simeq g$ and $g \simeq h$, then $f \simeq h$, where $f, g, h \colon X \to Y$
- 2. Let X be a space and let $f, g: I \to X$ be paths in X, where the end point of f is the starting point of g. Recall that $f \cdot g$ is the "concatenated path" defined by

$$(f \cdot g)(s) = \begin{cases} f(2s) & 0 \le s \le \frac{1}{2} \\ g(2s - 1) & \frac{1}{2} \le s \le 1 \end{cases}$$

(a) Now let $h: I \to X$ be a third path such that the starting point of h is the end point of g. Find an explicit homotopy showing that

$$(f \cdot q) \cdot h \simeq f \cdot (q \cdot h).$$

- (b) Recall that f^{-1} is the path f run "backwards". If the starting point of f is $x \in X$, find an explicit homotopy showing that $f \cdot f^{-1}$ is homotopic to the constant path at x.
- 3. Consider the definition of $f \cdot g$ given above. How much flexibility do we have in choosing how to concatenate paths? Define a new concatenation product and decide whether or not Question 2 still works with your new definition. For example, you might choose to do the first path for a larger or smaller portion of the concatenated interval. Or you might choose to run one of the paths extra fast for a while. Does this change the homotopy class of the concatenated path?
- 4. Show that homotopy equivalence is an equivalence relation on topological spaces.
- 5. Let X be any space that is *contractible*: there is a homotopy $H: X \times I \to X$ from the identity on X to a constant map at a point x. Show that $\pi_1(X, x) = 0$. What are some spaces that this applies to?
- 6. Let $f: D^2 \to D^2$ be continuous and have no fixed point. Let $r: D^2 \to S^1$ be the function that takes x to the point on the ray from f(x) to x where this ray intersects S^1 . Find a concrete formula for r(x) in terms of f(x).
- 7. Fill in this sketch of the proof that $\pi_1(S^1, 1) \cong \mathbb{Z}$. We identify S^1 with the complex numbers of norm 1.

(a) For each n, define a loop f_n in S^1 by $f_n(s) = e^{2\pi i n s}$. Observe this loop "wraps around the circle around itself n times"—it is the composite of the loop $I \to S^1$ identifying both endpoints of I with 1 and the nth power map on S^1 . Check that $[f_m][f_n] = [f_{m+n}]$.

This allows us to define a homomorphism $i: \mathbb{Z} \to S^1$ by $n \mapsto [f_n]$. We must check this is an isomorphism. To do this, we lift paths to \mathbb{R} .

- (b) Define $p: \mathbb{R} \to S^1$ by $p(s) = e^{2\pi i s}$. This map wraps each interval [n, n+1] once around the circle, starting at $1 \in S^1$. Let $\tilde{f}_n: \mathbb{R} \to \mathbb{R}$ be defined by $\tilde{f}_n(s) = sn$. Check that $f_n = p \circ \tilde{f}_n$. We can think of \tilde{f}_n as a "lift" of f_n along the map p.
- (c) Now let $f: I \to S^1$ be any path with f(0) = 1. Show that there is a unique path $\tilde{f}: I \to \mathbb{R}$ such that $\tilde{f}(0) = 0$ and $f = p \circ \tilde{f}$. Hint: Use the fact that the inverse image under p of a sufficiently small connected neighborhood in S^1 is just a disjoint union of copies of that neighborhood contained in intervals of the form (r+n,r+n+1) for all n and for some $r \in [0,1)$. Since I is compact, we can subdivide I into finitely many closed subintervals so that f takes each of these subintervals into one of these neighborhoods. Show that the lift on each of these subintervals is just determined by where we lifted its initial point.
- (d) We can thus define a function $j \colon \pi_1(S^1, 1) \to \mathbb{Z}$ by $j[f] = \tilde{f}(1)$, the endpoint of the lifted path. Show that this integer is independent of the equivalence class of [f] by arguing that a homotopy $H \colon I \times I \to S^1$ lifts uniquely to homotopy $I \times I \to \mathbb{R}$. Hint: Use the fact that $I \times I$ is compact to divide into little subsquares; construct the lift subsquare by subsquare.
- (e) Observe that $j[f_n] = n$ by explicit construction. Check that $j \circ i$ is the identity on \mathbb{Z} . This implies that i is one-to-one and j is onto. Now check that j is also one-to-one, which shows that i and j are both isomorphisms.
- 8. Use the fact that $\pi_1(S^1) = \mathbb{Z}$ to prove the fundamental theorem of algebra as follows. For a map $f: S^1 \to S^1$, we have an induced map

$$\pi_1(S^1) \xrightarrow{f_*} \pi_1(S^1).$$

While a priori this depends on a choice of basepoint, the fact that $\pi_1(S^1)$ is Abelian means it is in fact independent of this choice. (Check this!) Now define the *degree* of f to be the integer n such that $f_*(\iota) = n\iota$, where ι is the homotopy class of the identity loop on S^1 . You can also think of this as the image of $1 \in \mathbb{Z}$ after identifying $\pi_1(S^1) \cong \mathbb{Z}$.

- (a) Show that if $f \simeq g$, then $\deg(f) = \deg(g)$.
- (b) Show that the degree of $x \mapsto x^n$ is n. Show that any constant map has degree 0.

Now suppose that $f(x) = x^n + c_1 x^{n-1} + \cdots + c_{n-1} x + c_n$ is a polynomial of degree n with complex coefficients, where $n \ge 1$. We will show f must have a root. Assume f has no root on S^1 This means that $g(x) = \frac{f(x)}{|f(x)|}$ is a well-defined continuous function from S^1 to itself and we can calculate the degree of g

- (c) Assume $f(x) \neq 0$ for $|x| \leq 1$. Show that the degree of g must be zero by defining a homotopy from g to a constant map.
- (d) Assume $f(x) \neq 0$ for $|x| \geq 1$. Show that the degree of g must be n by defining a homotopy from g to the map $x \mapsto x^n$.

Since $n \neq 0$, these assumptions can't both be true, and thus f has a zero! By induction, we can thus prove that any polynomial of degree n has n roots, counted with multiplicity.

- 9. Show that any continuous map $f: S^1 \to S^1$ of degree $\neq 1$ has a fixed point.
- 10. Let G be a topological group and take its identity element e as a basepoint. Define the pointwise product of loops $\alpha(t)$ and $\beta(t)$ in G by $(\alpha\beta)(t) = \alpha(t)\beta(t)$. Show that $\alpha\beta$ is equivalent to the composition of path $\beta \cdot \alpha$. Use this fact to deduce that $\pi_1(G, e)$ is Abelian.

Review questions about topological spaces.

Recall that a topological space is a set X together with a collection \mathcal{T} of subsets of X that satisfy:

- \emptyset and X are both in \mathcal{T}
- if U_1, \ldots, U_n are in \mathcal{T} , then so is $\bigcap_{i=1}^n U_i$
- if $\{U_{\alpha}\}_{{\alpha}\in A}$ is a collection of elements of \mathcal{T} , then $\bigcup_{\alpha} U_{\alpha}$ is in \mathcal{T} .

Here \mathcal{T} is called a topology on X. The elements of \mathcal{T} are called open sets in X (with this topology).

In algebraic topology, we often consider spaces up to homotopy equivalence, which means we don't actually need to consider all the details and nuances of topological spaces. Here are some questions to help you get a sense of how the general definition relates to the more familiar example of metric spaces or of \mathbb{R}^n .

- 11. Suppose (X, d) is a metric space. Define a topology \mathcal{T}_d on X by declaring that a set $U \subset X$ is open in \mathcal{T}_d if either U is empty or
 - for every $x \in U$, there exists $\delta > 0$ such that the ball $B_d(x, \delta) = \{y \in X \mid d(x, y) < \delta\}$ is a subset of U.

That is, whenever U contains a point x, it must contain a little open ball around x. Show that \mathcal{T}_d satisfies the definition of a topology. This is called the *metric topology* on X. (Hint: for the intersection condition, it's useful to just think of the intersection of two balls to start with.)

You can also think of these sets U as all the sets you build as unions of open balls in the metric—check that these are the same!

One of the key ideas in topology is that of *continuous functions*. The topological definition is as follows: a function $f: X \to Y$ is *continuous* if whenever $V \subset Y$ is an open set in Y, then $f^{-1}(V)$ is an open set in X.

12. Show that if (X, d_X) and (Y, d_Y) are metric spaces, a function $f: X \to Y$ is continuous in using this open set definition if and only if it satisfies the " ε - δ definition of continuity:" f is continuous iff for every $x \in X$ and for every $\varepsilon > 0$ there exists a $\delta > 0$ such that if $d_X(x, y) < \delta$, then $d_Y(f(x), f(y)) < \varepsilon$.

Tuesday, 9 July 2024: More about the fundamental group

- 1. Recall that for a path a from x to y in X, we have a basechange homomorphism $\gamma[a] \colon \pi_1(X,x) \to \pi_1(X,y)$. Show that $\pi_1(X,x)$ is Abelian iff all the basechange homomorphisms depend only on the endpoints of paths, not the choice of path itself.
- 2. Find an example of a space where taking a different basepoint gives a different fundamental group.

The free product G * H of groups G and H is the set of sequences (or "words") in the elements of G and H that are either

- empty
- just one element of either G or H
- alternating, in the sense that they start with an element of either G or H and then alternate elements from each of G and H, e.g. $g_1h_1g_2h_2\cdots g_nh_n$

The product is given by concatenating words and then multiplying elements of the same group until you get to one of the above forms.

3. Show that the free product of \mathbb{Z} with itself n times is the free group on n generators.

4. Show that the free product of $\mathbb{Z}/2$ with itself is infinite.

Van Kampen's theorem says the following: Let X be the union of two (path connected) open sets A and B such that $x \in A \cap B$ and $A \cap B$ is also path connected and contractible. Then $\pi_1(X, x) \cong \pi_1(A, x) * \pi_1(B, x)$.

5. Use this theorem to compute the fundamental group of a wedge of two circles.

Let G, H and K be groups and suppose we have homomorphisms $f_1: K \to G$ and $f_2: K \to H$. The amalgamated free product $G *_K H$ of G and H over K is quotient $(G *_H)/N$ where the normalizer of the set of elements of the form $f_1(k)f_2(k)^{-1}$ for $k \in K$.

Van Kampen's Theorem, version 2: Suppose $X = A \cup B$ where A and B are path connected open subsets of X where $A \cap B$ is path connected and $x \in A \cap B$. Then $\pi_1(X, x) = \pi_1(A, x) *_{\pi_1(A \cap B, x)} \pi_1(B, x)$.

- 6. Use this version of van Kampen's theorem to calculate $\pi_1(S^2)$ (with any basepoint).
- 7. Calculate the fundamental group of a wedge of S^2 's.
- 8. What is the fundamental group of the torus? What about many-holed tori?
- 9. We showed that D^2 is contractible and so $\pi_1(D^2) = 0$. In a previous exercise, you showed that $\pi_1(S^2) = 0$. Do you think S^2 is also contractible? Why or why not?

Thursday, 11 July 2024: Pointed maps and higher homotopy groups

- 1. How does changing the basepoint affect $\pi_n(X)$?
- 2. Argue that $\pi_0(X)$ is exactly the set of path components of X. This set has a natural basepoint (how?) but no natural group structure. Why don't our constructions of products on higher homotopy groups give a group structure when n = 0?
- 3. Let I^n be the *n*-dimensional solid unit cube, and let ∂I^n denote its boundary. Think about why $I^n/\partial I^n \cong S^n$. Hint: Think about the quotient of the closed unit ball D^n by its boundary $\partial D^n = S^{n-1}$.
- 4. We argued using a picture that $\pi_n(X)$ is always Abelian for $n \geq 2$. Why doesn't our pictorial argument apply to show that $\pi_1(X)$ is Abelian?
- 5. Return to Question 7 from Monday, about calculating $\pi_1(S^1)$. Can you use these ideas to prove that $\pi_n(S^1) = 0$ for n > 1?
- 6. A useful lemma about functions: Suppose $f: A \to B$ and $g: B \to C$ are functions between sets and suppose that $g \circ f$ is an isomorphism/bijection. Show that f is injective and g is surjective.

The reduced suspension of a based space X is the quotient of the suspension SX by the line $x \times I$ where $x \in X$ is the basepoint. We denote this by ΣX .

- 7. Explain why $\Sigma S^n = S^{n+1}$.
- 8. Describe the reduced suspension of a wedge of two circles.

The loop space of a based space X is the collection of loops at the basepoint,

$$\Omega X = \{\gamma \colon I \to X \mid \ \gamma(0) = \gamma(1) = x\}.$$

Take a minute to think about why this is a different notion than the fundamental group.

9. Let X and Y be based spaces. Show that there is an isomorphism of sets,

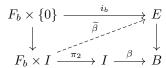
$$[\Sigma X, Y] \cong [X, \Omega Y].$$

Hint: Start by thinking about maps rather than based homotopy classes of maps

10. Prove that $[\Sigma X, Y]$ is a group.

Friday, 12 July 2024: Fibrations and covers

- 1. For $n \geq 1$, define real projective space $\mathbb{R}P^n$ to be the quotient of S^n given by identifying each point with its antipode. That is, if $S^n = \{x \in \mathbb{R}^{n+1} \mid |x| = \}$, then $\mathbb{R}P^n$ is given by identifying x with -x. Show that $\mathbb{R}P^1$ is homeomorphic to S^1 . For $n \geq 2$, $\mathbb{R}P^n \not\simeq S^n$ as we'll see below. Why doesn't your argument work for $n \geq 2$?
- 2. Suppose $p: E \to B$ is a fibration and let $F_b = p^{-1}(b)$ be the fiber over the point $b \in B$. Suppose we have a path $\beta: I \to B$ so that $\beta(0) = b$ and $\beta(1) = b'$. By definition, there is a lift $\widetilde{\beta}$ that fits into the following diagram:



- (a) Use this lift to define a map $\tau[\beta]: F_b \to F_{b'}$, where $F_{b'}$ is the fiber over b'. This allows us to compare F_b and $F_{b'}$.
- (b) The definition of a fibration also allows us to show that if the path β is equivalent to another path α (via a based homotopy), then $\tau[\alpha]$ is homotopic to $\tau[\beta]$. Show that this means $\tau[\beta]$ is a a homotopy equivalence with homotopy inverse $\tau[\beta^{-1}]$. Hint: if c_b is the constant path, what is $\tau[c_b]$?
- (c) (Challenge!) See if you can show the assertion in the previous problem: that the homotopy class of $\tau[\beta]$ only depends on the equivalence class of β .
- 3. Let $f: X \to Y$ be any map. Let Y^I denote (unbased) maps $I \to Y$. Define $Nf = \{(x,\chi) \in X \times Y^I \mid \chi(1) = f(x)\}$ —that is, the space of pairs of a point in X and a path in Y that ends at f(x). Let $\nu: X \to Nf$ be given by $\nu(x) = (x, c_{f(x)})$ and $\rho: Nf \to Y$ be given by $\rho(x,\chi) = \chi(1)$. Show that $f = \rho \circ \nu$.
- 4. Let $p: X \to Y$ be a map and let Np be as in the previous question. Recall that the definition of p begin a fibration is that whenever we have maps f and h making the solid diagram commute

$$Z \xrightarrow{f} X$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$Z \times I \xrightarrow{h} Y$$

there is a lift \tilde{h} . Show that f is a fibration iff there is a map $s \colon Np \to X^I$ so that $s(x,\chi)(0) = x$ and $p \circ s(x,\chi) = \chi$. Hint: start by unpacking what it means for s to land in X^I so that you can make sense of the problem statement. Then note that we can identify the lift we're looking for with a map $Z \to X^I$.

- 5. A map $p: E \to B$ is a *cover* if it is surjective and each for each point $b \in B$, we can find a neighborhood V of b so that $p^{-1}(V)$ is an open set in E that is disjoint union sets each of which is homeomorphic to V when we apply p. For example, this is the case for our map $f: \mathbb{R} \to S^1$ from Monday's exercises.
 - (a) For a point $b \in B$ and a point $e \in p^{-1}(b)$, show that a path $q: I \to B$ with q(0) = b lifts uniquely to a path $I \to E$ starting at e. Moreover, equivalent paths lift to equivalent paths.
 - (b) Use this property to argue that a cover $E \to B$ is an example of a fibration.
- 6. Show that $S^2 \to \mathbb{R}P^2$ is a cover.

Monday, 15 July 2024

1. Use the long exact sequence in homotopy to show that $\pi_1(\mathbb{R}P^2) \cong \mathbb{Z}/2\mathbb{Z}$ and $\pi_n(\mathbb{R}P^2) \cong \pi_n(S^2)$ for $n \geq 2$. Now find a similar identification for $\pi_n(\mathbb{R}P^m)$. What happens when m = 1?

- 2. We used the fact that $\pi_n(\Omega X) \cong \pi_{n+1}(X)$ to construct the long exact sequence of a fibration. However, as an exercise with using this long exact sequence, apply it to the fibration $\Omega X \to PX \to X$ to observe this isomorphism here.
- 3. Define (1-dimensional) complex projective space $\mathbb{C}P^1$ to be the space of complex lines in \mathbb{C}^2 . That is, $\mathbb{C}P^1 = {\mathbb{C} \times \mathbb{C} {0}}/{\sim}$ where the relation \sim identifies $(z_1, z_2) \sim (\lambda z_1, \lambda z_2)$ for all z_1, z_2 and any complex number λ . Let $[z_1, z_2]$ denote the equivalence class of (z_1, z_2) .
 - (a) Argue that $\mathbb{C}P^1$ is homeomorphic to S^2 . (Hint: for $z_1 \neq 0$, send $[z_1, z_2]$ to z_2/z_1 . Where must $[0, z_2]$ be sent?)
 - (b) Identify S^3 as the unit sphere in $\mathbb{C} \times \mathbb{C}$ and let $\eta \colon S^3 \to \mathbb{C}P^1 \cong S^2$ be $\eta(z_1, z_2) = [z_1, z_2]$. This is called the Hopf map. Show that the fiber of η over any point in S^2 is a circle.
 - (c) We claim that η is actually a fibration. Use this fact to deduce as much as you can about the higher homotopy groups of S^2 and S^3 .