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Conventions. Schemes will be Noetherian. Smooth will mean smooth
of finite type. Unless stated otherwise, the Grothendieck topology on
SmS is the Nisnvich topology. Therefore, sheaves will mean sheaves
for the Nisnevich topology. In the third course, we sometimes use the
shortcut s-morphism for separated morphism of finite type.

We use the language of ∞-categories.1 We let Cat∞ (resp. Cat⊗∞)
be the ∞-category of presentable ∞-categories with left adjoint ∞-
functors (resp. presentable symmetric closed monoidal ∞-category

1One can obtain an explicit presentation of the categories here by using classical
model categories on simplicial sheaves: the invective and Nisnevich-local model
category structures on simplicial sheaves, and their Bousfield A1-localization.
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with left adjoint and symmetric monoidal ∞-functors). All our ∞-
categories will be presentable ∞-categories. Similarly, monoidal ∞-
categories will be presentable monoidal ∞-categories. On the other
hand, we mostly work in the associated homotopy category in this
course.

Monoidal means symmetric monoidal. All our monoids are commu-
tative. We denote by 1S the “sphere spectrum” over S i.e. the unit of
the monoidal structure on SH(S).

Unless stated otherwise, spectrum means motivic spectrum, and ring
spectrum means commutative motivic spectrum.

Cours 1. Oriented spectra and Chern classes

Introduction

The theory of characteristic classes of fiber bundles arose at exactly
the same time than (singular) cohomology, in 1935. That year, Stiefel
(in his PhD) and Whitney both introduced the notion of fiber bundle
and some associated characteristic class.2 Meanwhile, at the Moscow
international conference on topology, Alexander and Kolmogorov in-
dependently introduced cohomology and the (soon to be called) cup-
product.

The history of the subject of characteristic classes was then marked
by the introduction of Pontryagin classes, out of the computation of
the homology of real grassmanianns, by Pontryagin in 1942, and by
the introduction of Chern classes, obtained through the determination
of the cohomology of complex Grassmanians by Chern in 1946. A last
event I want to mention is the course ”characteristic classes” given at
the University of Princeton by John Milnor in 1957.3

Here is a list of the characteristic classes that emerged from the works
mentioned above:4

name fiber b. notation group
Stiefel-Whitney smooth real v.b. wi H i(B,Z/2)
Pontryagin smooth real v.b. pi H4i(B,Z)

Chern smooth complex v.b. ci H2i(B,Z)

2The terminology “fiber bundle” is due to Stiefel, though he actually only con-
sidered smooth real vector bundles, while it was Whitney that formally introduced
the so-called characteristic classes.

3Notes by Stasheff were available at that time. They were finally published in
1974, [MS74].

4Recall that Pontryagin classes are actually particular cases of Chern classes
according to the formula: pi(V ) = (−1)i.c2i(V ⊗R C), where V ⊗R C is the com-
plexification of the real vector space V .
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Note that fiber bundle had already appeared: first in works of E.
Cartan on Lie groups and their associated homogeneous spaces, and
in the work of Stiefel, slightly earlier in 1933, who was interested in
constructing new 3-dimensional varieties (in view of the Poincaré con-
jecture). Recall that in the most general form, a fiber bundle is a map
p : E → B such that there exists an open cover W → B and a W -
homeomorphism: (F ×W ) → E ×B W for some space F .5 One calls
B, E, F respectively the base (space), the total space and the fiber
(space) of the fiber bundle.6

Example 1.0.1. Here are some of the most famous examples of fiber
bundles:

• tangent bundles. p : TM → M , projection from the tangent
bundle of a smooth (resp. analytic) manifold M . This is a
particular case of smooth real (resp. complex analytic) vector
bundles.

• homogeneous spaces. for G a Lie group, and H ⊂ G a closed
subgroup, p : G→ G/H. This is a particular case of a principal
G-bundle.

• Covering spaces. P → X. The fiber is then a discrete space.
• The Möbius strip T is (non trivially!) fibered over S1, the map
T → S1 being the projection.

• The Hopf fibration: S3 → S2, with fiber S1.

In the previous list, only vector bundles were considered. In topology,
more general fiber bundles naturally appear in the so-called obstruc-
tion theory. They arise as morphisms in the Postnikov tower, in good
cases (simple, or more generally nilpotent spaces). The attendees have
already seen this theory at work in the talk of Aravind Asok: primary
and secondary obstructions can be seen as characteristic classes In this
course however, we will focus on algebraic vector bundles, in order to
draw a picture similar to the above table.

Characteristic classes are invariant under isomorphism of fiber bun-
dles. In particular, they can differentiate the homotopy type of the
total space. However, they are far from determining this homotopy

5Variants arise first by working in other categories than topological spaces. In al-
gebraic geometry, one also considers covers from various (Grothendieck) topologies:
Zariski, Nisnevich, étale, fppf (mainly).

6Remark that such a fiber space is in particular a Hurewicz fibration, and
therefore a Serre fibration. So one sometimes abusively says “fibration” for “fiber
bundle”.
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type (let alone the diffeomorphism type), even if one adds the homo-
topy type of the base.7 In his groundbreaking 1954 work on cobordism,
Thom proved a therefore very surprising fact: the cobordism class of
an unoriented closed smooth manifold M is completely determined by
the so-called Pontryagin numbers, which are computed through Pon-
tryagin classes of the tangent space of M . This was the beginning
of a deep revolution in algebraic topology, which contribute to led to
generalized cohomology theories, aka spectra such as cobordism, com-
plex (real, Morava,...) K-theory, elliptic cohomology, and the beautiful
picture painted by chromatic homotopy theory.

In this talk, we will consider the theory of characteristic classes as
it was developed in motivic homotopy theory, after Voevodsky, Morel,
Panin, Levine, and many more! The authors interest on the subject
arose during his PhD under the supervision of Fabien Morel, during the
years 1999-2002. This interest has grown during all my carrier (as can
be seen in one’s bibliography). I would like to seize this opportunity
to thank Fabien again to having shared his visions on, and led me to,
this wonderful world of motivic homotopy.

1.1. Stable motivic homotopy

1.1.a. Motivic spectra.

1.1.1. Stable homotopy theory. Recall from the preceding talks that the
A1-homotopy category HA1

(S) over a scheme S is obtained by consid-
ering the ∞-topos Sh∞(SmS) of Nisnevich sheaves over the smooth
site SmS and by localizing it further with respect to A1-homotopy:
that is we invert for any smooth S-scheme X the maps A1

X → X in
Sh∞(SmS) via the Yoneda embedding.

On the associated ∞-category HA1

• (S) of pointed objects in HA1
(S),

we even get a symmetric monoidal ∞-category where the tensor prod-
uct is the so-called smash product.

We have seen in the talk of F. Morel that there are several models of
spheres in motivic homotopy theory: the simplicial sphere S1, the mul-
tiplicative group (Gm, 1), and the projective line (P1,∞). All objects

are considered in HA1

• (S) without indicating the bases scheme S (which
plays no specific role here) in the notation. And they are related by
the relation:

(1.1) P1 ≃ S1 ∧Gm

7This can already be seen in the classification of Seifert fibrations, mentioned
above.
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As in classical topology, we obtain the stable motivic homotopy cat-
egory by ⊗-inverting the third model of sphere, P1. For completeness,
we will now state the main theorem that will give us our fundamental
category (see also the talk of Kirsten Wickelgren).

Theorem 1.1.2 (Robalo). Let S be any scheme. There exists a univer-
sal presentable monoidal ∞-category SH(S) equipped with a monoidal
∞-functor:

Σ∞ : HA1

• (S) → SH(S)

which admits a right adjoint Ω∞ and such that Σ∞ P1 is ⊗-invertible.8

Actually, the proposition could be stated more abstractly for an ar-
bitrary presentable monoidal ∞-category and an arbitrary object S.
Under, this form the proof is due to Robalo: [Rob15].

1.1.3. It follows from the construction, and the isomorphism (1.1) that,
all the possible spheres S = P1

S,Gm,S, S
1, becomes ⊗-invertible after

applying Σ∞.
The resulting ∞-category acquires a very important property: it is

stable in the sense of [Lur17, Def. 1.1.1.9]. This implies that the asso-
ciated homotopy category admits a triangulated structure (see [Lur17,
1.1.2.13]). Note that the suspension functor for this triangulated struc-
ture is given by the formula:

E[1] = E⊗ Σ∞ S1.

Definition 1.1.4. The monoidal ∞-category SH(S) is called the stable
motivic homotopy category over S. Its objects are calledmotivic spectra
over S.

The unit object with respect to the monoidal structure is denoted by
1S. One defines the Tate twist as 1S(1) = Σ∞ P1[−2] = Σ∞ Gm,S[−1].
By construction, this is a ⊗-invertible objects in SH(S) so that one also
denotes by ?(n) the n-th tensor product with respect to this object.

If this does not cause confusion, we will denote by

[E,F]S = HomSH(S)(E,F) = π0MapSH(S)(E,F)
the abelian group of morphisms in the homotopy category associated
to the ∞-category SH(S). We usually even drop the index S in the
notation.

It might be useful to have in mind the classical model for motivic
spectra9 given here without taking care about the monoidal structure.

8An object X in a monoidal ∞-category is ⊗-invertible if the ∞-functor X⊗? is
an equivalence of categories.

9That is the objects of an underlying model category whose associated ∞-
category is equivalent to the above one.
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A model for a motivic spectrum E is the data of a sequence (En)n≥0

where En is a pointed simplicial Nisnevich sheaf together with suspen-
sion maps:

P1 ∧ En → En+1.

1.1.b. Representable cohomology theories. For us, the main func-
tion of the stable homotopy category is that its objects, the P1-spectra,
represent cohomology theory. The originality of the theory is that these
cohomology theories are bigraded.

Definition 1.1.5. Cohomology theories. Let E be a motivic spectrum
over S. For any smooth S-scheme X and any pair of integers (n, i) ∈
Z2, one defines the E-cohomology of X in degree n and twists i as:

En,i(X) = [Σ∞X+,E(i)[n]].

These cohomologies have the distinctive features of being contravari-
ant, additive, A1-homotopy invariant and P1-stable. Moreover, one gets
long exact sequences of Mayer-Vietoris type but with respect to Nis-
nevich distinguished squares.

Example 1.1.6. There are many examples of cohomology theories
which are representable in the stable motivic homotopy category, over
a given base field S = Spec(k).

(1) All the classical Weil cohomologies admits canonical extensions
over smooth k-schemes which are representable.10

• char(k) = 0: algebraic de Rham cohomology;
• char(k) = p > 0: rigid cohomology (Berthelot)
• given an embedding σ : k ⊂ C, the rational singular coho-
mology of the σ-complex points of a smooth k-scheme X;
this is called simply the rational Betti cohomology.

• give a prime ℓ invertible in k, the Qℓ-adic étale cohomology
of X⊗k k̄; this is called the geometric Qℓ-adic cohomology.

We will denote by Hϵ the spectrum representing one of these
Weil cohomologies: ϵ =dR, rig, B, ℓ respectively. In all these
cases, twists does not change the cohomology up to an isomor-
phism (see loc. cit. Introduction before theorem 1).

(2) Note that Betti cohomology can be taken with integral coef-
ficients. It is still representable in SH(k), and twists do not
change the cohomology (up to an isomorphism as above). We
will denote by Hσ R the corresponding spectrum over k with
coefficients in a ring R.

10This has been axiomatized in the notion of mixed Weil cohomology theory in
[CD12].
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(3) Given now a real embedding σ : k ⊂ R. One can consider the
integral singular cohomology of the real points:

Hn(Xσ(R),Z).
This is representable by a ring spectrum that will be denoted
by Hσ Z. In that case, twists just shift cohomology degrees,
again up to isomorphisms:

(Hσ Z)n,i(X) = Hn−i(Xσ(R),Z).

Example 1.1.7. The following examples are absolute cohomology in
the sense of Beilinson. In the motivic homotopy categorical sense, it
means that the base scheme does not really matter when one computes
the associated representable cohomology.11

(1) Motivic cohomology with coefficients in a ring R, HM,SR can be
defined for any scheme S.12 The distinctive feature of motivic
cohomology is:

H2n,n
M (X,Z) = CHn(X) X/S smooth, S =field, Dedekind ring

Hn,n
M (k,Z) = KM

n (k) k any field.

where CHn(X) denotes the Chow group of X: classes of codi-
mension n algebraic cycles up for the rational equivalence, and
KM

n (X) is the n-th Milnor K-group: the tensor algebra over the
abelian group k× modulo the Steinberg relation.

(2) Quillen algebraic K-theory over a regular scheme S. This is
represented by a spectrum that we will denote by KGLS. This
spectrum is periodic, in the sense that there exists a canonical
isomorphism, the “Bott isomorphism”:

β : KGLS(1)[2] → KGLS.

Taken into account this isomorphism one gets the following dis-
tinctive property for any smooth S-scheme X:

KGLn,i(X) = K2i−n(X)

where the right hand-side is Quillen algebraic K-theory: the
(2i − n)-th homotopy group of the nerve of the Q-category

11Concretely, this means that these cohomologies are representable by an ab-
solute motivic spectrum: a collection of motivic spectra ES over any scheme S,
equipped for any morphism f : T → S, with an isomorphism f∗(ES) ≃ ET sat-
isfying the usual cocycle condition. This is also a cartesian section of the fibred
category SH over the category of schemes.

12The first definition of such a spectrum is due to Voevodsky. At the time being,
one uses a definition based on higher Chow groups and due to Spitzweck. Both
definitions coincide if S is smooth over a field.
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associated with the exact category of vector bundles over X
(pointed by the 0-object).

If one wants a true absolute spectrum, one will replace
Quillen K-theory by Weibel homotopy invariant K-theory. We
will still denote by KGLS the resulting spectrum, for an arbi-
trary base scheme S.

(3) Algebraic cobordism over any base scheme S, denoted by
MGLS. We will recall later the definition of this spectrum,
and state a universal property.

1.1.8. Extended cohomology. Representable cohomology theory au-
tomatically acquire more structures.For once, a motivic spectrum E
defines a family of contravariant functors:

Ẽn,i :
(
HA1

• (S)
)op → A b,X 7→ [Σ∞X ,E(i)[n]].

Note an important property of this functor: it turns cofiber sequences
in HA1

• (S) into long exact sequences of abelian groups.13

An interesting remark is that the E-cohomology is therefore invariant
under weak motivic equivalences.14

Secondly, one immediately gets a definition of cohomology with sup-
port. A closed S-pair (X,Z) will be a pair of schemes such that X
is a smooth S-scheme, and Z ⊂ X a closed subscheme. By taking
homotopy cofibers, in the pointed motivic homotopy category, one can
define the object X/X − Z which fits into a cofiber sequence:

(X − Z)+
j∗−→ X+ → X/X − Z

One defines the E-cohomology of X with support in Z in degree n and
twist i as:

En,i
Z (X) := Ẽn,i(X/X − Z).

Therefore, it fits into a long exact sequence:

. . .En,i
Z (X) → En,i(X)

j∗−→ En,i(X − Z)
∂X,Z−−−→ En+1,i

Z (X) . . .

This cohomology with support enjoys good properties:

(1) Contravariance: for any morphism f : Y → X of smooth S-
schemes, there exists a pullback functor:

f ∗ : En,i
Z (X) → En,i

f−1(Z)(Y ).

13This comes from the fact that Σ∞, as a left adjoint, preserves cofiber se-
quences. As its target is a stable ∞-category, it even sends cofiber sequences to
exact sequences.

14To get a nice picture on weak motivic equivalences, we refer the survey paper
[AOsr21].
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(2) Covariance: for any closed immersion i : T → Z of closed
subschemes of X, one gets:

i∗ : En,i
T (X) → En,i

Z (X).

Remark 1.1.9. (1) All the previous examples admit a natural no-
tion of cohomology with support, which agree with the above
definition.

(2) Morel-Voevodsky purity theorem implies the following property
of cohomology with support, in the case where Z ⊂ X is a
smooth subscheme of codimension c:

En,i
Z (X) ≃ En−2c,i−c(Z).

1.1.c. Ring spectra and cup-products. The next definition is the
last piece of structure one needs on cohomology to get characteristic
classes.

Definition 1.1.10. A (commutative) ring spectrum E over the base
scheme S is a (commutative) monoid object in the homotopy category
associated with SH(S).

In particular, the structure of a ring spectrum on E is given by a
unit 1E : 1S → E and a product µ : E ⊗S E → E, which satisfies the
usual axioms. If one wants to be precise, we will say that (E, µ, 1E) is
a motivic ring spectrum.

One deduces a product on E-cohomology, which is often called the
cup-product15: given cohomology classes:

a : Σ∞X+ → E(i)[n], b : Σ∞X+ → E(j)[m]

one defines a ∪µ b as the composite map:

Σ∞X+
δ∗−→ Σ∞(X×SX)+ = Σ∞X+⊗SΣ

∞X+
a⊗b−−→ E⊗E(i+j)[n+m]

µ−→ E(i+j)[n+m].

We will usually denote this product simply as ab.
It follows that for any smooth S-scheme X, E∗∗(X) is a bi-graded

algebra over the bigraded ring E∗∗(S), usually called the coefficient ring
of E and simply denoted by E∗∗.

Remark 1.1.11. One should be careful that the above bigraded algebra
is not simply graded commutative with respect to the first index. To
state the required formula one neesd the special element ϵ ∈ [1S,1S],
which acts as a scalar on any representable cohomology theory, de-
fined by the switch map inverse map x 7→ x−1 on Gm, and using that
Σ∞(Gm, 1) = 1S(1)[1].

15This terminology, due to Whitney for the product on singular cohomology,
has firmly remained in algebraic topology, due to the tremendous importance of its
introduction in the thirties.
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Then the ϵ-graded commutativity formula, for a, b as above, reads
as follows:

(1.2) ab = (−1)n+m−i−j.ϵi+j.ba

The proof is formal once one notices that ϵ can also be defined, up
to A1-homotopy, by the map switching the factors on Gm × Gm (see
[Mor04, Lemma 6.1.1]).

Example 1.1.12. All the examples of cohomology theories of Exam-
ple 1.1.6 and Example 1.1.7 are in fact representable by motivic ring
spectra, and the associated cup-product corresponds to their usual
product.

Remark 1.1.13. The theory developed below only requires the above
definition. However, all the examples considered admits a highly struc-
tured product, i.e. it is the object in the homotopy category associ-
ated with a (commutative) algebra object of the monoidal ∞-category
SH(S). Beware that in general, it is fundamental in classical (and mo-
tivic) stable homotopy theory to give a clear distinction between those
two kinds of structure.

1.1.d. Representability of the Picard group.

1.1.14. In algebraic topology, given an abstract group G, one can de-
fine its classifying space BG as an explicit simplicial set: the nerve of
the groupoid associated with G, made of a single object ∗, a morphism
for any element of g, the composition being given by the group law.

It is more common to consider topological groups (eg. Lie groups) G,
and then one can still define a classifying space BG (as an explicit CW-
complex) with the distinctive feature that for any topological space X,
the homotopy classes of (unpointed) maps [X,BG] are in bijhection
with the principal homogeneous G-spaces.

In motivic homotopy theory, Morel and Voevodsky have provided an
analog of the second construction but using the first one and the frame-
work of simplicial sheaves. For an algebraic group G over a scheme S,
and a smooth S-scheme X, we denote by H1

Nis(X,G) the set of G-
torsors on X for the Nisnevich topology. Let us state a particular case
of Morel-Voevodsky’s construction relevant in our case.

Proposition 1.1.15. Let S be a scheme, and G be an algebraic group
over S.

Then there exists an object BG in HA1

• (S) and for any smooth S-
scheme X, a canonical functorial application of (pointed) sets:

(1.3) H1
Nis(X,G) → [X,BG]unS .
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Moreover, if the left hand-side is A1-invariant over all smooth S-
schemes, this map is an isomorphism.

Note that it is very rare that the second condition holds. The only
example we have in mind is that of G = Gm when S is regular. To
sum-up in the case of Gm, we get a canonical map:

Pic(X) → [X,BGm,S]
un
S

which is bijective whenever S is regular. Note also that the theory of
Morel and Voevodsky shows that BGm,S admits the geometric model
that one expect: it is the infinite projective space P∞

S , that is the infinite
Grassmanian of lines in an affine space:

BGm,S = lim−→n≥0
Pn
S

where the colimit can be taken in the category of simplicial sheaves
on SmS (to get an explicit model). Note that P∞

S will be seen as a
pointed sheaves via the point at ∞ of all the Pn

S. We will recall from
this discussion the canonical map:

(1.4) Pic(X) → [X,P∞
S ]unS .

Remark 1.1.16. (1) Assume S = Spec(k) is the spectrum of a field.
If one restricts our attention to smooth affine k-schemes X,
then the map (1.3) is an isomorphism for an isotropic reductive
k-group schemes: e.g. G = GLn, SLn, Sp2n. This is a theorem
which was first obtained by Morel in certain cases, and in gen-
eral by Asok, Hoyois and Wendt (see [AHW20] for the extra
condition needed for G).

(2) Morel and Voevodsky also give geometric models for over classi-
fying spaces: as an example, for any n ≥ 0, BGLn is equivalent
to the infinite grassmanian of sub-n-vector bundles:

BGLn = lim−→r≥0
Gr(n, n+ r).

1.2. Oriented ring spectra

1.2.a. Definition and examples. Given the notation of the previ-
ous section, we have all the ingredients to formulate the notion of
orientation, which has been introduced in motivic homotopy theory,
by analogy with topology, at the time of the first proof of the Milnor
conjecture by Voevodsky.

Definition 1.2.1. Let (E, µ, 1E) be a ring spectrum over S . Let i :
P1
S → P∞

S be the canonical inclusion of pointed Nisnevich sheaves, both
being pointed by the point at ∞.
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An orientation of E is the data of a class c ∈ Ẽ2,1(P∞
S ) suth that

i∗(c) = 1E via the identification: Ẽ2,1(P1
S) = E0,0(S).

We will say that the pair (E, c) is an oriented (ring) spectrum.

Note that an orientation can be seen as a map:

c : Σ∞ P∞
S → E(1)[2].

Example 1.2.2. (1) Let X be a smooth Z-scheme. We have seen
that there is an isomorphism: H2,1

M (X) ≃ CH1(X) ≃ Pic(X).
This extends to ind-smooth Z-schemes. But Pic(P∞

S ) ≃ Z.c, the
free abelian group generated by c, the class of the tautological
invertible bundle λ = OP∞

S
(−1).

Moreover, the restriction of c to P1
S is the cycle class of the

point at ∞. It is the unit of the ring structure on CH∗(P1
S) ≃

H2∗,∗
M (P1

S) ≃ Z[c].16 Therefore, the class c corresponds to an
orientation of HMZ over the base scheme Z.

Given now any scheme X, we can look at the canonical map
f : S → Z. Then f ∗, being compatible with products on mo-
tivic cohomology, f ∗(c) is an orientation of f ∗HMZ = HMZS.

(2) Let Hϵ be the ring spectrum representing one of the mixed Weil
cohomology theories, over smooth k-schemes with coefficient in
the appropriate field K of characteristic 0 as in Example 1.1.6.
The corresponding cohomology admits a cycle class map:

CHi(X) ≃ H2i,i
M (X) → H2i,i

ϵ (X)
(∗)
≃ H2i,0

ϵ (X) =: H2i
ϵ (X)

which is compatible with products (mapping intersection prod-
ucts to “cup-products”).17 Therefore, the image of c ∈
CH1(P∞

k ) in H2,1
ϵ (P∞

S ) induces a canonical orientation of the
mixed Weil spectrum Hϵ.

(3) The same strategy works for the singular cohomology of com-
plex points of smooth algebraic k-schemes, over k ⊂ C.

(4) On the contrary, the ring spectrum representing singular coho-
mology of the real points of smooth algebraic k-scheme, k ⊂ R,
is not orientable. Indeed:

H2,1
σ (P1

k) = H1(RP1,Z) = Z
H2,1

σ (P∞
k ) = H1(RP∞,Z) = Z/2.

16This follows for example from the definition via pullback along the diagonal.
17We put the last isomorphism to recall that mixed Weil cohomologies are (0, 1)-

periodic. This isomorphism is non-canonical and depends on the choice of a gener-
ator of the 1-dimensional K-vector space H1,1

ϵ (Gm,k). See [CD12] as indicated in
Example 1.1.6.
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(5) The spectrumKGL representing algebraicK-theory is oriented
by the following class:

cKGL(L) = β−1(1− [λ∨]) ∈ KGL2,1(P∞
S )

where we denote by [L] ∈ KGL0,0(X) ≃ K0(X) the class of a
line bundle L/X in the Grothendieck group of vector bundles
over X, and β ∈ KGL−2,−1(S) is the Bott element (over S).

(6) The algebraic cobordism spectrumMGLS admits, by construc-
tion, a canonical orientation. That will be cleared out in the
next course.

1.2.b. Chern classes.

1.2.3. First Chern class. Let (E, c) be an oriented ring spectrum over
S. Taken into account the canonical map (1.4), we obtain for any
smooth S-scheme X a canonical map:

Pic(X) → [X+,P∞
S ]

HA1
• (S)

Σ∞
−−→ [Σ∞X+,Σ

∞ P∞
S ]SH(S)

c∗−→ [Σ∞X+,E(1)[2]]SH(S) = E2,1(X).

This is called the first Chern class associated with the orientation c,
denoted simply by c1. It is clearly contravariantly functorial in the
scheme X. However we must observe at this point that c1 is simply
an application, and not necessarily a morphism of groups. In fact, all
the maps in the above compositum are morphisms of groups except the
suspension map Σ∞. This fact is extremely meaningful in the theory
of oriented ring spectra (see the next course).

The key fact of the theory is the following projective bundle formula:

Theorem 1.2.4. Consider the above notation. Let V → X be a rank
n vector bundle over a smooth S-scheme X, and let P = P(V ) be
the associated projective bundle. We let p : P → X be the canonical
projection, and let λP be the canonical line bundle on P (coming from
the fact P(V ) classifies sub-line bundles of V ).18 Then the following
map:

⊕d−1
i=0E∗∗(X) → E∗∗(P )

λi 7→
∑
i

p∗(λi).c1(λP )
i

is an isomorphism of E∗∗(X)-modules.

18This line bundle is often denoted by OP (−1), for example by Fulton in [Ful98].
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One can reformulate the above theorem by saying that E∗∗(P ) is a
bigraded E∗∗(X)-algebra (through the pullback map p∗) which is free
of rank n, generated by c1(λP )

i for 0 ≤ i ≤ r − 1.

Remark 1.2.5. Milnor sequence. In general, for a ring spectrum
(E, µ, 1E) over S, one always has the so-called Milnor exact sequence:

0 → lim
n≥0

1E2,1(Pn
S) → E2,1(P∞

S ) → lim
n≥0

E2,1(Pn
S) → 0.

It follows from the above that, whenever E is oriented, the left hand side
vanishes as the involved inductive system satisfies the Mittag-Leffler
condition. In particular, to give an orientaition on E, it is sufficient
to give classes cn ∈ E2,1(Pn

S) for all n > 0 such that c1 = 1E and
ι∗n(cn+1) = cn.

As a corollary, one gets our first family of characteristic classes,
the Chern classes of algebraic vector bundles, following a method of
Grothendieck.

Definition 1.2.6. Let (E, c) be an oriented (motivic) ring spectrum
over S. Let X be a smooth S-scheme and V/X be a vector bundle or
rank n. Then there exists a unique family (ci(V ))0≤i≤n such that the
following relation holds in E2,1(P(V )):

n∑
i=0

p∗
(
ci(V )

)
.
(
− c1(λP )

)n−i

Note in particular that ci(V ) ∈ E2i,i(X). If i > n, we put ci(V ) = 0.

1.2.7. According to the above definition, we get the following proper-
ties of Chern classes:

(1) Invariance under isomorphism. For any isomorphism V ≃ V ′

of vector bundles over X, ci(V ) = ci(V
′).

(2) Compatibility with pullbacks. For any vector bundle V/X, and
any morphism f : Y → X of smooth S-schemes, f ∗ci(V ) =
ci(f

−1V ).
(3) Triviality. For a trivializable vector bundle V , ci(V ) = 0 if

i > 0.
(4) Nilpotence. Here it is important that S is noetherian. For any

vector bundle V/X, and any i ≥ 0, the Chern class ci(V ) is
nilpotent.

The third relation follows from the fact c1(OPn(−1))n+1 = 0 (see the
proof of the projective bundle theorem). The last relation is left as an
exercice to the reader.
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To go further, one needs the so-called splitting principle. It is based
on the following “splitting construction”.

Proposition 1.2.8. Let X be a smooth S-scheme, and V a vector
bundle over X. Then there exists a smooth projective map p : X ′ → X
such that p−1(V ) splits as a direct sum of line bundles and such that for
any oriented ring spectrum E over S, the pullback map p∗ : E∗∗(X) →
E∗∗(X ′) is injective.

Remark 1.2.9. A canonical construction for X ′ is to take the flag bun-
dle associated with V , which is the moduli space which parametrize
the complete flag of sub-vector bundles of V . The fact the projection
map induces an injective pullback on an oriented cohomology theory
can be seen as a motivic Leray-Hirsch theorem. The latter can be ob-
tained directly from the homotopy Leray spectral sequence of [ADN20]
associated with p and with coefficients in E.

1.2.10. Splitting principle. As a corollary of the previous proposition,
one obtains the so-called splitting principle for Chern classes associated
with any oriented ring spectrum (E, c) as above. Let V/X be a rank n
vector bundle over a smooth S-scheme X.

First, we define the total Chern class as the polynomial in t, with
coefficients in the (bigraded) ring E∗∗(X):19

ct(V ) =
∑
i≥0

ci(V ).ti.

Then the splitting principle tells us that, to compute with the Chern
classes of V , one can assume that V is split using the preceding splitting
construction. this amounts to say that the total Chern class splits: it
admits Chern roots αi such that:

ct(V ) =
n∏

i=1

(1 + αi.t)

Then any symmetric polynomial in the Chern roots αi admits an ex-
pression in terms of the Chern classes of V .

As an example, one can get the formula:

Proposition 1.2.11 (Whitney sum formula). For any exact sequence
of vector bundles over a smooth S-scheme X:

0 → V ′ → V → V ′′ → 0

19This convention for total Chern class follows Fulton [Ful98]. Other conventions,
such as for example in [MS74] simply considers the sum c(V ) =

∑
i ci(V ) in the

“total” cohomology
⊕

i E2i,i(X).
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one has: ct(V ) = ct(V
′).ct(V

′′).

Example 1.2.12. Consider the above notation. Given V/X a vector
bundle of rank n, one usually defines the Euler class of V as:

e(V ) = cn(V ).

Assume X is smooth affine of dimension n over S = Spec(k), the
spectrum of an algebraically closed field (or a field in which (−1) is a
sum of squares). Then we have seen in the talk of Aravind Asok that
the vanishing of the Euler class in motivic cohomology, is equivalent
to the fact V splits-off a trivial summand. (One direction obviously
follows from the above Whitney sum formula!) We refer the interested
reader to the milestone ICM talk of Aravind and Jean: [AF23].

However, to remove the assumption on k, one needs a finer version
of the Euler class, with values in the Chow-Witt group.

1.2.c. The algebraic Hopf map.

1.2.13. The endomorphism ring of the sphere spectrum, End(1S) acts
on any motivic spectrum E. Similarly, any map φ : 1S → 1S(i)[n]
induces a morphism φ⊗E : E → E(i)[n]. This can be seen as an action
of the graded ring Πn,i(S) — the stable motivic cohomotopy of S —
on E.

According to the fundamental theorem of Morel, when S is the spec-
trum of a field k, one gets Πn,n(k) ≃ KMW

n (k), the Milnor-Witt ring of
k. Other any base S, one still gets important endomorphisms:

(1) Algebraic Hopf map. η : 1S(1)[1] → 1S, which is induced by the
canonical map A2

S −{0} → P1
S, (x, y) 7→ [x : y] (in coordinates).

(2) Classes of units. for any u ∈ O(S)×, one deduces [u] : 1S →
1S(1)[1] from the map u : S → Gm,S corresponding to u. One
then puts:

< u >= 1 + η.[u],

which is an element in degree (0, 0) of the bigraded ring Π∗∗(S).

Note that one can check that ϵ = − < −1 >∈ Π0,0(S), where ϵ was
defined in Remark 1.1.11.20

As a consequence of the projective bundle theorem and using the
above mentioned remark, one deduces:

Proposition 1.2.14. Let E be an orientable ring spectrum. Then the
algebraic Hopf map η acts trivially on E: η ⊗ E = 0.

20In fact, η and ϵ are defined by pullbacks from elements of Π∗∗(Z). It is likely
that Π0,0(Z) = Z[ϵ]/(ϵ2 = 1). This would be a direct consequence of the absolute
purity property for (reduced) closed subschemes of Spec(Z).
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As a consequence, for every units u ∈ O(S)×, < u > acts by the
identity. In particular, ϵ acts by (−1): ϵ⊗E = − IdE. As a consequence,
relation (1.2) becomes

ab = (−1)nm.ba.

Proof. The first assertion follows from the cofiber sequence in the
pointed motivic homotopy category:

A2 − {0} η−→ P1
S

ι1−→ P2
S

for which we refer to [Mor04]. Indeed, if E is oriented, then E⊗ ι1 is a
split monomorphism. The rest of the assertions follow easily. □

In general, the action of the Hopf map is not sufficient to detect ori-
entability of a ring spectrum. However, we have the notable theorems.

Theorem 1.2.15. Let k be a perfect field, and E ∈ SH(k) be a homo-
topy module with a ring structure. Then the following conditions are
equivalent:

(i) E is orientable.
(ii) η ⊗ E = 0.
(iii) E admits transfers in the sense of Voevodsky ( i.e. action of

finite correspondences).

This theorem uses the equivalence between homotopy modules with
transfers and Rost cycle modules: see [Dég13]. We can now obtain a
more direct proof by using the equivalence of homotopy modules with
Milnor-Witt cycle modules: see [Fel21].

Theorem 1.2.16 (Morel, Cisinski-D.). Let E be a rational motivic
ring spectrum over a scheme S. Then the following conditions are
equivalent:

(i) E is orientable.
(ii) η ⊗ E = 0.
(iii) ϵ⊗ E = − IdE.

In fact in these case, E is a rational motive !

Sketch of proof.21 The proof relies on Morel’s decomposition of the
rational stable homotopy category into:

SH(S)Q ≃ SH(S)Q+ × SH(S)Q−

characterized by the equivalent properties:

(i) E ∈ SH(S)Q+ (resp. E ∈ SH(S)Q−).
(ii) ϵ⊗ E is equal to −1 (resp. +1).

21This proof is a simplification of the proof given in [CD19, Th. 16.2.13].
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(iii) η ⊗ E is null (resp. invertible).

Then the main point is to show that the canonical map:

1S ⊗Q+ → HB,S

is an isomorphism, where the right hand-side is Beilnson motivic coho-
mology ring spectrum (representing the 0-th graded piece of rational
algebraic K-theory, over regular schemes). By a localization arguments
and invariance under inseparable field extensions, one reduces to the
case of a perfect field k. Then a devissage argument (we use rational
coefficients at this point) reduces to the preceding theorem.

Remark 1.2.17. As a complement, let us say that one now knows how
to compute both the plus and the minus part of rational motivic stable
homotopy category (see [DFJK21]):

SH(S)Q+ ≃ DM(S,Q)

is the category of rational mixed motivic complexes. In particular,
rationally, being orientable is the same as being a motivic complex.

For the minus part, one has:

SH(S)Q− ≃ HWS⊗ZQ −mod

where the right hand-side is the category of modules over the unrami-
fied rational Witt sheaf, seen over the caracteristic 0 part S ⊗Z Q of S
(in particular, it is zero on a scheme of positive charadteristic).

Cours 2. Oriented spectra: Thom classes and formal group
laws

2.1. Thom classes

2.1.a. Construction.

2.1.1. Let V be a rank n vector bundle over a smooth S-scheme X,
and (E, c) be an oriented ring spectrum over S. We let ν : P(V ) →
P(V ⊕ A1) be the canonical closed immersion.22

Recall from the talk of Kirsten Wickelgren that one defines the Thom
space of V in the pointed motivic homotopy category HA1

• (S) over S
as the following homotopy cofibers:

ThS(V ) = V/V × = P(V ⊕ A1)/P(V ).

22The target of ν is known as the projective completion of V : the open comple-
ment of ν is isomorphic to V .
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In general, it is clear over which base one considers the Thom space
ThS(V ) so that we will denote it simply by Th(V ).23

One deduces from the above formula for Thom spaces a long exact
sequence

(2.5) . . .→ Ẽ∗∗(Th(V ))
π∗
−→ E∗∗(P(V ⊕ A1))

ν∗−→ E∗∗(P(V )) → . . .

where we have used the extension of E∗∗ described in 1.1.8.24

It follows from Theorem 1.2.4 that the map ν∗ is a split epimor-
phism of free E∗∗(X)-modules of respective ranks n and n − 1. Thus
E∗∗(Th(X)) is a free E∗∗(X)-module of rank 1, isomorphic to ker(ν∗).
One deduces from this discussion the following definition.

Definition 2.1.2. Consider the above notation and assumptions.
We define the Thom class of V/X as the following element of

E2n,n(P(V ⊕ A1)):

th(V ) =
n∑

i=0

p∗(ci(V )).
(
− c1(λ)

)n−i

using the notation of Theorem 1.2.4. We define the refined Thom class
th(V ) of V as the unique element of E2n,n(Th(V )) such that

π∗( th(V )
)
= th(V ).

It follows from the split exact sequence (2.5) of E∗∗(X)-modules that
the following map

(2.6) E∗∗(X) → E∗∗(Th(V )), λ 7→ λ. th(V )

is an isomorphism of bidegre (2n, n), called the Thom isomorphism
associated with the vector bundle V/X and with coefficients in the
oriented ring spectrum (E, c).

We deduce from the analogous properies of Chern classes that Thom
classes are compatible with base change and invariant under isomor-
phisms of vector bundles.

Example 2.1.3. Recall the universal quotient bundle ξ on P(V ⊕A1)
is defined by the exact sequence

0 → O(−1) → p−1(V ⊕ 1) → ξ → 0.

23Beware however it could also be considered as an object of HA1

• (X), which is
reflected in the more precise notation ThX(V ).

24Recall that Ẽ∗∗(Th(V )) can also be described as the E-cohomology of V with
support in the 0-section of V/X.
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Thus the Whitney sum formula Proposition 1.2.11 gives the following
relation between Thom and Chern classes:

(2.7) th(V ) = cn(ξ) = e(ξ).

2.1.4. It will be useful to work internally, and relatively. Consider the
notation of the previous definition and let p : X → S be a smooth
morphism.

Recall we have the base change functor p∗ : SH(S) → SH(X) with
left adjoint p♯. We put EX = p∗(E). Note the orientation of E de-
termines a canonical orientation of EX . The object EX is a commu-
tative monoid of Ho SH(X) so we can consider the additive category
of EX-modules. Then the Thom isomorphism associated with a vector
bundle V of rank r over X actually corresponds to an isomorphism of
EX-modules:

th(V ) : EX ⊗ Σ∞ Th(V ) → EX(r)[2r].

2.1.b. Universal property of algebraic cobordism.

2.1.5. Construction of algebraic cobordism. Let us now recall the con-
struction of the algebraic cobordism spectrum MGLS (which is mod-
eled on the construction of the topological spectra MU, MO, ...).

Though all objects will be considered over S, we drop the index in
the notation for simplicity. We consider the tautological rank n vector
bundle γn on the classifying space BGLn viewed as a smooth S-scheme
via the model given by the infinite grasmannian:

BGLn = colimm≥nGrn(Am).

As γn ⊕Ar as rank n+ r, one deduces a (homotopy) cartesian square:

γn ⊕ Ar
(∗)

//

��

γn+r

��
BGLn

// BGLn+r.

One deduces from (∗) a canonical map of Thom spaces in HA1

• (S):

Th(γn)(r)[2r] = Th(γn ⊕ Ar) → Th(γn+r).

In particular, one deduces a tower in SH(S):

Σ∞ Th(γ0) → Σ∞ Th(γ1)(−1)[−2] →
. . .→ Σ∞ Th(γn)(−n)[−2n] → . . .

One defines the algebraic cobordism spectrum as the homotopy colimit:

(2.8) MGLS = hocolimn≥0Σ
∞ ThS(γn)(−n)[−2n].
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Further, using the canonical map γn × γm → γn+m one can build ring
structure on MGLS.

25

Note that the vector bundle γ1 over BGm,S can be identified with
the canonical line bundle OP∞(−1) on P∞ via the weak A1-equivalence
BGm,S ≃ P∞

S . We need the following lemma.

Lemma 2.1.6. Consider the above notion. Then there exists a canon-
ical weak A1-homotopy equivalence of pointed motivic spaces over S:

P∞
S ≃ Th(γ1).

Proof. We consider the closed immersion:

Pn−1
S

ιn−→ Pn
S.

The normal bundle of ιn is the canonical line bundle OPn−1(−1) on
Pn−1. Moreover, the open complementary Pn

S − Pn−1
S is isomorphic to

the affine line An
S, so it is contractible. Using Morel-Voevodsky’s purity

theorem, one gets:

(Pn
S, 1) ≃ Pn

S/(Pn
S − Pn−1

S ) ≃ Th(OPn−1)(−1)).

It is important to note that this isomorphism is functorial with respect
to the inclusion ιn. Therefore, one can take the homotopy limit over
n, and this defines the required isomorphism. □

2.1.7. Canonical orientation of MGLS. One deduces from the above
lemma a canonical map:

cMGL : Σ∞ P∞
S → Σ∞ Th(γ1) → MGLS(1)[2].

By construction (see the above proof for n = 1), the restriction of this
map to (P1

S,∞) corresponds up to P1-desuspension to the unit:

Σ∞ S+ = Σ∞ Th(γ0) → MGLS

Therefore, cMGL is an orientation of MGLS.
The main theorem of this section is the following universality theo-

rem:

Theorem 2.1.8 (Vezzosi, Panin-Pimenov-Röndigs, Nau-
mann-Østvær-Spitzweck). Let E be a ring spectrum over S. Then the
following sets are in bijective correspondence:

(i) orientations c of E;
(ii) morphisms of ring spectra φ : MGLS → E.

25In fact, Tom Bachmann and Marc Hoyois have shown in [BH21, 16.2] how to
give an E∞-ring structure on MGLS using the so-called motivic J-homomorphism,
which is an ∞-categorical enhancement of the stable Thom space functor.
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by the map:

(2.9) (ii) → (i), φ 7→ φ∗(c
MGL)

where φ∗ : MGL∗∗ → E∗∗ is the induced map on cohomology.

In other words, MGLS is the universal oriented ring spectrum over
S.

Idea of Proof. There are several steps for this proof, which works as in
topology.

The first step is to determine the E-cohomology of BGL∞ =
colimn BGLn, for (E, c) oriented. As in topology, one gets:

E∗∗(BGL∞) ≃ E∗∗(S)[[c1, c2, ...]]

where cn is the n-th Chern class of the tautological rang n bundle on
BGLn. Note in passing that the preceding computation uses the Milnor
exact sequence:

0 → lim
n≥0

1E∗∗(BGLn) → E∗∗(BGL∞) → lim
n≥0

E∗∗(BGLn) → 0

and the vanishing of the first term (as in Remark 1.2.5).
One deduces, from a similar Milnor exact sequence and formula (2.8)

that the following canonical maps are isomorphism:

E∗∗(MGLS) → lim
n≥0

E∗+2n,∗+n(Th(γn))

th−−→ lim
n≥0

E∗∗(BGLn). th(γn) ≃ E∗∗(BGL∞),

where th is given by the Thom isomorphisms of γn constructed previ-
ously.

It follows that the sequence (th(γ0), th(γ1), ...) uniquely defines an
element thc ∈ E00(MGLS), canonically associated to the orientation
c. It remains to prove that thc : MGLS → E is in fact a morphism of
ring spectra. And moreover, the application c 7→ thc is a left and right
inverse to (2.9). □

Remark 2.1.9. This result was first proved over a field by Vezzosi in
[Vez01]. It was later revisited in [PPR08], still over a field. Both proofs
were in fact valid over a general base. A definitive refrence, valid over
an arbitrary base was finally given in [NSØ09], partly based on the
Landweber exactness theorem.
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2.1.c. Virtual Thom classes.

2.1.10. The Thom classes associated with on oriented ring spectrum
(E, c) are multiplicative. Let p : X → S be a smooth morphism and
consider an exact sequence of vector bundles over X:

(2.10) 0 → V ′ → V → V ′′ → 0.

One deduces from this exact sequence a canonical isomorphism in
SH(X):

(2.11) Σ∞ Th(V ) ≃ Σ∞ Th(V ′)⊗X Σ∞ Th(V ′′).

Further:

Lemma 2.1.11. Consider the above assumptions. Then, the isomor-
phism (2.11) induces an identification:

E∗∗(Th(V )) ≃ E∗∗(Th(V ′))⊗E∗∗(X) E∗∗(Th(V ′′)),

and through this identification, one has: th(V ) = th(V ′)⊗ th(V ′′).

Proof. One reduces to the case where the sequence is split. Then we
have an isomorphism of vector bundles over P(V ):

ξ = p−1(V )/O(−1) ≃ p−1(V ′)/O(−1)⊕ p−1(V ′′)/O(−1) = ξ′ ⊕ ξ′′.

According to the Whitney sum formula, one deduces e(ξ) = e(ξ′).e(ξ′′).
One concludes using the fact P(V ) − P(V ′) is a vector bundle over
P(V ′′). □

2.1.12. We can elaborate on the previous result as follows. Consider
the previous notation.

We let K(X) be the Picard 1-category of virtual vector bundle.26

One deduces from the isomorphisms of the form (2.11) that the Thom
spectrum functors extends to a virtual Thom spectrum functor 27:

K(X) → HoSH(X), v 7→ Th(v).

The cohomology with coefficients in E can be defined on these virtual
Thom spectra:

En,i(Th(v)) = [Th(v),EX(i)[n]]X .

There is an obvious E∗∗(X)-module structure on these groups. More-
over, the preceding lemma shows that these E∗∗(X)-modules are free of

26This is the groupoid associated with Quillen K-theory space K(X). A direct
construction is given in [Del87].

27One can deduce it by elementary means, but we now know that this is actually
the truncation of the (already mentioned) motivic J-homomorphism defined by
Tom Bachmann and Marc Hoyois: J : K(X) → Pic(SH(X)). See [BH21, §16.2].
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rank 1, and moreover, admits a canonical E∗∗(X)-basis th(v) of bide-
gree (2r, r), where r ∈ Z is the rank of v.28

Definition 2.1.13. Given a virtual vector bundle v over a smooth S-
scheme X, of virtual rank r ∈ Z, we let th(v) ∈ E2r,r(Th(v)) be the
class defined above.

Bydefinition, the following morphism:

E∗∗(X) → E∗∗(Th(v)), α 7→ α. th(v).

is an isomorphism of E∗∗(X)-modules, called the Thom isomorphism
of v associated with the orientation c on E.

Note finally that, as in 2.1.4, one deduces a isomorphism of EX-
modules:

(2.12) th(v) : EX ⊗ Th(v)
∼−→ EX(r)[2r].

2.2. Formal group laws and orientations

2.2.a. Recall on formal group laws.

2.2.1. From the point of view of algebraic geometry, a commutative
formal group law of dimension 1 over a ring R is an abelian group
object structure on the formal scheme Spf(R[[x]]), in the category of
formal schemes.29 We will say FGL (over R) for abelian formal group
law of dimension 1.

This is equivalent to the (usual) concrete definition: such an FGL is
given by a power series F (x, y) ∈ R[[x, y]] satisfying the properties:

(1) Neutral element. F (x, 0) = x.
(2) Commutativity. F (x, y) = F (y, x).
(3) Associativity. F (x, F (y, z)) = (F (x, F (y, z))).30

(Recall that the existence of the formal inverse follows from these con-
ditions; see e.g. [Str19, Lem. 2.7].) We will consider the following
generic form for such an FGL:

F (x, y) = x+ y +
∑
i,j

aij.x
iyj.

28More precisely, one uses the universal property of the Picard category K(X)
and the preceding lemma to get both results.

29We see R[[x]] as an admissible ring via the ideal of definition (x). Therefore
Spf(R[[x]]) is nothing else than the topological space Spec(R) seen as a ring space
via the sheaf associated to the pro-ring R[[x]].

30Note that the substitutions are licite because property (1) implies that F (x, y)
has no constant term.
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Example 2.2.2. Recall that the only examples of formal group laws
such that F (x, y) has only finitely many coefficients are:

(1) Additive FGL: Fadd(x, y) = x+ y.
(2) u-Multiplicative FGL: Fmul,u(x, y) = x+ y + u.xy, for u ∈ R.

Remark 2.2.3. FGL can be based changed: given a morphism of rings
φ : R → R′, and an FGL F (x, y) over R, we obtain an FGL FR′(x, y)
over R′ by applying φ coefficient-wise.

2.2.4. Let R be a ring, and F (x, y), G(x, y) two FGL with coefficients
in R. An isomorphism θ from F (x, y) to G(x, y) will be a power series
θ(t) = a1.t + a2.t

2 + . . . such that a1 ∈ R×, and the following relation
holds in R[[x, y]]:

θ(F (x, y)) = G(θ(x), θ(y)).

When one considers (R,F (x, y)) and (R′, G(x, y)) two FGL with
different ring of coefficients, one defines a morphism from the first to
the second as a pair (φ, θ) such that φ : R → R′ is a morphism of rings,
and θ : FR′(x, y) → G(x, y) is an isomorphism of FGL over R′. One
deduces a fibered category FG L over rings whose objects are pairs
(R,F (x, y)) and morphisms are described as above.

Let us recall that the theorem of Lazard asserts that FG L admits
an initial object (L, FL) such that L = Z[a1, a2, ...] is a polynomial ring,
now called the Lazard ring.

2.2.b. Orientations and FGL.

2.2.5. We fix an oriented motivic ring spectrum (E, c) over S (Defini-
tion 1.2.1), with ring of coefficients E∗∗ = E∗∗(S).
As the group scheme Gm is abelian, one immediately deduces that

BGm is an h-group i.e. a group object in the homotopy category
of Sh∞(SmS), and therefore also after applying the A1-localization
functor.

On the other hand P∞
S , being the moduli space of line bundles (rel-

ative to S), it automatically acquires a structure of an abelian group
object in the category of ind-smooth S-schemes, corresponding to the
existence of tensor product of line bundles, as well as the inverse functor
λ 7→ λ∨. In particular, we get a canonical map:

σ : P∞
S ×S P∞

S → P∞
S

The reader can check that it is actually given by the classical Segre
embedding.

Consider an oriented ring spectrum (E, c). The projective bundle
formula Theorem 1.2.4 implies that E∗∗ satisfies the Künneth formula
on product of projective spaces. This, together with the preceding
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observation, readily implies that E∗∗(P∞
S ) is an abelian co-group object.

In other words, abelian group structure on P∞
S determines an FGL with

coefficients in E∗∗(S): one has a canonical map:

E∗∗[[c]] ≃ E∗∗(P∞
S )

σ∗
−→ E∗∗(P∞

S ×S P∞
S ) ≃ E∗∗[[x, y]]

and one defines Fc(x, y) as the image of c.

Definition 2.2.6. Given the above notation, we will say that Fc(x, y)
is the formal group law associated with the oriented ring spectrum
(E, c).

We will say that (E, c) (or just c) is respectively additive or
multiplicative (with parameter u) if Fc(x, y) is the additive or (u-
)multiplicative) FGL.

There is a constraint on the coefficients say aSij of Fc(x, y) coming

from the fact E∗∗ is bigraded: in fact aSij has bidegree (2−2i−2j, 1−i−j)
in E∗∗.

Note that by base change along p∗ : E∗∗(X) → E∗∗(S) = E∗∗, for
any smooth map p : X → S, we deduce from the FGL Fc(x, y) over
E∗∗ and FGL over E∗∗(X) that we will denote by FX

c (x, y) (or simply
Fc(x, y) when X is clear).

Before giving examples, let us explain what is the concrete significa-
tion of the above FGL in term of characteristic classes.

Proposition 2.2.7. Consider the notations of the previous definition.
Then for any line bundles L1, L2 over X, one has the following re-

lation in E2,1(X)

c1(L1 ⊗ L2) = FX
c

(
c1(L1), c1(L2)

)
.

Note in particular that this relation makes sense because the classes
c1(L) and c1(L

′) are nilpotent in E∗∗(X) (see 1.2.7). The proof is in
fact tautological.

Example 2.2.8. Consider the absolute oriented ring spectra of Exam-
ple 1.2.2:

(1) The first Chern class associated with the canonical orientation
of motivic cohomology is nothing else than the canonical iso-
morphism:

Pic(X) ≃ CH1(X) ≃ H2,1
M (X).

As this is an isomorphism of groups, the associated FGL is
additive, i.e. the motivic Eilenberd-MacLane ring spectrum
HMZ is additive.
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(2) Similarly, for the ring spectrum Hϵ represented by a mixed Weil
cohomology, the first Chern class associated with the canonical
orientation is induced by the cycle class:

cϵ1 : Pic(X) ≃ CH1(X) → H2
ϵ(X).

Therefore, the oriented ring spectrum Hϵ is additive.
(3) For the orientation on the algebraic K-theory spectrum KGLS,

it follows easily from the definition that the first Chern class
of a line bundle L over a smooth S-scheme X is given by the
formula:

cKGL
1 (L) = β−1.(1− [L∨]).

One deduces that the FGL associated with KGLS is the mul-
tiplicative one with parameted −β:

FKGL(x, y) = x+ y − β.xy.

(4) many more example have been constructed: an algebraic ver-
sion of the Brown-Peterson spetrum ([Vez01]), of the Morava
K-theory31, elliptic ring spectrum ([LYZR19]). These construc-
tions are all based on the next theorem and on the motivic
version of the Landweber exactness theorem [NSØ09].

2.2.c. Algebraic cobordism and the Lazard ring. We end up this
course with a discussion of the motivic analog of Quillen’s theorem on
complex cobordism and the Lazard ring.

Let us recall that Lazard has proved that there is a universal formal
group law (L, FL), whose coefficient ring L = Z[b1, b2, ...] is a poly-
nomial algebra over Z with infinitely many variables. In particular,
for any scheme S, the canonical orientation on MGLS gives rise to a
canonical map

φS : L → MGL2∗,∗(S)

where the right hand-side is the graded part (2n, n) of the algebraic
cobordism ring of S. In his ICM talk in 1998, Voevodsky made the
following conjecture (see [Voe98]):

Conjecture. For any regular local scheme S, the map φS is an iso-
morphism.

Here is the current best result on this conjecture.

Theorem 2.2.9 (Levine, Hoyois, Spitzweck). Let S be a local pro-
smooth scheme over a field of characteristic exponent e or a DVR of
mixed characteristic (0, e).

31initially proposed by Voevodsky in a 1995 preprint



CHARACTERISTIC CLASSES IN MOTIVIC HOMOTOPY THEORY 29

Then the map φS[1/e] is an isomorphism, and the algebraic cobor-
dism MGLS[1/e] as the universal formal group law.

In fact, Levine was the first to give the proof, in [Lev09], of the
above theorem when S is the spectrum of a field k of characteristic 0.
It was in fact a corollary of the isomorphism between the geometric
part of the cohomology represented by MGLk and the “concrete” al-
gebraic cobordism theory, defined by explicit generators and relations,
by Levine and Morel ([LM07]). Indeed, Levine and Morel had proved
that the analogous of the above theorem for their cobordism theory in
characteristic 0.

Hoyois ([Hoy15]) proved the above theorem directly when S is a
field of characteristic exponent e = p, by coming back to the strategy
of Quillen, using the following fundamental relation between algebraic
cobordism and the motivic Eilenberg-MacLane spectrum: under the
above assumption, the canonical morphism of motivic spectra

MGLS/(b1, b2, ...) → HMZS

is an equivalence after inverting e. The global strategy as well as the
above isomorphism were devised by Hopkins and Morel (unpublished).

Then Spitzweck proved the theorem in the case stated above in
[Spi20], by using the preceding result, extended to a general S us-
ing his construction of the motivic Eilenberg-MacLane spectrum, and
also by using the slice filtration.

Exercices

Exercice 1. Prove that infinite suspension of Thom spaces induce
a functor on the groupoid of virtual vector bundles. Using the
method of Riou: see 4.1 in http://www.math.u-psud.fr/~riou/doc/

operations.pdf.
Eventually: explain the construction of Bachmann-Hoyois: [BH21,

16.1] ?

Exercice 2 (FGL). Prove the existence and unicity of the exponential
strict isomorphism associated to a rational FGL. [Str19]

Show the existence of the Lazard ring.
Show Lazard theorem. (cf. https://people.math.harvard.edu/

~lurie/252xnotes/Lecture2.pdf, +lecture3,4) ?

Exercice 3. Compute Chern classes of a tensor product for multiplica-
tive FGL.
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Cours 3. Fundamental classes and
Grothendieck-Riemann-Roch theorems

This course will focus on techniques to build the so-called Gysin
maps in motivic homotopy theory, i.e. exceptional functoriality. It is
based on a joint work with Fangzhou Jin and Adeel Khan: [DJK21]
(see in particular Theorem 3.1.8).

3.1. Bivariant theory and fundamental classes

3.1.a. Overview of Grothendieck 6 functors formalism. The fol-
lowing theorem sumarize the core properties of the Grothendieck 6
functors formalism for the motivic stable homotopy category. It is the
exact analog of the formalism satisfied by torsion (resp. ℓ-adic) étale
sheaves proved in SGA4, except one has to consider Thom spaces as
natural twists in the smooth purity property. It is mainly due to Vo-
evodsky and Ayoub, with later improvements from various authors.32

The first complete proof was given in Ayoub’s PhD [Ayo07].

Theorem 3.1.1 (Voevodsky, Ayoub). The motivic stable homotopy
category SH(S) for various schemes S is endowed with six ∞-functors:

• the adjoint pair (⊗S,HomS) which comes from the (presentable
closed symmetric) monoidal ∞-category SH(S);

• For any morphism f : T → S of schemes, an adjoint pair of
∞-functors:

f ∗ : SH(S) ⇄ SH(T ) : f∗

which actually comes from an ∞-fonctor: SH∗ : S chop →
Cat⊗∞.

• for any separated33 morphism of finite type p : Y → X in S ch,
a pair of adjoint functors

p! : SH(Y ) ⇄ SH(X) : p!

which comes from an ∞-functor: SH! : S ch→ Cat∞.

These functors satisfy the following properties:

(1) Proper support. There exists a natural transformation of ∞-
functors SH! → SH∗ such that the corresponding map αp : p! →
p∗ is an isomorphism whenever p is proper.

32First to avoid quasi-projectivity assumptions for the adjoint pair (f!, f
!), second

to promote these to a pair of adjoint ∞-functors.
33This assumption can be removed using Zariski descent.
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(2) Smooth purity. For any smooth separated morphism p : X → S
with tangent bundle Tf , there is a canonical isomorphism

pf : f ∗ −→ Th(−Tf )⊗ f !

(3) Base change. For any cartesian square:

Y ′ p′ //

f ′
�� ∆

X ′

f
��

Y p
// X,

such that p is separated of finite type, there exist natural iso-
morphisms

f ∗p!
∼−→ p′!f

′∗ ,

p!f∗
∼−→ f ′

∗p
′! .

(4) Projection formulas. For any separated morphism of finite type
f : Y → X, there exist natural isomorphisms

Ex(f ∗
! ,⊗) : (f!K)⊗X L

∼−−→ f!(K ⊗Y f
∗L) ,

HomX(f!(L), K)
∼−−→ f∗HomY (L, f

!(K)) ,

f ! HomX(L,M)
∼−−→ HomY (f

∗(L), f !(M)) .

(5) Localization. For any closed immersion i : Z → S with comple-
mentary open immersion j, there exists distinguished triangles
of natural transformations as follows:

j!j
!

α′
j−−→ 1

αi−−→ i∗i
∗ ∂i−−→ j!j

![1]

i!i
! α′

i−−→ 1
αj−−→ j∗j

∗ ∂̃i−−→ i!i
![1]

where α′
? (resp. α?) denotes the counit (resp. unit) of the rele-

vant adjunction.

Actually the method of proof (slightly revisited in [CD19]) consists
first to prove the localization property. One deduces the construction
of (f!, f

!) using a method due to Deligne. Then, given the definition
of the motivic stable homotopy category from the smooth site SmS

for the Nisnevich topology, one formally obtains that p∗ admits a left
adjoint p♯ when p is smooth. Then we prove the smooth purity formula
in the adjoint form: p! ≃ p♯(Th(Tp) ⊗ −). This allows to deduce all
the remaining properties, from the analogous properties of p♯ (or by
adjunction).
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Example 3.1.2. Let p : X → S be a smooth (seperated) morphism.
One deduces from the above sketch of proof that:

Σ∞X+ ≃ p!p
!(1S).

In this sense, Σ∞X+ can be seen as the homotopy type of X over S,
analog to the homological motives.

The above formalism is very strong. It is a nice exercice to deduce
(from (1), (2), (4)) that whenever p is smooth and proper, the object
Σ∞X+ is strongly dualizable (aka rigid) with dual Σ∞ Th(−Tf ).

3.1.b. Bivariant theories with twists. One of the nice application
of the six functors formalism is that it allows to associated several
homology/cohomology theories with respect to a ring spectrum E. The
following one will be crucial for the remaining of the course.

Definition 3.1.3. Consider a ring spectrum E over a scheme S. Let
p : X → S be a separated morphism of finite type, v a virtual bun-
dle over X, and n ∈ Z be an integer. One defines the bivariant E-
theory/homology (aka Borel-Moore E-homology) of X/S in degree n
and twist v as:

En(X/S, v) = [Th(v)[n], f !E]
where the stable Thom space Th(v) was defined in the preceding course
(see 2.1.12).

Note that cohomology is in fact a particular case of bivariant theory,
according to the relation:

En(X/X, v) = E−n(Th(v)).

Example 3.1.4. (1) If E is the ring spectrum representing Betti
cohomology with integral coefficients, v = 0 and S = Spec(k),
then the above bivariant theory is nothing else than the classical
Borel-Moore homology of X.

(2) Let f = i : Z → X be a closed immersion, X being smooth
over S. Then it follows from the localization property for the
immersion i that

En(Z/X, 0) ≃ [Σ∞X/X − Z,E[−n]] = E−n,0
Z (X).

In other words, the bivariant E-homology of Z/X in degree n
with the E-cohomology of X with support in Z in degree (−n).

(3) if S is regular, it follows from a theorem of Jin [Jin19] that

KGLn(X/S) ≃ K ′
n(X)

where left hand-side is Quillen K ′-theory of X (deduced from
the exact category of coherent sheaves over X).
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3.1.5. The above bivariant theories satisfy good properties, which were
axiomatically described by Fulton and MacPherson [FM81] except for
the twists (see also [BGI71]).

(1) Base change. for any map f : T → S, one gets a base change
map: f ∗ : En(X/S, v) → En(X ×S T/T, g

−1v).
(2) Proper covariance. For any proper morphism f : X →

Y of s-schemes over S, there is a direct image map f∗ :
En(X/S, f

∗v) → En(Y/S, v).

(3) Étale contravariance. For any étale f : X → Y of s-schemes
over S, there is an inverse image map f ! : En(Y/S, v) →
En(X/S, f

∗v).
(4) Product. For s-morphisms p : X → S and q : Y → X, and any

virtual bundles v ∈ K(X), w ∈ K(Y ), there is a product map:

En(Y/X,w)⊗ Em(X/S, v) → En+m(Y/S,w + q−1v).

These structures satisfy all the properties stated by Fulton and
MacPherson (functoriality, base change formula both with respect to
base change and étale contravariance, compatibility with pullbacks and
projection formulas). We refer to [Dég18a, 1.2.8] and [DJK21, §2.2].

Remark 3.1.6. In case E = 1S, we simply put:

HA1

n (X/S, v) = [Σ∞ Th(v)[n], f !
1S].

This will be called the A1-bivariant theory. It is universal in the sense
that given any ring spectrum E, the unit map induces canonical map:

HA1

n (X/S, v) → En(X/S, v)

which can be seen as a (homological or bivariant) generalized regula-
tor.34 The above map is obviously compatible with the functorialities
and the product described above.

3.1.c. Construction of fundamental classes.

3.1.7. A morphism f : Y → X of schemes will be called smoothable

lci if it admits a factorisation Y
i−→ P

p−→ X such that p is smooth and
i is a regular closed immersion.

For such a morphism, one defines the virtual tangent bundle as the
virtual bundle on Y equals to:

τf = [i−1Tp]− [Ni].

34This would exactly be a bivariant regulator if we were working with the ∞-
category DM of mixed motivic complexes.
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Alternatively, it is the virtual bundle associated with the cotangent
complex Lf of f .35 Virtual tangent bundles enjoy good properties.
First, they are stable under pullback along a transversal map. Second,
for a commutative diagram of smoothable lci morphisms:

(3.13) Z
g ++

h // X
Y f

33

one has τh = τg + g−1τf in K(Z).
The main result we will be using to get Gysin maps is the following

one, proved in [DJK21, Th. 3.3.2]:

Theorem 3.1.8 (Jin-Khan-D.). For any smoothable lci f : Y → X
with virtual tangent bundle τf , there exists a class:

ηf ∈ E0(X, τf )

called the (refined) fundamental class of f . The collection formed by
these classes satisfies the following properties:

(1) ηId = 1E, the unit of the ring spectrum E.
(2) For any morphism p : X ′ → X which is transversal36 to f ,

f ′ = f ×X X ′, one has:

p∗ηf = ηf ′ .

(3) For any diagram (3.13), one has in E0(Z/X, τh) ≃ E0(Z/X, τg+
g−1τf ):

ηh = ηg.ηf

using the product defined in 3.1.5.

Idea of proof. One first restrict to the case where f is either a smooth
morphism or a closed immersion. In the first case, ηf can be deduced
from the purity property of the six functors formalism Theorem 3.1.1.
In the second case, f = i : Z → X, one uses the (affine) deformation
space D = D(X,Z) = BZ(A1

X) − BZX to the normal cone (actually
bundle as i is regular) N = N(X,Z) associated with i. Recall that D
is a scheme over A1, isomorphic to X ×Gm over Gm, and to N over 0.
Then ηi is the image of the unit by the following composite map:

E0(X/X, 0)
γt−→ E−1(Gm×X/X, 0)

∂D,N−−−→ E0(N/X, 0) ≃ E0(Z/X, [−N ]).

35Such a virtual bundle exists as, in that case, Lf is a perfect complex of OY -
modules.

36i.e. it preserves the relative dimension: for any point y′ ∈ Y ×X X ′ with image
y ∈ Y , the dimension of the fiber of f ′ at y′ is equal to the dimension of the fiber
of f at y.
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where γt is multiplication by the symbol [t] already encountered, as-
sociated with the canonical unit t of Gm = Spec(k[t, t−1]), ∂D,N is the
residue associated with the closed immersion N ⊂ D (whose comple-
ment is D − N ≃ Gm ×X), and the last isomorphism is tautological.
Essentially, we have:

ηi = ∂D,N([t]).

The rest of the proof consists un showing that these two constructions
glue correctly in order to ensure that property (2) holds. The key point
is that for i a closed immersion which admits a smooth retraction p,
one get: ηi.ηp = 1 (see [DJK21, Cor. 3.2.17]). □

Remark 3.1.9. We refer the reader to loc. cit. for the excess intersection
formula, which generalizes the above point (1) in the non-transversal
case.

Example 3.1.10. Fundamental classes induce all sorts of Gysin maps,
provided one considers the right twists.

(1) When f : X → S is proper smoothable lci, on deduces a push-
forward map:

f! : E∗∗(X,Th(Tf ) + f−1v) → E∗∗(S), x 7→ f∗(x.ηf )

where we have used the product and the pushforward map in
bivariant E-homology. Beware that the twist on the source as
to be of the exact above form in order to get a Gysin map under
this generality.

According to the above theorem, these Gysin maps satisfy
the required properties: functoriality, base change formula with
respect to transversal base change (and an excess intersection
formula according to the previous remark). One can also prove,
the projection formula with respect to products.

(2) In fact, one deduces from the case of of the A1-bivariant theory

HA1
that fundamental classes corresponds to the following trace

map:

trf : IdS → f∗(Th(τf ⊗ f !(−))).

(and dually a cotrace map). This generalizes a classical con-
struction in étale cohomology (see [AGV73, Tome III]). We refer
the reader to [DJK21, §4.3] for more details.

3.1.d. Oriented fundamental classes.

3.1.11. Consider now an oriented ring spectrum (E, c). The virtual
Thom isomorphism also induces Thom isomorphisms for twisted bi-
variant theory. Indeed, we first remark that one can vary the product
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in bivariant theory to get the following variant of cap-product:37

Em,j(Th(w))⊗ En,i(X/S, v) → En−m,i−j(X/S, v + w).

Let v be a virtual bundle of rank r ∈ Z. We have obtained in Defini-
tion 2.1.13 a class:

th(−v) ∈ E−2r,−r(Th(−v)).
One deduces the following Thom isomorphism for bivariant theories.

Lemma 3.1.12. Consider the above notation. Then the following map
is an isomorphism:

E0(X/S, v) → E2r,r(X/S), α 7→ th(−v).α.

Proof. By unfolding the definitions, one deduces that the above map
is induced by the isomorphism (2.12). □

Using the preceding Thom isomorphism, one immediately deduces
the following central definition for motivic oriention theory.

Definition 3.1.13. Consider the above notation. Let f : X → S be a
smoothable lci morphism of relative dimension d ∈ Z. Then we define
the oriented fundamental class of f with coefficients in (E, c) as:

ηci := th(−τf ).ηf ∈ E2d,d(X/S).

When f is in addition proper, one deduces a Gysin morphism without
twists :

f! : E∗∗(X) → E∗+2d,∗+d(S), α 7→ f∗(α.η
c
f ).

In fact, more directly and dually, one gets Gysin morphism in bivariant
homology. Let f : Y → X be a smoothable lci morphism between s-
schemes over S. Then one gets:

f ! : E∗∗(X/S) → E∗+2d,∗+d(Y/S), α 7→ ηcf .α.

Remark 3.1.14. (1) Given the properties of the twisted fundamen-
tal classes stated above, and the one of Thom isomorphisms,
this Gysin maps satisfy all the desired properties: transversal
base change, compatibility with composition, excess intersec-
tion formula. The projection formula follows from the transver-
sal base change one.

37This is obtained via tensor product of maps in SH(X), using the pairing f∗ ⊗
f ! → f !. The pairing is a consequence of the projection formula: indeed one gets a
map:

f!(f
∗A⊗ f !B)

∼−→ A⊗ f!f
!(B)

IdA⊗αf−−−−−→ A⊗B

using the projection formula and the unit of the adjunction (f!, f
!). The required

map follows by adjunction.
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(2) As in the case of “twisted” fundamental classes, one can asso-
ciate to the oriented fundamental classes many more Gysin-type
morphisms. See e.g. [Dég18a].

Example 3.1.15. (1) Let i : Z → X be a regular closed immersion
of codimension n. Then ηci ∈ E−2n,−n(Z/X) = E2n,n

Z (X) is a
refinment of the classical fundamental class of Z, the supported
version.

In motivic cohomology, at least when X is smooth over a
regular base S of dimension less than 1, the class i∗(1) = O(ηci )
does corresponds to the class [Z] in CHn(X), after forgetting
the support. Similarly, the Gysin map when f is proper between
smooth S-schemes does corresponds to the usual pushforward
of cycles.

In K-theory, when X is regular and c is the orientation pre-
viously defined, ηci corresponds to the element in KZ(X) cor-
responding to [OZ ] in K ′-theory (using that is X regular to
deduce an element in K-theory with support).

(2) Let f : X → Spec(k) be a smooth proper morphism of di-
mension d over a field of characteristic 0. Then the element
f∗(1) = O(ηcf ) in MGL2d,d(X) does corresponds to the cobor-

dism class [X] ∈ Ωd(X), via the isomorphism of Theorem 2.2.9.

Let us end-up these examples with the following computation ob-
tained in [Dég18b, Ex. 3.2.14].

Theorem 3.1.16. Let (E, c) be an oriented ring spectrum over S with
associated FGL Fc(x, y) =

∑
i,j aij.x

iyj. Then one has the following

equality in E2n,n(S):

[Pn
S]E = pc∗(1) = (−1)⌊(n+1)/2⌋.

∣∣∣∣∣∣∣∣∣∣∣

0 0 1 a1,1

a1,2
0

1

a1,1 a1,2 a1,n

∣∣∣∣∣∣∣∣∣∣∣
.

In the particular case where the oriented ring spectrum E represents
the complex cobordism theory MU∗(X(C)) for complex varietiesX, the
above theorem is a determinantal formula of the celebrated Myschenko
formula, which computes the cobordism class of CPn.

3.2. GRR theorems

3.2.a. Morphisms of ring spectra.
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3.2.1. Consider oriented motivic ring spectra (E, c) and (F, d) over S,
with respective formal group laws FE(x, y) and FF(x, y). Let ϕ : E → F
be a morphism of ring spectra. It induces a morphism in cohomology,
and in particular a map:

E∗∗[[c]] ≃ E∗∗(P∞
S )

ϕ∗−→ F∗∗(P∞
S ) ≃ F∗∗[[d]]

In particular, on can write ϕ∗(c) = θϕ(d) where θϕ(t) ∈ F∗∗[[t]] is a
power series. As ϕ∗ is a ring morphism, one immediately deduces that
ϕ∗(d) is an orientation of F, and θϕ has the following form:

θϕ(t) = t+ . . . .

Finally, one deduces from the definition of the associated FGL the
following relation:

θϕ(FE(x, y)|F ∗∗) = FF(θϕ(x), θϕ(y)).

In other words, θϕ is a strict isomorphism from the FGL FE(x, y)|F∗∗

extended along ϕ∗ : E∗∗ → F∗∗ to the FGL FF(x, y).

Definition 3.2.2. In the above situation, we will say that (ϕ∗, θϕ) :
(E∗∗, FE) → (F∗∗, FF) is the morphism of FGL associated with the ring
morphism ϕ.

This construction is compatible with base change along any map
p : X → S: using the same construction, for the oriented ring spectrum
(EX , cX), we obtain a power series θXϕ as above. Then θXϕ = p∗(θϕ) ∈
F∗∗(X).

Remark 3.2.3. Note that we can take ϕ = IdE, but still considering
two orientations c, d on E. The situation corresponds to a change
of orientation, and in this case we denote by θc,d(t) the power series
obtained from the above construction. It is a strict isomorphism of
FGL: θc,d : Fc(x, y) → Fd(x, y) with coefficients in E∗∗.

In fact, the formulas below will describe how the invariants of an
oriented ring spectrum change when changing the orientation.

Example 3.2.4. (1) The most important example for us will be
the Chern character. Over any base scheme S, it is an isomor-
phism of ring spectra of the form:

ch : KGLS ⊗Q →
⊕
n∈Z

HMQS(n)[2n]

This isomorphism corresponds to the decomposition of rational
(homotopy invariant) K-theory with respect to eigenspaces for
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Adams operations, or equivalently in the graded parts associ-
ated with the γ-filtration. Under this form, it is essentially due
to Riou; see [CD19, Lem. 14.1.4].

The Chern character is essentially determined by its value on
KGL0,0 = K0 on line bundles L over say a smooth S-scheme
X:

ch([L]) =
∑
n≥0

1

n!
.c1(L)

i.

As the FGL on HMQS is additive, and that on KGLS is multi-
plicative, the isomorphism of FGL associated with ch is neces-
sarily the unique strict isomorphism given by the exponential.

(2) It was proved in [CD19] that HMQS is the universal orientable
rational ring spectrum. In other words, any orientable rational
ring spectrum E inherits a canonical ring map ϕE : HMQS → E.
If one chooses an orientation c on E, then the morphism of
formal group law associated with ϕE will be logarithm of the
FGL associated with c.

(3) Any stable cohomological operation on an oriented ring spec-
trum will give rise to interesting examples. A particular interest
has been put on the Adams operations (see [Sou85]).

(4) It is worth mentioning that the morphism of ring spectra
ϕ : MGLS → E that arises by universality of algebraic cobor-
dism (Theorem 2.2.9) does preserves the orientation, by the very
construction. In other words, the associated strict isomorphism
is just the identity: θϕ(t) = t.

3.2.b. Todd classes.

Proposition 3.2.5. Consider oriented motivic ring spectra (E, c) and
(F, d) over S, a morphism of ring spectra ϕ : E → F and use the
notation of Definition 3.2.2.

Then for any smooth S-scheme X, there exists a unique morphism
of abelian groups:

tdϕ : K0(X) → F00(X)×

natural in X with respect to pullbacks, and such that for a line bundle
L over X, one gets38:

tdϕ(L) =
t

θϕ(t)
(t = d1(L)).

38The right hand-side is well defined as the Chern class d1(L) is nilpotent.
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Moreover, for any vector bundle V/X of rank n, one has the relation
between the respective Chern classes:

dn(V ) = tdϕ(V ).ϕ∗(cn(V )).

Remark 3.2.6. Taking ϕ = IdE, the above formula allows to express
Chern classes associated with the orientation d in terms of the Todd
classes in associated with c and Todd classes. Using the splitting prin-
ciple, one can find an expression for all Chern classes, generalizing the
last formula.

3.2.c. Grothendieck-Riemann-Roch theorems. We finally obtain
a Grothendieck-Riemann-Roch formula à la Fulton-MacPherson:

Theorem 3.2.7. We consider the notation of Proposition 3.2.5. Let
f : X → S be a smoothable lci morphism of dimension n, with virtual
bundle τf , η

c
f ∈ E2n,n(X/S) and ηdf ∈ F2n,n(X/S) be the respective

associated oriented fundamental classes.
Then, the following formula holds in F2n,n(X/S):

ϕ∗(η
c
f ) = tdϕ(τf ).η

d
f .

Proof. Given the (formidable) theoretical background used, the proof
is now very easy. First, one comes back to the definition of oriented
fundamental classes:

(3.14) ϕ∗(η
c
f ) = ϕ∗(th

c(−τf ).ηEf ) = ϕ∗(th
c(−τf )).ηFf .

The last equality follows by definition of fundamental classes. Then we
are reduced to prove the relation for a virtual bundle v over X:

ϕ∗(th
c(v)) = tdϕ(−v). thd(v).

But by the splitting principle, one reduces to the case v = [L], which
follows by the very construction of todd classes and the relation th(L) =
c1(L). □

This result implies several variants of the Grothendieck-Riemann-
Roch formula, depending if you consider cohomology, compactly sup-
ported cohomology, Borel-Moore homology. Let us mention the follow-
ing interesting formula (see [Dég18a, 3.3.12] in the case of a field; the
case of a Dedekind scheme uses the localization long exact sequence on
higher Chow groups, due to Marc Levine, and their representability in
motivic homotopy due Markus Spitzweck: [Spi18]):

Theorem 3.2.8. Let S be a field or a Dedekind ring.
Let f : Y → X be a global complete intersection of S-schemes such

that:
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• X and Y are separated of finite type if S is the spectrum of a
field;

• X and Y are smooth over S, or smooth over a residue field of
S if S is a Dedekind scheme.

Then we get the following commutative diagram:

K ′
n(X)

f !

//

chX
��

K ′
n(Y )

chY
��⊕

i∈ZCHi(X,n)Q
td(τf ).f

!

//
⊕

i∈ZCHi(Y, n)Q

where ch is a Chern character isomorphism, td is the Todd class asso-
ciated with ch (as a ring spectrum), and the upper (resp. lower) map f !

is the Gysin morphism associated with f on Quillen’s K’-theory (resp.
higher Chow groups).

Cours 4. A quadratic Riemann-Roch theorem

This last course is dedicated to a notion of orientation suited for
describing the quadratic phenomenas arising in motivic homotopy the-
ory. While this theory is based on the foundational work of Panin and
Walter, many developments have been obtained in collaboration with
Jean Fasel, and also with Jens Hornbostel and David Coulette. I will
describe here some of these latest developments.

4.1. Non orientable motivic spectra

4.1.a. Chow-Witt groups.

4.1.1. Stable homotopy of motivic spheres. We have seen that the
motivic stable homotopy SH(k) over a field admits a t-structure defined
by Morel, the homotopy t-structure.

Let k be a perfect field (or k non perfect, but one inverts its residue
characteristic). Recall that given a motivic spectrum E, one defines its
i-th homotopy sheaves for i ∈ Z as the graded Nisnevich sheaf πi(E)∗
associated with the presheaf

X 7→ [Σ∞X+,E(n)[n− i]], n ∈ Z.
Recall this object actually is a homotopy module39 and it is completely
determined by its value on function fields.40

39i.e. an abelian Z-graded Nisnevich sheaf M∗ on Smk equiped with isomor-
phism ϵn : (Mn+1)−1 → Mn.

40More precisely, it is equivalent to a Milnor-Witt cycle module in the sense of
Feld (see [Fel20, Fel21]).



42 FRÉDÉRIC DÉGLISE

We know a lot about the homotopy sheaves of the sphere spectrum
1k = S0. First, it is non-negative for the homotopy t-structure. More-
over, its 0-th homotopy sheaf can be computed according to the fun-
damental theorem of Morel:

π0(1k)∗ ≃ KMW
∗

where the right hand-side is the unramified Milnor-Witt K-theory
sheaf.

Let us however mention that at least in characteristic 0, it is un-
bounded, and has non trivial homotopy sheaves in all non-negative
degrees.41 On the contrary, it is expected that over a field of posi-
tive characteristic, the rational sphere spectrum 1k⊗Q is concentrated
in degree 0, isomorphic to the rational unramified Milnor K-theory
sheaf.42

4.1.2. Chow-Witt groups. From the preceding paragraph, we see that
the homotopy module KMW

∗ , as the 0-th homotopy of the sphere spec-
trum, is of fundamental importance. But unlike in classical homo-
topy theory, where the 0-th homotopy of the sphere spectrum is the
Eilenberg-MacLane spectrum of Z, the spectrum HKMW

∗ correspond-
ing to KMW

∗ is not orientable.
Indeed, the Hopf map η certainly acts non-trivial on KMW

∗ as it is an
isomorphism on the negative part: for any n < 0, the multiplication
by η induce an isomorphism

KMW
−n (F )

γη−→ KMW
−n−1(F )

both groups being isomorphic to the Witt group W (F ). One of the
aim of this lecture is to explain that one can still develop an interesting
(generalized) orientation theory and associated characteristic classes for
HKMW

∗ (thus reconnecting to stable homotopy of topological spaces).
Recall finally that the ring spectrum HKMW

∗ represents over a field
k the Chow-Witt ring:

[Σ∞X+,HKMW
∗ (n)[2n]] ≃ C̃Hn(X).

The latter can be computed using the Rost-Schmid complex (cohomo-
logical form):

⊕y∈Xn−1KMW
1 (κy, νy)

dn+1

−−−→ ⊕x∈X(n) GW(κx, νx)
dn−→ ⊕s∈X(n−1) W(κs, νs)

41This follows from Borel’s computation of the K-theory of fields. See [Dég24].
42This follows from the conjunction of the fact that Witt groups of a positive

characteristic field is 2-torsion, and from the Beilinson conjecture on algebraic K-
theory, asserting that the symbol map is rationally an isomorphism for postive
characteristic field.
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where X(n) is the set of codimension n points of x, and for such a point,
νx = ΛnNx where Nx is the normal bundle of x in X(x). This is given
by the quadratic cycles on X in codimension n, that is the kernel of
dn, modulo the image of dn+1 which one can call the quadratic cycles
rationally equivalent to 0.

4.1.b. Milnor-Witt motivic cohomology and higher
Grothendieck-Witt groups.

4.1.3. Milnor-Witt motivic cohomology. The Chow-Witt groups play a
role similar to that of Chow groups. Chow groups have been extended
to higher Chow groups with the aim of having a localization long exact
sequence, and the latter are also called motivic cohomology represented
by the ring spectrum HMZS.

Similarly, Chow-Witt groups can be extended to the so-called Milnor-
Witt motivic cohomologyHMWZk, which has been defined in [BCD+ar]
over a perfect field k, and by pullback over any scheme over such a
field. With rational coefficients, we can define the Milnor-Witt motivic
cohomology spectrum is nothing else than the rationalization of the
sphere spectrum (see [DFJK21]). Thus we will put:

HMWQS = 1S ⊗Q.
One has in particular:

H2n,n
MW(X,R) ≃ C̃Hn(X)⊗Z R

for X smooth over k and R = Z or S regular and R = Q. Thus in any
case, the preceding discussion implies that HMWRS is not orientable.

4.1.4. Higher Grothendieck-Witt groups. The last player today will be
the higher Grothendieck-Witt ring spectrum GWS. It was defined by
Panin-Walter [PW18] and Schlichting-Tripati [ST15] when 2 is invert-
ible on S, and which has recently been defined in the general case by
Calmès, Harpaz, Nardin [CHN24].

Whereas KGLS is (2, 1)-periodic, GWS is (8, 4)-periodic. Here is a
computation of these groups, for S regular:

(4.15) GWn,i(S) = GW i
2i−n(S) =

{
KO2i−n i ∼= 0 mod 4,

KSp2i−n i ∼= 2 mod 4,

where KO∗ (resp. KSp∗) is the higher hermitian K-theory of symmet-
ric (resp. symplectic) vector bundles: vector bundles equipped with a
symmetric (resp. anti-symetric) non-degenerate bilinear form.

One has an exact sequence of motivic spectra:

GWS(1)[1]
γη−−→ GWS

f−−→ KGLS

h◦γβ′−−−→ GWS(1)[2]
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where η is the algebraic Hopf map, f the forgetful map, h : KGLS →
GWS is the “hyperbolization” map and γβ′ is the multiplication by the
inverse of the Bott element β on KGLS. This implies that η is non
zero on hermitian K-theory, and therefore GWS is not orientable.

4.2. Symplectic orientation after Panin and Walter

4.2.1. Torsors and algebraic group schemes. We have seen in the pre-
ceding lecture that an orientation on a ring spectrum can be exactly
encoded into a ring map from the algebraic cobordism spectrumMGLS

(see Theorem 2.1.8).
The idea of Panin and Walter, in particular inspired by Balmer’s

theory of higher Witt groups, is that one can find the appropriate
theory of characteristic classes by only asking for Thom classes with
respect to vector bundles with an appropriate additional structure. The
main players here, used to define hermitian K-theory, are the symmetric
and symplectic bundles.43

In the talk of Philippe Gille, we learn how to model these extra-
structures as torsors on appropriate algebraic linear groups. Here is a
picture:

SO∞
%%

// O∞
%%

SL∞ // GL∞

Sp∞

99

The dictionnary is as follows, having fixed a scheme X and working
relative to X:

(1) torsors on SL∞ corresponds to vector bundles V with a trivial-
ization of its determinant det(V ) = ΛnV , n = rk(V ).

(2) torsors on Sp∞ corresponds to vector bundles V with a sym-
plectic form: an anti-symmetric non-degenerate bilinear form
ψ : V ⊗ V → V . Note that the existence of such a form implies
that V has even rank.

(3) torsors on O∞ (resp. SO∞) corresponds to vector bundles V
with a symmetric form: a symmetric non-degenerate bilinear
form ϕ : V ⊗ V → V (resp. and a trivialization of the deterem-
inant of V ).

Beware that one should be extra careful here: for the first two points,
the notion of torsors will not change when we vary the topology from

43In the modern theory of hermitian K-theory, both situations are encoded
by considering an appropriate biduality structure. In the recent treatment of
[CDH+23], this is described by a Poincaré structure on an ∞-category.
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Zariski, Nisnevich, étale and fppf. On the contrary, this is false in
the third case: there exists étale-locally trivial torsors that are not
Zariski-locally trivial.44

Thus in the third case, one has to be careful when defining the classi-
fyng space of G, as the difference between Nisnevich and étale matters.
It is possible to define Nisnevich-local and étale-local classifying spaces
for these groups, we will restrict our attention on the first two cases.

4.2.2. Let us consider the ind-group schemes (over some base S) G =
SL∞, Sp∞. We can now use the procedure of 2.1.5, using the classifying
spaces BSLn and BSp2n respectively, and their tautological bundles, in
place of BGLn. This defines motivic ring spectra over S:

MSLS = hocolimn≥0Th(γ
SL
n )(−n)[−2n],

MSpS = hocolimn≥0Th(γ
SL
2n )(−2n)[−4n].

Note that according to the above diagram of algebraic groups, one gets
morphisms of ring spectra:

MSpS → MSLS → MGLS.

Starting from this definition, we can safely define an G-orientation as
an MGS-algebra structure. With this terminology, a GL-orientaion is
nothing else than an orientation as defined in Definition 1.2.1.45

With this definition, we get a hierarchy: an Sp-orientation canon-
ically induces an SL-orientation, which in turn canonically induces a
GL-orientation.

Both SL-orientations and Sp-orientations are useful in motivic ho-
motopy. On the one hand, SL-orientations are very similar to GL-
orientations and, up to considering twists by line bundles, one can de-
fine Thom classes for arbitrary vector bundles. They also contain the
theory of Euler classes that has been used by Morel and Asok-Fasel to
obtain many advances on the Murthy’s conjectures (see [AF23]).

On the other hand, Sp-orientations have a richer theory of charac-
teristic classes, which is much closer to that of GL-orientations. This
allows to transport most of the techniques used in the latter. Therfore,
the remaining of this course will focus on the latter.

44These two facts boils down to the fact that GLn, SLn and Sp2n are special
in the sense of [Ser54] while SOn and On are not. This was originally proved by
Grothendieck (whenX is defined over an algebraically closed field): see [Gro58]. For
an arbitrary affine smooth group scheme G over some absolute base, this reduces
to the question whether H1

ét(S,G) is trivial or not when S if a local (henselian)
scheme. The Grothendieck-Serre conjecture eventually reduces this question to the
case where S is the spectrum of a field.

45This is a small conflict of terminology, not really problematic anyway.
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4.2.a. Definition. As said just above, Sp-orientations shared the good
properties of GL-orientations. In particular, we let HP∞

S = BSp2, the
hermitian infinite projective space, classifying the rank two symplectic
bundle. It is notable that one can compute the first layer of this ind-
scheme, in the pointed A1-homotopy category:

HP1
S ≃ (P1

S)
∧,2.

The following theorem, due to Panin and Walter (see [PW23, Th. 1.1]),
is an analogue of the results we obtained in the GL-oriented case (The-
orem 2.1.8).

Theorem 4.2.3 (Panin-Walter). Let E be a ring spectrum over S.
Then the following data are in bijective correspondance:

(1) the cohomology classes b ∈ Ẽ4,2(HP∞
S ) such that b|HP1

S
= Σ2

T1E.

(2) The MSp-algebra structure on E over S: φ : MSpS → E.
(3) The collection of Thom classes th(V, ψ) ∈ E4n,2n(Th(V )) for

symplectic vector bundles (V, ψ) over smooth S-schemes sat-
isfying suitable properties: compatibility with pullbacks, multi-
plicativity with respect to direct sums, and normalisation.

In particular, we can declare that an Sp-orientation of E is an E-
cohomology class b as in the above point (1).

Example 4.2.4. (1) Both the Milnor-Witt motivic cohomology
spectrum, and the the higher Grothendieck-Witt groups are
Sp-orientable (see e.g. [DF21]).

(2) Morevoer, it follows from [DFJK21], that any rational motivic
ring spectrum is Sp-orientable. Indeed, such an E is automati-
cally an HMWQS-module.

4.2.b. Borel classes.

4.2.5. Borel classes. As in the GL-orientation case, it induces, for any
smooth S-scheme X, a map:

b1 : Pic
Sp(X) := H1(X, Sp2) → [X+,BSp2]

un → E4,2(X).

which we will call the first Borel classes. Mind that there is no question
of being a homomorphism for b1 here: the left hand-side does not have
a group structure as the tensor product of two rank 2 symplectic bundle
is not a symplectic bundle!

Nethertheless, a key point of the theory is the following analogue of
the projective bundle theorem. Consider a sumplectic bundle (V, ψ)
over a smooth S-scheme X. We can define the associated projective
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sympelctic bundle HP(V, ψ) as the open subscheme of the Grassman-
nian scheme Gr(2, V ) on which the restriction of ψ to the canonical
sub-bundle of rank 2 is non-degenerate.

We let U be the tautological rank 2 bundle on HP(V, ψ). By defi-
nition, it is equipped with a symplectic structure ψU coming from the
restriction of ψ.

Theorem 4.2.6 (Panin-Walter). Consider the above notation and as-
sume that V has rank 2n. Let p : HP(V, ψ) → X be the canonical
projection, (E, b) be an Sp-oriented ring spectrum and b = b1(U, ψ) be
the associated first Borel class.

Then the following map is an isomorphism of bi-graded E∗∗(X)-
modules:

n⊕
i=0

E∗∗(X) → E∗∗(HP(V, ψ)), xi 7→ p∗(xi).b
i.

See [PW21, Th. 8.2] for a proof. As a consequence, we can define
the following higher Borel classes bi(V, ψ) ∈ E4i,2i(X)

(4.16)
n∑

i=0

(−1)i.bi(V, ψ).b
n−i = 0, b0(V, ψ) = 1,∀i > n, bi(V, ψ) = 0.

These classes satisfy the exact analog properties of their parent, the
Chern classes. Moreover, one deduces from the above theorem a sym-
plectic splitting principle (analog to Proposition 1.2.8), which gives an
important tool for computations. We refer the reader to [DF21, §2.2]
for details. But note finally that it will be usefull to introduce the total
Borel class:

bt(V, ψ) = 1 + b1(V, ψ).t+ . . .

as an element of E∗∗(X)[t]. If we give the formal variable t degree
(−4,−2), this class is homogeneous of bidegree (0, 0).

Example 4.2.7. The motivic ring spectrum Hσ representing the sin-
gular cohomology of the real points, attached to σ : k → R and defined
in Example 1.1.6(3), is Sp-orientable. This follows from the existence
of a (quadratic) cycle class map from Chow-Witt groups as was con-
structed in [HWXZ21].

Given a vector bundle V , one defines its symplectification as:

H(V ) :=

(
V ⊕ V ∨,

(
0 1

−can 0

))
.

One then defines the Pontryagin classes of V as:

pi(V ) = bi
(
H(V )

)
.
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It has not been checked, but it seems likely that the Pontryagin classes
defined above for the Sp-oriented ring spetrum Hσ does coincide with
the classically defined Pontryagin classes.

4.2.c. Formal ternary laws.

4.2.8. Let us write generically V = (V, ψ) the symplectic bundles that
will appear subsequently.

As already mentioned, the tensor product V1⊗V2 of two symplectic
bundle, is not a symplectic bundle, but a symmetric one. A priori,
that forbids transporting the theory of FGL into the symplectic case.
On the other hand, a triple tensor product of symplectic bundles is
symplectic. This motivates Walter to introduce formal ternary laws,
abbreviated to FTL, in this context.

But mind that a triple product V1 ⊗ V2 ⊗ V3 has rank 8. Conse-
quently, it has a priori four non-trivial Borel classes. What we con-
cretely get out of these considerations is the following construction, for
which we refer to [DF21, §2.3].

Proposition 4.2.9. Let (E, b) be an Sp-oriented motivic ring spectrum
over S. Put E∗∗ = E∗∗(S).

There exists a a power series F b
t (x, y, z) in E∗∗[[x, y, z]][t] of the form:

F b
t (x, y, z) = 1 +

4∑
i=1

Fi(x, y, z).t
i

such that for any triple of symplectic bundles (V1,V2,V3), the follow-
ing relation holds:

bt(V1 ⊗V2 ⊗V3) = F b
t

(
b1(V1), b1(V2), b1(V3)

)
.

Proof. The method of proof of this proposition, goes as in the GL-
oriented case: we use the symplectic projective bundle theorem and
the canonical map:

HP∞
S ×S HP∞

S ×S HP∞
S → HP∞

S

which is a structure of abelian ternary group on the ind-scheme HP∞
S .

The formula stated in the proposition then follows by the fact HP∞
S =

BSp2 classifies the symplectic bundles of rank 2. □

4.2.10. Multi-valued series. The power series Ft(x, y, z) is made of 4-
components and has 3 variables. We call this a (4, 3)-series, inspired by
Buchstaber’s theory of 2-valued formal group laws which are actually
(2, 2)-series.46 A delicate algebraic point in the theory of (n,m)-series

46In this point of view, formal group laws are (1, 2)-series!
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(also called “multi-valued series”) is the description of a substitution
procedure, based on an algebraic splitting principle.47 If one admits
this construction, here are the properties of the (4, 3)-series Ft(x, y, z)
arising above.

A final observation is that all abelian groups that arise from mor-
phisms in motivic stable homotopy are in fact algebras over the ring:

Zϵ = Z[ϵ]/(ϵ2 − 1).

Indeed, ϵ in the above ring corresponds to the element ϵ described
in 1.2.13.48 Therefore, it is natural to adopt the following definition
([CDFH22, Def. 3.1.5], [DF21, Def. 3.1.2]).

Definition 4.2.11. Let R be a Zϵ-algebra. A formal ternary law with
coefficients in R is (4, 3)-series with coefficients in R

Ft(x, y, z) = 1+F1(x, y, z)t+F2(x, y, z)t
2 +F3(x, y, z)t

3 +F4(x, y, z)t
4

satisfying the following properties:

(1) Neutral element. Ft(x, 0, 0) = (1 + xt)2(1− ϵxt)2.
(2) Semi-neutral element. F4(x, x, 0) = 0.
(3) Symmetry. The element Ft(x, y, z) of R[[x, y, z]][t] is fixed under

the obvious action of the symmetric group S(x, y, z).
(4) Associativity. Given formal variables (x, y, z, u, v), one has the

following equality of (16, 5)-series:

Ft

(
Ft(x, y, z), u, v

)
= Ft

(
x, Ft(y, z, u), v

)
using the substitution operations of multi-valued series.

(5) ϵ-Linearity. Ft(−ϵx, y, z) = F−ϵt(x, y, z).

We frequently display an FTL by its coefficients:

(4.17) Ft(x, y, z) = 1 +
∑

i,j,k≥0,1≤l≤4

alijkx
iyjzktl.

We define the degree of Ft(x, y, z) as the integer:

d = max{i+ j + k − l | alijk ̸= 0}.

This definition is made so that the (4, 3)-series F b
c (x, y, z) appearing

in the preceding proposition is an FTL with coefficients in the Zϵ-
algebra E∗∗(S). It is called the FTL associated with (E, b).

47To explain it, recall that the symplectic splitting principle tells that one can
formally associates to some total Borel class bt(V) some Borel roots βi such that:
bc(V) =

∏
i(1+βi.t). One can then use the algebra of symmetric functions to relate

the bi with the βi. See [CDFH22, §2.1] for details.
48Observe also that GW(Z) ≃ Zϵ!
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Example 4.2.12. The following FTL are examples with bounded de-
gree. As such, they are respective analogues of the additive and multi-
plicative FGL.

(1) We have an FTL of degree 0 with coefficients in Zϵ whose non-
zero coefficients are:

a1100 = 2(1− ϵ)
a2200 = 2(1− 2ϵ) a2110 = 2(1− ϵ)
a3300 = 2(1− ϵ) a3210 = −2(1− ϵ) a3111 = 8(2− 3ϵ)
a4400 = 1 a4310 = −2(1− ϵ) a4220 = 2(1− 2ϵ) a4211 = 2(1− ϵ).

This is expected to be the only (up to the automorphism ϵ 7→
−ϵ) FTL of degree 0. We proved this after inverting 2 in see
[CDFH22, Th. 3.1.12]. By analogy, this FTL is called the
additive FTL.

We proved in [DF21] that this is the FTL associated with
Chow-Witt groups, i.e. the motivic ring spectrumHMWZk with
its canonical Sp-orientations, at least when 2, 3 are invertible in
the base field k. With rational coefficients, this restriction can
be lifted: for any S, the Sp-oriented spectrumHMWQS = 1S⊗Q
has the additive formal ternary laws.

(2) We have an FTL of degree 2, having parameters τ and γ, i.e.
with coefficients in the polynomial ring

Zmul
ϵ := Zϵ[τ, γ

±1]/⟨τ 2 − 2(1− ϵ)γ, (1 + ϵ)τ⟩,

whose non-zero coefficients are, in addition to the ones appear-
ing in the preceding law:

a1110 = τγ−1 a1111 = γ−1

a2210 = 2τγ−1 a2111 = −3τγ−1 a2220 = γ−1

a3310 = τγ−1 a2220 = −2τγ−1 a3211 = 3τγ−1 a3220 = γ−1

a4311 = −τγ−1 a4221 = 2τγ−1 a4222 = γ−1.

It was proved in [FH23, Theorem 6.6] that this is the FTL associated
with hermitian K-theory GWk. For this reason, we call it the multi-
plicative FTL.

4.2.13. The Walter ring. The theory of FTL is very involved, though
analogous to that of FGL from what we have sen so far. It is possible
to define (stric) isomorphisms of FTL, and to get a category FT L. For
example, there is a canonical functor:

FGL → FT L
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which reflects the fact that GL-oriented implies Sp-oriented. One also
gets in the middle of this functor the category of Buchstaber’s 2-valued
formal group laws (of a certain form). We refer the reader to [CDFH22].

Let us mention one last fact. The category of FTL admits an ini-
tial object, (W ,FW

t (x, y, z)) and we call the Zϵ-algebra W the Walter
ring. At this point, we do not know much about the Walter ring. We
have tried to make explicit computations of this ring, but even after
bounding the coefficients, the complexity raise very quickly above the
reasonable (see the appendix of [CDFH22] for the algorithm).

Nevertheless, it is interesting to point out that the theory gives us
two morphisms:

W → MSp2∗,∗(SpecC) → π−2∗(MSp)

W → MSp2∗,∗(SpecR) → π−∗(MU)

using complex and real realizations respectively, and results of [BH21].
One can wonder how the generators of the Walter ring are related to
the rather mysterious ring of symplectic cobordism π−2∗(MSp) through
the first map.

Similarly, one could expect, by analogy with the GL-oriented case,
that for any field k, the canonical map:

W → MSp2∗,∗(Spec k)

is an isomorphism.

4.3. A quadratic Hirzebruch-Riemann-Roch formula

In this last section, we will explain how to get a quadratic version
of the classical Hirzebruch-Riemann-Roch theorem, which allows to
compute Euler characteristic of vector bundles in terms of the degree
of some map. In fact, recall that the (qsingular) HRR formula is the
particular case of the GRR formula obtained by considering the Gysin
map with respect to a projective lci variety p : X → Spec(k) over
some field k (or Dedekind scheme). We will have to introduce three
players: the Borel character, the associated Todd class, and the Euler
characteristic of symmetric/symplectic bundles.

Underlying this particular quadratic formula, there is a general the-
ory of symplectically oriented fundamental classes, isomorphisms of
FTL associated with morphisms of ring spectra (or simply change Sp-
orientations). And there is a general Grothendieck-Riemann-Roch for-
mula in the style of ??. We refer the reader to [DF21] for such a
formula.
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4.3.a. The Borel character.

4.3.1. It was mentioned earlier that Chow-witt groups and hermit-
ian K-theory bear a similar relation than Chow groups and K-theory.
Indeed, by studying some operations on hermitian K-theory, we were
able with Jean Fasel to build an isomorphism of (rational) ring spectra
which is a “quadratic” analog of the Chern character (Example 3.2.4).

Theorem 4.3.2. For any scheme S, there exists an isomorphism of
motivic ring spectra of the form:

bot : GWS →
⊕
n∈Z

H
(n)
MWQS(2n)[4n]

where we put:

H
(n)
MWQS =

{
HMWQS n odd,

HMQS n even.

Moreover, the following diagram commutes:

GWQ
S

bot //

f ��

⊕
n∈ZH

(n)
MWQS(2n)[4n]

��
KGLQ

S

cht //
⊕

m∈ZHMQS(m)[2m].

where the left vertical map is the forgetful map, and the right one maps

H
(n)
MWQS(2n)[4n] to the m = 2n factor HMQS(2n)[4n], by either the

modulo η-map if n is even, or the identity if n is odd.

Concretely, the Borel character on the part GW4,2(X) = KSp0(X) of
the higher Grothendieck-Witt group associates to a symplectic bundle
V = (V, ψ) an element of the following form:

bot(V, ψ) = 2d+ χ̃2(V, ψ) +
1

4!
χ4(V ) +

1

ψ6!
χ̃6(V, ψ) + . . .

in

CH0(X)Q ⊕ C̃H2(X)Q ⊕ CH4(X)Q ⊕ C̃H6(X)Q ⊕ . . .

Here, the element ψ2+2n! is an explicit quadratic form, whose rank is
(2 + 2n)!

Remark 4.3.3. If we start from GW0,0(X) = KO0(X), then one obtains

a similar form, but one has to start from C̃H0(X) ≃ GW(κ(X)) if X
smooth connected, and alternate Chow groups with Chow-Witt groups.
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4.3.b. Todd classes. The Borel character bot is a morphism of ring
spectra, from the Sp-oriented ring spectrum GW which has the multi-
plicative FTL to an Sp-oriented ring spectrum which has the additive
FTL. As in the case of the Chern character, it corresdponds to a strict
isomorphims between those two FTL. At the moment, we do not know
that such an isomorphism is unique, nor it is a kind of exponential
isomorphism. However, we can define an associated todd class and
compute it as follows.

Proposition 4.3.4. There exists a Todd class morphism:

t̃d : KSp0(X) → C̃H0(X)Q ⊕ CH2(X)Q ⊕ C̃H4(X)Q ⊕ CH6(X)Q ⊕ . . .

which sends + to × and which, for any symplectic bundle (V, ψ) of rank
2n, satisfies the relation

cht

(
bn(V, ψ)

)
= t̃d(V, ψ).bn(V, ψ).

Moreover, in even degrees and projected on the minus part (=Witt
part), this element satisfies the relation:

t̃d−(V, ψ) =
t/2

sin(t/2)
(t = e(V, ψ))

where e(V, ψ) is the Euler class in the Witt part C̃H2n(X)Q−.

See [DF21, Prop. 4.2.3].

4.3.c. Euler characteristic of symplectic bundles.

4.3.5. Let p : X → Spec(k) be a projective lci morphism of dimension
d = 2n, where k is a local regular ring. We assume that the virtual
tangent bundle τX admits a symplectic orientation49: there exists a
class τ̃X ∈ KSp0(X) and an isomorphism f(τ̃X) ≃ τX , where f :
KSp0(X) → K0(X) is the forgetful map.

Let ωX = det(τX) be the canonical bundle of X. We recall that this
symplectic orientation actually induces an orientation in the classical
sense of p: that is, an isomorphism: ϵX : L⊗2 → ωX .

The last element we need is a computation of
we

Definition 4.3.6. Consider the above notation as well as the Gysin
map:

p∗ : GW4m,2m(X) → GW4(m−n),2(m−n)(k)

associated with the symplectic orientation of X/k.

49It seems clear that we in fact need only an orientation in the sense of Barge-
Morel to get the next formula, as well as the quadratic HRR formula, work.
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Given an element v = [V, φ] of the left hand-side, which is either
a symetric (n even) or a symplectic (n odd) bundle, we define the
quadratic Euler characteristic of v as the element:

χ̃(X, τ̃X ;V, φ) = p∗([V, φ]) ∈ GW4(m−n),2(m−n)(k).

Note this is 0 if m−n is odd, and the class of a symmetric form over
k if m− n is even.

4.3.7. We consider the notation of the preceding definition. Here is
a way to compute this Euler characteristic. First, the orientation ϵX
associated with τ̃X induces a Thom isomorphism:

GW4m,2m(X) ≃ GW4m,2m(X,L⊗2)
ϵX−→GW4m,2m(X,ωX)

[V, φ] 7→[V ⊗ L, φ′
L]

where we have define the following form:

φL : V ⊗ V ⊗ L⊗ L
φ⊗IdL⊗L−−−−−→ L⊗2 ϵX−→ ωX .

By transposition, one deduces an isomorphism:

φ′
L : V ⊗ L→ (V ⊗ L)∨ ⊗ ωX .

One deduces a form on cohomology as follows:

φ′
L,ϵ : H

n(X, V ⊗ L)
φ′
L∗−−→ Hn(X, (V ⊗ L)∨ ⊗ ωX) ≃ Hn(X, V ⊗ L)∗

where the last isomorphism follows by Grothendieck duality.

Proposition 4.3.8. Using the above notation, one gets:

χ̃(X, τ̃X ;V, φ) =(−1)m+n[Hn(X, V ⊗ L), φ′
L,ϵ]

+

(
n−1∑
i=0

(−1)(m+i)dimkH
i(X, V ⊗ L)

)
· h

in GW4(m−n),2(m−n)(k).

4.3.d. Main theorem. We can now formulate the quadratic HRR the-
orem, which follows from the general quadratic GRR theorem associ-
ated with the Borel character and the relevant Sp-orientations.

Theorem 4.3.9. Let X/k be an lci projective variety of even dimension
d = 2n over a local regular ring k, such that X is regular. We assume
that the virtual tangent bundle τX of X/k admits a stable Sp-orientation
τ̃X . We let ϵX be the orientation of X/k associated with τ̃X .
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Let (V, φ) be either a symplectic bundle if d = 2 (mod 4) or a sym-
metric bundle if d = 0 (mod 4). Then the following equality holds in
GW(k)

χ̃(X, τ̃X ;V, φ) = d̃egτ̃X (tdbot(τ̃X). bot(V, φ))

where d̃egτ̃X : C̃Hd(X) → GW(k) is the (quadratic) degree map (push-
forward) associated with the symplectic orientation τ̃X (equivalently the
orientation ϵX) of X/k.

In the case where k is a field of characteristic not 2, the above for-
mula, as well as the other formulations of the general quadratic GRR
theorems proved in [DF21], should be compared with the formulas ob-
tained by Marc Levine and Apron Raskit in [LR20, Th. 1.3, 8.6, 8.7].

Example 4.3.10. Suppose that d = 2 and that X/k is a K3 surface.
We consider the symplectic orientation of X/k obtained by choosing
an isomorphism τ̃X : OX → ωX/k. If (V, ψ) is a symplectic bundle of
rank 2r over X, we finally obtain

χ̃(X, τ̃X ;V, ψ) = d̃egτ̃X

(
(2r + e(V, ψ)) · (1 +

c2(TX/k)

24
h)

)
= d̃egτ̃X

(
r ·

c2(TX/k)

12
h+ e(V, ψ)

)
= deg

(
r ·

c2(TX/k)

12

)
· h+ d̃egτ̃X (e(V, ψ)).

Using the well-known fact that deg(c2(ΩX/k)) = 24, we finally obtain
the formula in GW(k):

χ̃(X, τ̃X ;V, ψ) = 2r · h+ d̃egτ̃X (e(V, ψ)).
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[CD19] D.-C. Cisinski and F. Déglise. Triangulated categories of mixed motives.
Springer Monographs in Mathematics. Springer, Cham, 2019.
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