
Conventions. Schemes will be Noetherian. Smooth will mean smooth
of finite type. Unless stated otherwise, the Grothendieck topology on
SmS is the Nisnvich topology. Therefore, sheaves will mean sheaves
for the Nisnevich topology.

We use the language of ∞-categories.1 We let Cat∞ (resp. Cat⊗∞)
be the ∞-category of presentable ∞-categories with left adjoint ∞-
functors (resp. presentable symmetric closed monoidal ∞-category
with left adjoint and symmetric monoidal ∞-functors). All our ∞-
categories will be presentable ∞-categories. Similarly, monoidal ∞-
categories will be presentable monoidal ∞-categories. On the other
hand, we mostly work in the associated homotopy category in this
course.

Monoidal means symmetric monoidal. All our monoids are commu-
tative. We denote by 1S the “sphere spectrum” over S i.e. the unit of
the monoidal structure on SH(S).

Unless stated otherwise, spectrum means motivic spectrum, and ring
spectrum means commutative motivic spectrum.
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Cours 1. Oriented spectra and Chern classes

Introduction

The theory of characteristic classes of fiber bundles arose at exactly
the same time than (singular) cohomology, in 1935. That year, Stiefel
(in his PhD) and Whitney both introduced the notion of fiber bundle
and some associated characteristic class.2 Meanwhile, at the Moscow
international conference on topology, Alexander and Kolmogorov in-
dependently introduced cohomology and the (soon to be called) cup-
product.

The history of the subject of characteristic classes was then marked
by the introduction of Pontryagin classes, out of the computation of
the homology of real grassmanianns, by Pontryagin in 1942, and by
the introduction of Chern classes, obtained through the determination
of the cohomology of complex Grassmanians by Chern in 1946. A last
event I want to mention is the course ”characteristic classes” given at
the University of Princeton by John Milnor in 1957.3

Here is a list of the characteristic classes that emerged from the works
mentioned above:4

name fiber b. notation group
Stiefel-Whitney smooth real v.b. wi H i(B,Z/2)
Pontryagin smooth real v.b. pi H4i(B,Z)

Chern smooth complex v.b. ci H2i(B,Z)

2The terminology “fiber bundle” is due to Stiefel, though he actually only con-
sidered smooth real vector bundles, while it was Whitney that formally introduced
the so-called characteristic classes.

3Notes by Stasheff were available at that time. They were finally published in
1974, [MS74].

4Recall that Pontryagin classes are actually particular cases of Chern classes
according to the formula: pi(V ) = (−1)i.c2i(V ⊗R C), where V ⊗R C is the com-
plexification of the real vector space V .
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Note that fiber bundle had already appeared: first in works of E.
Cartan on Lie groups and their associated homogeneous spaces, and
in the work of Stiefel, slightly earlier in 1933, who was interested in
constructing new 3-dimensional varieties (in view of the Poincaré con-
jecture). Recall that in the most general form, a fiber bundle is a map
p : E → B such that there exists an open cover W → B and a W -
homeomorphism: (F ×W ) → E ×B W for some space F .5 One calls
B, E, F respectively the base (space), the total space and the fiber
(space) of the fiber bundle.6

Example 1.0.1. Here are some of the most famous examples of fiber
bundles:

• tangent bundles. p : TM → M , projection from the tangent
bundle of a smooth (resp. analytic) manifold M . This is a
particular case of smooth real (resp. complex analytic) vector
bundles.

• homogeneous spaces. for G a Lie group, and H ⊂ G a closed
subgroup, p : G → G/H. This is a particular case of a principal
G-bundle.

• Covering spaces. P → X. The fiber is then a discrete space.
• The Möbius strip T is (non trivially!) fibered over S1, the map
T → S1 being the projection.

• The Hopf fibration: S3 → S2, with fiber S1.

In the previous list, only vector bundles were considered. In topology,
more general fiber bundles naturally appear in the so-called obstruc-
tion theory. They arise as morphisms in the Postnikov tower, in good
cases (simple, or more generally nilpotent spaces). The attendees have
already seen this theory at work in the talk of Aravind Asok: primary
and secondary obstructions can be seen as characteristic classes In this
course however, we will focus on algebraic vector bundles, in order to
draw a picture similar to the above table.

Characteristic classes are invariant under isomorphism of fiber bun-
dles. In particular, they can differentiate the homotopy type of the
total space. However, they are far from determining this homotopy

5Variants arise first by working in other categories than topological spaces. In al-
gebraic geometry, one also considers covers from various (Grothendieck) topologies:
Zariski, Nisnevich, étale, fppf (mainly).

6Remark that such a fiber space is in particular a Hurewicz fibration, and
therefore a Serre fibration. So one sometimes abusively says “fibration” for “fiber
bundle”.
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type (let alone the diffeomorphism type), even if one adds the homo-
topy type of the base.7 In his groundbreaking 1954 work on cobordism,
Thom proved a therefore very surprising fact: the cobordism class of
an unoriented closed smooth manifold M is completely determined by
the so-called Pontryagin numbers, which are computed through Pon-
tryagin classes of the tangent space of M . This was the beginning
of a deep revolution in algebraic topology, which contribute to led to
generalized cohomology theories, aka spectra such as cobordism, com-
plex (real, Morava,...) K-theory, elliptic cohomology, and the beautiful
picture painted by chromatic homotopy theory.

In this talk, we will consider the theory of characteristic classes as
it was developed in motivic homotopy theory, after Voevodsky, Morel,
Panin, Levine, and many more! The authors interest on the subject
arose during his PhD under the supervision of Fabien Morel, during the
years 1999-2002. This interest has grown during all my carrier (as can
be seen in one’s bibliography). I would like to seize this opportunity
to thank Fabien again to having shared his visions on, and led me to,
this wonderful world of motivic homotopy.

1.1. Stable motivic homotopy

1.1.a. Motivic spectra.

1.1.1. Stable homotopy theory. Recall from the preceding talks that the
A1-homotopy category HA1

(S) over a scheme S is obtained by consid-
ering the ∞-topos Sh∞(SmS) of Nisnevich sheaves over the smooth
site SmS and by localizing it further with respect to A1-homotopy:
that is we invert for any smooth S-scheme X the maps A1

X → X in
Sh∞(SmS) via the Yoneda embedding.

On the associated ∞-category HA1

• (S) of pointed objects in HA1
(S),

we even get a symmetric monoidal ∞-category where the tensor prod-
uct is the so-called smash product.

We have seen in the talk of F. Morel that there are several models of
spheres in motivic homotopy theory: the simplicial sphere S1, the mul-
tiplicative group (Gm, 1), and the projective line (P1,∞). All objects

are considered in HA1

• (S) without indicating the bases scheme S (which
plays no specific role here) in the notation. And they are related by
the relation:

(1.1) P1 ≃ S1 ∧Gm

7This can already be seen in the classification of Seifert fibrations, mentioned
above.
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As in classical topology, we obtain the stable motivic homotopy cat-
egory by ⊗-inverting the third model of sphere, P1. For completeness,
we will now state the main theorem that will give us our fundamental
category (see also the talk of Kirsten Wickelgren).

Theorem 1.1.2 (Robalo). Let S be any scheme. There exists a univer-
sal presentable monoidal ∞-category SH(S) equipped with a monoidal
∞-functor:

Σ∞ : HA1

• (S) → SH(S)

which admits a right adjoint Ω∞ and such that Σ∞ P1 is ⊗-invertible.8

Actually, the proposition could be stated more abstractly for an ar-
bitrary presentable monoidal ∞-category and an arbitrary object S.
Under, this form the proof is due to Robalo: [Rob15].

1.1.3. It follows from the construction, and the isomorphism (1.1) that,
all the possible spheres S = P1

S,Gm,S, S
1, becomes ⊗-invertible after

applying Σ∞.
The resulting ∞-category acquires a very important property: it is

stable in the sense of [Lur17, Def. 1.1.1.9]. This implies that the asso-
ciated homotopy category admits a triangulated structure (see [Lur17,
1.1.2.13]). Note that the suspension functor for this triangulated struc-
ture is given by the formula:

E[1] = E⊗ Σ∞ S1.

Definition 1.1.4. The monoidal ∞-category SH(S) is called the stable
motivic homotopy category over S. Its objects are calledmotivic spectra
over S.

The unit object with respect to the monoidal structure is denoted by
1S. One defines the Tate twist as 1S(1) = Σ∞ P1[−2] = Σ∞ Gm,S[−1].
By construction, this is a ⊗-invertible objects in SH(S) so that one also
denotes by ?(n) the n-th tensor product with respect to this object.

If this does not cause confusion, we will denote by

[E,F]S = HomSH(S)(E,F) = π0MapSH(S)(E,F)
the abelian group of morphisms in the homotopy category associated
to the ∞-category SH(S). We usually even drop the index S in the
notation.

It might be useful to have in mind the classical model for motivic
spectra9 given here without taking care about the monoidal structure.

8An object X in a monoidal ∞-category is ⊗-invertible if the ∞-functor X⊗? is
an equivalence of categories.

9That is the objects of an underlying model category whose associated ∞-
category is equivalent to the above one.
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A model for a motivic spectrum E is the data of a sequence (En)n≥0

where En is a pointed simplicial Nisnevich sheaf together with suspen-
sion maps:

P1 ∧ En → En+1.

1.1.b. Representable cohomology theories. For us, the main func-
tion of the stable homotopy category is that its objects, the P1-spectra,
represent cohomology theory. The originality of the theory is that these
cohomology theories are bigraded.

Definition 1.1.5. Cohomology theories. Let E be a motivic spectrum
over S. For any smooth S-scheme X and any pair of integers (n, i) ∈
Z2, one defines the E-cohomology of X in degree n and twists i as:

En,i(X) = [Σ∞ X+,E(i)[n]].

These cohomologies have the distinctive features of being contravari-
ant, additive, A1-homotopy invariant and P1-stable. Moreover, one gets
long exact sequences of Mayer-Vietoris type but with respect to Nis-
nevich distinguished squares.

Example 1.1.6. There are many examples of cohomology theories
which are representable in the stable motivic homotopy category, over
a given base field S = Spec(k).

(1) All the classical Weil cohomologies admits canonical extensions
over smooth k-schemes which are representable.10

• char(k) = 0: algebraic de Rham cohomology;
• char(k) = p > 0: rigid cohomology (Berthelot)
• given an embedding σ : k ⊂ C, the rational singular coho-
mology of the σ-complex points of a smooth k-scheme X;
this is called simply the rational Betti cohomology.

• give a prime ℓ invertible in k, the Qℓ-adic étale cohomology
of X⊗k k̄; this is called the geometric Qℓ-adic cohomology.

We will denote by Hϵ the spectrum representing one of these
Weil cohomologies: ϵ =dR, rig, B, ℓ respectively. In all these
cases, twists does not change the cohomology up to an isomor-
phism (see loc. cit. Introduction before theorem 1).

(2) Note that Betti cohomology can be taken with integral coef-
ficients. It is still representable in SH(k), and twists do not
change the cohomology (up to an isomorphism as above). We
will denote by Hσ R the corresponding spectrum over k with
coefficients in a ring R.

10This has been axiomatized in the notion of mixed Weil cohomology theory in
[CD12].



7

(3) Given now a real embedding σ : k ⊂ R. One can consider the
integral singular cohomology of the real points:

Hn(Xσ(R),Z).
This is representable by a ring spectrum that will be denoted
by Hσ Z. In that case, twists just shift cohomology degrees,
again up to isomorphisms:

(Hσ Z)n,i(X) = Hn−i(Xσ(R),Z).

Example 1.1.7. The following examples are absolute cohomology in
the sense of Beilinson. In the motivic homotopy categorical sense, it
means that the base scheme does not really matter when one computes
the associated representable cohomology.11

(1) Motivic cohomology with coefficients in a ring R, HM,SR can be
defined for any scheme S.12 The distinctive feature of motivic
cohomology is:

H2n,n
M (X,Z) = CHn(X) X/S smooth, S =field, Dedekind ring

Hn,n
M (k,Z) = KM

n (k) k any field.

where CHn(X) denotes the Chow group of X: classes of codi-
mension n algebraic cycles up for the rational equivalence, and
KM

n (X) is the n-th Milnor K-group: the tensor algebra over the
abelian group k× modulo the Steinberg relation.

(2) Quillen algebraic K-theory over a regular scheme S. This is
represented by a spectrum that we will denote by KGLS. This
spectrum is periodic, in the sense that there exists a canonical
isomorphism, the “Bott isomorphism”:

β : KGLS(1)[2] → KGLS.

Taken into account this isomorphism one gets the following dis-
tinctive property for any smooth S-scheme X:

KGLn,i(X) = K2i−n(X)

where the right hand-side is Quillen algebraic K-theory: the
(2i − n)-th homotopy group of the nerve of the Q-category

11Concretely, this means that these cohomologies are representable by an ab-
solute motivic spectrum: a collection of motivic spectra ES over any scheme S,
equipped for any morphism f : T → S, with an isomorphism f∗(ES) ≃ ET sat-
isfying the usual cocycle condition. This is also a cartesian section of the fibred
category SH over the category of schemes.

12The first definition of such a spectrum is due to Voevodsky. At the time being,
one uses a definition based on higher Chow groups and due to Spitzweck. Both
definitions coincide if S is smooth over a field.
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associated with the exact category of vector bundles over X
(pointed by the 0-object).

If one wants a true absolute spectrum, one will replace
Quillen K-theory by Weibel homotopy invariant K-theory. We
will still denote by KGLS the resulting spectrum, for an arbi-
trary base scheme S.

(3) Algebraic cobordism over any base scheme S, denoted by
MGLS. We will recall later the definition of this spectrum,
and state a universal property.

1.1.8. Extended cohomology. Representable cohomology theory au-
tomatically acquire more structures.For once, a motivic spectrum E
defines a family of contravariant functors:

Ẽn,i :
(
HA1

• (S)
)op → A b,X 7→ [Σ∞X ,E(i)[n]].

Note an important property of this functor: it turns cofiber sequences
in HA1

• (S) into long exact sequences of abelian groups.13

An interesting remark is that the E-cohomology is therefore invariant
under weak motivic equivalences.14

Secondly, one immediately gets a definition of cohomology with sup-
port. A closed S-pair (X,Z) will be a pair of schemes such that X
is a smooth S-scheme, and Z ⊂ X a closed subscheme. By taking
homotopy cofibers, in the pointed motivic homotopy category, one can
define the object X/X − Z which fits into a cofiber sequence:

(X − Z)+
j∗−→ X+ → X/X − Z

One defines the E-cohomology of X with support in Z in degree n and
twist i as:

En,i
Z (X) := Ẽn,i(X/X − Z).

Therefore, it fits into a long exact sequence:

. . .En,i
Z (X) → En,i(X)

j∗−→ En,i(X − Z)
∂X,Z−−−→ En+1,i

Z (X) . . .

This cohomology with support enjoys good properties:

(1) Contravariance: for any morphism f : Y → X of smooth S-
schemes, there exists a pullback functor:

f ∗ : En,i
Z (X) → En,i

f−1(Z)(Y ).

13This comes from the fact that Σ∞, as a left adjoint, preserves cofiber se-
quences. As its target is a stable ∞-category, it even sends cofiber sequences to
exact sequences.

14To get a nice picture on weak motivic equivalences, we refer the survey paper
[AOsr21].
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(2) Covariance: for any closed immersion i : T → Z of closed
subschemes of X, one gets:

i∗ : En,i
T (X) → En,i

Z (X).

Remark 1.1.9. (1) All the previous examples admit a natural no-
tion of cohomology with support, which agree with the above
definition.

(2) Morel-Voevodsky purity theorem implies the following property
of cohomology with support, in the case where Z ⊂ X is a
smooth subscheme of codimension c:

En,i
Z (X) ≃ En−2c,i−c(Z).

1.1.c. Ring spectra and cup-products. The next definition is the
last piece of structure one needs on cohomology to get characteristic
classes.

Definition 1.1.10. A (commutative) ring spectrum E over the base
scheme S is a (commutative) monoid object in the homotopy category
associated with SH(S).

In particular, the structure of a ring spectrum on E is given by a
unit 1E : 1S → E and a product µ : E ⊗S E → E, which satisfies the
usual axioms. If one wants to be precise, we will say that (E, µ, 1E) is
a motivic ring spectrum.

One deduces a product on E-cohomology, which is often called the
cup-product15: given cohomology classes:

a : Σ∞ X+ → E(i)[n], b : Σ∞ X+ → E(j)[m]

one defines a ∪µ b as the composite map:

Σ∞ X+
δ∗−→ Σ∞(X×SX)+ = Σ∞ X+⊗SΣ

∞ X+
a⊗b−−→ E⊗E(i+j)[n+m]

µ−→ E(i+j)[n+m].

We will usually denote this product simply as ab.
It follows that for any smooth S-scheme X, E∗∗(X) is a bi-graded

algebra over the bigraded ring E∗∗(S), usually called the coefficient ring
of E and simply denoted by E∗∗.

Remark 1.1.11. One should be careful that the above bigraded algebra
is not simply graded commutative with respect to the first index. To
state the required formula one neesd the special element ϵ ∈ [1S,1S],
which acts as a scalar on any representable cohomology theory, de-
fined by the switch map inverse map x 7→ x−1 on Gm, and using that
Σ∞(Gm, 1) = 1S(1)[1].

15This terminology, due to Whitney for the product on singular cohomology,
has firmly remained in algebraic topology, due to the tremendous importance of its
introduction in the thirties.
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Then the ϵ-graded commutativity formula, for a, b as above, reads
as follows:

(1.2) ab = (−1)n+m−i−j.ϵi+j.ba

The proof is formal once one notices that ϵ can also be defined, up
to A1-homotopy, by the map switching the factors on Gm × Gm (see
[Mor04, Lemma 6.1.1]).

Example 1.1.12. All the examples of cohomology theories of Exam-
ple 1.1.6 and Example 1.1.7 are in fact representable by motivic ring
spectra, and the associated cup-product corresponds to their usual
product.

Remark 1.1.13. The theory developed below only requires the above
definition. However, all the examples considered admits a highly struc-
tured product, i.e. it is the object in the homotopy category associ-
ated with a (commutative) algebra object of the monoidal ∞-category
SH(S). Beware that in general, it is fundamental in classical (and mo-
tivic) stable homotopy theory to give a clear distinction between those
two kinds of structure.

1.1.d. Representability of the Picard group.

1.1.14. In algebraic topology, given an abstract group G, one can de-
fine its classifying space BG as an explicit simplicial set: the nerve of
the groupoid associated with G, made of a single object ∗, a morphism
for any element of g, the composition being given by the group law.

It is more common to consider topological groups (eg. Lie groups) G,
and then one can still define a classifying space BG (as an explicit CW-
complex) with the distinctive feature that for any topological space X,
the homotopy classes of (unpointed) maps [X,BG] are in bijhection
with the principal homogeneous G-spaces.

In motivic homotopy theory, Morel and Voevodsky have provided an
analog of the second construction but using the first one and the frame-
work of simplicial sheaves. For an algebraic group G over a scheme S,
and a smooth S-scheme X, we denote by H1

Nis(X,G) the set of G-
torsors on X for the Nisnevich topology. Let us state a particular case
of Morel-Voevodsky’s construction relevant in our case.

Proposition 1.1.15. Let S be a scheme, and G be an algebraic group
over S.

Then there exists an object BG in HA1

• (S) and for any smooth S-
scheme X, a canonical functorial application of (pointed) sets:

(1.3) H1
Nis(X,G) → [X,BG]unS .
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Moreover, if the left hand-side is A1-invariant over all smooth S-
schemes, this map is an isomorphism.

Note that it is very rare that the second condition holds. The only
example we have in mind is that of G = Gm when S is regular. To
sum-up in the case of Gm, we get a canonical map:

Pic(X) → [X,BGm,S]
un
S

which is bijective whenever S is regular. Note also that the theory of
Morel and Voevodsky shows that BGm,S admits the geometric model
that one expect: it is the infinite projective space P∞

S , that is the infinite
Grassmanian of lines in an affine space:

BGm,S = lim−→n≥0
Pn
S

where the colimit can be taken in the category of simplicial sheaves
on SmS (to get an explicit model). Note that P∞

S will be seen as a
pointed sheaves via the point at ∞ of all the Pn

S. We will recall from
this discussion the canonical map:

(1.4) Pic(X) → [X,P∞
S ]unS .

Remark 1.1.16. (1) Assume S = Spec(k) is the spectrum of a field.
If one restricts our attention to smooth affine k-schemes X,
then the map (1.3) is an isomorphism for an isotropic reductive
k-group schemes: e.g. G = GLn, SLn, Sp2n. This is a theorem
which was first obtained by Morel in certain cases, and in gen-
eral by Asok, Hoyois and Wendt (see [AHW20] for the extra
condition needed for G).

(2) Morel and Voevodsky also give geometric models for over classi-
fying spaces: as an example, for any n ≥ 0, BGLn is equivalent
to the infinite grassmanian of sub-n-vector bundles:

BGLn = lim−→r≥0
Gr(n, n+ r).

1.2. Oriented ring spectra

1.2.a. Definition and examples. Given the notation of the previ-
ous section, we have all the ingredients to formulate the notion of
orientation, which has been introduced in motivic homotopy theory,
by analogy with topology, at the time of the first proof of the Milnor
conjecture by Voevodsky.

Definition 1.2.1. Let (E, µ, 1E) be a ring spectrum over S . Let i :
P1
S → P∞

S be the canonical inclusion of pointed Nisnevich sheaves, both
being pointed by the point at ∞.
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An orientation of E is the data of a class c ∈ Ẽ2,1(P∞
S ) suth that

i∗(c) = 1E via the identification: Ẽ2,1(P1
S) = E0,0(S).

We will say that the pair (E, c) is an oriented (ring) spectrum.

Note that an orientation can be seen as a map:

c : Σ∞ P∞
S → E(1)[2].

Example 1.2.2. (1) Let X be a smooth Z-scheme. We have seen
that there is an isomorphism: H2,1

M (X) ≃ CH1(X) ≃ Pic(X).
This extends to ind-smooth Z-schemes. But Pic(P∞

S ) ≃ Z.c, the
free abelian group generated by c, the class of the tautological
invertible bundle λ = OP∞

S
(−1).

Moreover, the restriction of c to P1
S is the cycle class of the

point at ∞. It is the unit of the ring structure on CH∗(P1
S) ≃

H2∗,∗
M (P1

S) ≃ Z[c].16 Therefore, the class c corresponds to an
orientation of HMZ over the base scheme Z.

Given now any scheme X, we can look at the canonical map
f : S → Z. Then f ∗, being compatible with products on mo-
tivic cohomology, f ∗(c) is an orientation of f ∗HMZ = HMZS.

(2) Let Hϵ be the ring spectrum representing one of the mixed Weil
cohomology theories, over smooth k-schemes with coefficient in
the appropriate field K of characteristic 0 as in Example 1.1.6.
The corresponding cohomology admits a cycle class map:

CHi(X) ≃ H2i,i
M (X) → H2i,i

ϵ (X)
(∗)
≃ H2i,0

ϵ (X) =: H2i
ϵ (X)

which is compatible with products (mapping intersection prod-
ucts to “cup-products”).17 Therefore, the image of c ∈
CH1(P∞

k ) in H2,1
ϵ (P∞

S ) induces a canonical orientation of the
mixed Weil spectrum Hϵ.

(3) The same strategy works for the singular cohomology of com-
plex points of smooth algebraic k-schemes, over k ⊂ C.

(4) On the contrary, the ring spectrum representing singular coho-
mology of the real points of smooth algebraic k-scheme, k ⊂ R,
is not orientable. Indeed:

H2,1
σ (P1

k) = H1(RP1,Z) = Z
H2,1

σ (P∞
k ) = H1(RP∞,Z) = Z/2.

16This follows for example from the definition via pullback along the diagonal.
17We put the last isomorphism to recall that mixed Weil cohomologies are (0, 1)-

periodic. This isomorphism is non-canonical and depends on the choice of a gener-
ator of the 1-dimensional K-vector space H1,1

ϵ (Gm,k). See [CD12] as indicated in
Example 1.1.6.
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(5) The spectrumKGL representing algebraicK-theory is oriented
by the following class:

cKGL(L) = β−1(1− [λ∨]) ∈ KGL2,1(P∞
S )

where we denote by [L] ∈ KGL0,0(X) ≃ K0(X) the class of a
line bundle L/X in the Grothendieck group of vector bundles
over X, and β ∈ KGL−2,−1(S) is the Bott element (over S).

(6) The algebraic cobordism spectrumMGLS admits, by construc-
tion, a canonical orientation. That will be cleared out in the
next course.

1.2.b. Chern classes.

1.2.3. First Chern class. Let (E, c) be an oriented ring spectrum over
S. Taken into account the canonical map (1.4), we obtain for any
smooth S-scheme X a canonical map:

Pic(X) → [X+,P∞
S ]

HA1
• (S)

Σ∞
−−→ [Σ∞ X+,Σ

∞ P∞
S ]SH(S)

c∗−→ [Σ∞ X+,E(1)[2]]SH(S) = E2,1(X).

This is called the first Chern class associated with the orientation c,
denoted simply by c1. It is clearly contravariantly functorial in the
scheme X. However we must observe at this point that c1 is simply
an application, and not necessarily a morphism of groups. In fact, all
the maps in the above compositum are morphisms of groups except the
suspension map Σ∞. This fact is extremely meaningful in the theory
of oriented ring spectra (see the next course).

The key fact of the theory is the following projective bundle formula:

Theorem 1.2.4. Consider the above notation. Let V → X be a rank
n vector bundle over a smooth S-scheme X, and let P = P(V ) be
the associated projective bundle. We let p : P → X be the canonical
projection, and let λP be the canonical line bundle on P (coming from
the fact P(V ) classifies sub-line bundles of V ).18 Then the following
map:

⊕d−1
i=0E∗∗(X) → E∗∗(P )

λi 7→
∑
i

p∗(λi).c1(λP )
i

is an isomorphism of E∗∗(X)-modules.

18This line bundle is often denoted by OP (−1), for example by Fulton in [Ful98].
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One can reformulate the above theorem by saying that E∗∗(P ) is a
bigraded E∗∗(X)-algebra (through the pullback map p∗) which is free
of rank n, generated by c1(λP )

i for 0 ≤ i ≤ r − 1.

Remark 1.2.5. Milnor sequence. In general, for a ring spectrum
(E, µ, 1E) over S, one always has the so-called Milnor exact sequence:

0 → lim
n≥0

1E2,1(Pn
S) → E2,1(P∞

S ) → lim
n≥0

E2,1(Pn
S) → 0.

It follows from the above that, whenever E is oriented, the left hand side
vanishes as the involved inductive system satisfies the Mittag-Leffler
condition. In particular, to give an orientaition on E, it is sufficient
to give classes cn ∈ E2,1(Pn

S) for all n > 0 such that c1 = 1E and
ι∗n(cn+1) = cn.

As a corollary, one gets our first family of characteristic classes,
the Chern classes of algebraic vector bundles, following a method of
Grothendieck.

Definition 1.2.6. Let (E, c) be an oriented (motivic) ring spectrum
over S. Let X be a smooth S-scheme and V/X be a vector bundle or
rank n. Then there exists a unique family (ci(V ))0≤i≤n such that the
following relation holds in E2,1(P(V )):

n∑
i=0

p∗
(
ci(V )

)
.
(
− c1(λP )

)n−i

Note in particular that ci(V ) ∈ E2i,i(X). If i > n, we put ci(V ) = 0.

1.2.7. According to the above definition, we get the following proper-
ties of Chern classes:

(1) Invariance under isomorphism. For any isomorphism V ≃ V ′

of vector bundles over X, ci(V ) = ci(V
′).

(2) Compatibility with pullbacks. For any vector bundle V/X, and
any morphism f : Y → X of smooth S-schemes, f ∗ci(V ) =
ci(f

−1V ).
(3) Triviality. For a trivializable vector bundle V , ci(V ) = 0 if

i > 0.
(4) Nilpotence. Here it is important that S is noetherian. For any

vector bundle V/X, and any i ≥ 0, the Chern class ci(V ) is
nilpotent.

The third relation follows from the fact c1(OPn(−1))n+1 = 0 (see the
proof of the projective bundle theorem). The last relation is left as an
exercice to the reader.
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To go further, one needs the so-called splitting principle. It is based
on the following “splitting construction”.

Proposition 1.2.8. Let X be a smooth S-scheme, and V a vector
bundle over X. Then there exists a smooth projective map p : X ′ → X
such that p−1(E) splits as a direct sum of line bundles and such that for
any oriented ring spectrum E over S, the pullback map p∗ : E∗∗(X) →
E∗∗(X ′) is injective.

Remark 1.2.9. A canonical construction for X ′ is to take the flag bun-
dle associated with V , which is the moduli space which parametrize
the complete flag of sub-vector bundles of V . The fact the projection
map induces an injective pullback on an oriented cohomology theory
can be seen as a motivic Leray-Hirsch theorem. The latter can be ob-
tained directly from the homotopy Leray spectral sequence of [ADN20]
associated with p and with coefficients in E.

1.2.10. Splitting principle. As a corollary of the previous proposition,
one obtains the so-called splitting principle for Chern classes associated
with any oriented ring spectrum (E, c) as above. Let V/X be a rank n
vector bundle over a smooth S-scheme X.

First, we define the total Chern class as the polynomial in t, with
coefficients in the (bigraded) ring E∗∗(X):19

ct(V ) =
∑
i≥0

ci(V ).ti.

Then the splitting principle tells us that, to compute with the Chern
classes of V , one can assume that V is split using the preceding splitting
construction. this amounts to say that the total Chern class splits: it
admits Chern roots αi such that:

ct(V ) =
n∏

i=1

(1 + αi.t)

Then any symmetric polynomial in the Chern roots αi admits an ex-
pression in terms of the Chern classes of V .

As an example, one can get the formula:

Proposition 1.2.11 (Whitney sum formula). For any exact sequence
of vector bundles over a smooth S-scheme X:

0 → V ′ → V → V ′′ → 0

19This convention for total Chern class follows Fulton [Ful98]. Other conventions,
such as for example in [MS74] simply considers the sum c(V ) =

∑
i ci(V ) in the

“total” cohomology
⊕

i E2i,i(X).
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one has: ct(V ) = ct(V
′).ct(V

′′).

Example 1.2.12. Consider the above notation. Given V/X a vector
bundle of rank n, one usually defines the Euler class of V as:

e(V ) = cn(V ).

Assume X is smooth affine of dimension n over S = Spec(k), the
spectrum of an algebraically closed field (or a field in which (−1) is a
sum of squares). Then we have seen in the talk of Aravind Asok that
the vanishing of the Euler class in motivic cohomology, is equivalent
to the fact V splits-off a trivial summand. (One direction obviously
follows from the above Whitney sum formula!)

However, to remove the assumption on k, one needs a finer version
of the Euler class, with values in the Chow-Witt group.

1.2.c. The algebraic Hopf map.

1.2.13. The endomorphism ring of the sphere spectrum, End(1S) acts
on any motivic spectrum E. Similarly, any map φ : 1S → 1S(i)[n]
induces a morphism φ⊗E : E → E(i)[n]. This can be seen as an action
of the graded ring Πn,i(S) — the stable motivic cohomotopy of S —
on E.

According to the fundamental theorem of Morel, when S is the spec-
trum of a field k, one gets Πn,n(k) ≃ KMW

n (k), the Milnor-Witt ring of
k. Other any base S, one still gets important endomorphisms:

(1) Algebraic Hopf map. η : 1S(1)[1] → 1S, which is induced by the
canonical map A2

S −{0} → P1
S, (x, y) 7→ [x : y] (in coordinates).

(2) Classes of units. for any u ∈ O(S)×, one deduces [u] : 1S →
1S(1)[1] from the map u : S → Gm,S corresponding to u. One
then puts:

< u >= 1 + η.[u],

which is an element in degree (0, 0) of the bigraded ring Π∗∗(S).

Note that one can check that ϵ = − < −1 >∈ Π0,0(S), where ϵ was
defined in Remark 1.1.11.20

As a consequence of the projective bundle theorem and using the
above mentioned remark, one deduces:

Proposition 1.2.14. Let E be an orientable ring spectrum. Then the
algebraic Hopf map η acts trivially on E: η ⊗ E = 0.

20In fact, η and ϵ are defined by pullbacks from elements of Π∗∗(Z). It is likely
that Π0,0(Z) = Z[ϵ]/(ϵ2 = 1). This would be a direct consequence of the absolute
purity property for (reduced) closed subschemes of Spec(Z).
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As a consequence, for every units u ∈ O(S)×, < u > acts by the
identity. In particular, ϵ acts by (−1): ϵ⊗E = − IdE. As a consequence,
relation (1.2) becomes

ab = (−1)nm.ba.

Proof. The first assertion follows from the cofiber sequence in the
pointed motivic homotopy category:

A2 − {0} η−→ P1
S

ι1−→ P2
S

for which we refer to [Mor04]. Indeed, if E is oriented, then E⊗ ι1 is a
split monomorphism. The rest of the assertions follow easily. □

In general, the action of the Hopf map is not sufficient to detect ori-
entability of a ring spectrum. However, we have the notable theorems.

Theorem 1.2.15. Let k be a perfect field, and E ∈ SH(k) be a homo-
topy module with a ring structure. Then the following conditions are
equivalent:

(i) E is orientable.
(ii) η ⊗ E = 0.
(iii) E admits transfers in the sense of Voevodsky ( i.e. action of

finite correspondences).

This theorem uses the equivalence between homotopy modules with
transfers and Rost cycle modules: see [Dég13]. We can now obtain a
more direct proof by using the equivalence of homotopy modules with
Milnor-Witt cycle modules: see [Fel21].

Theorem 1.2.16 (Morel, Cisinski-D.). Let E be a rational motivic
ring spectrum over a scheme S. Then the following conditions are
equivalent:

(i) E is orientable.
(ii) η ⊗ E = 0.
(iii) ϵ⊗ E = − IdE.

In fact in these case, E is a rational motive !

Sketch of proof.21 The proof relies on Morel’s decomposition of the
rational stable homotopy category into:

SH(S)Q ≃ SH(S)Q+ × SH(S)Q−

characterized by the equivalent properties:

(i) E ∈ SH(S)Q+ (resp. E ∈ SH(S)Q−).
(ii) ϵ⊗ E is equal to −1 (resp. +1).

21This proof is a simplification of the proof given in [CD19, Th. 16.2.13].
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(iii) η ⊗ E is null (resp. invertible).

Then the main point is to show that the canonical map:

1S ⊗Q+ → HB,S

is an isomorphism, where the right hand-side is Beilnson motivic coho-
mology ring spectrum (representing the 0-th graded piece of rational
algebraic K-theory, over regular schemes). By a localization arguments
and invariance under inseparable field extensions, one reduces to the
case of a perfect field k. Then a devissage argument (we use rational
coefficients at this point) reduces to the preceding theorem.

Remark 1.2.17. As a complement, let us say that one now knows how
to compute both the plus and the minus part of rational motivic stable
homotopy category (see [DFJK21]):

SH(S)Q+ ≃ DM(S,Q)

is the category of rational mixed motivic complexes. In particular,
rationally, being orientable is the same as being a motivic complex.

For the minus part, one has:

SH(S)Q− ≃ HWS⊗ZQ −mod

where the right hand-side is the category of modules over the unrami-
fied rational Witt sheaf, seen over the caracteristic 0 part S ⊗Z Q of S
(in particular, it is zero on a scheme of positive charadteristic).

Cours 2. Oriented spectra: Thom classes and formal group
laws

2.1. Thom classes

2.1.a. Construction.

2.1.1. Let V be a rank n vector bundle over a smooth S-scheme X,
and (E, c) be an oriented ring spectrum over S. We let ν : P(V ) →
P(V ⊕ A1) be the canonical closed immersion.22

Recall from the talk of Kirsten Wickelgren that one defines the Thom
space of V in the pointed motivic homotopy category HA1

• (S) over S
as the following homotopy cofibers:

ThS(V ) = V/V × = P(V ⊕ A1)/P(V ).

22The target of ν is known as the projective completion of V : the open comple-
ment of ν is isomorphic to V .
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In general, it is clear over which base one considers the Thom space
ThS(V ) so that we will denote it simply by Th(V ).23

One deduces from the above formula for Thom spaces a long exact
sequence

(2.5) . . . → Ẽ∗∗(Th(V ))
π∗
−→ E∗∗(P(V ⊕ A1))

ν∗−→ E∗∗(P(V )) → . . .

where we have used the extension of E∗∗ described in 1.1.8.24

It follows from Theorem 1.2.4 that the map ν∗ is a split epimor-
phism of free E∗∗(X)-modules of respective ranks n and n − 1. Thus
E∗∗(Th(X)) is a free E∗∗(X)-module of rank 1, isomorphic to ker(ν∗).
One deduces from this discussion the following definition.

Definition 2.1.2. Consider the above notation and assumptions.
We define the Thom class of V/X as the following element of

E2n,n(P(V ⊕ A1)):

th(V ) =
n∑

i=0

p∗(ci(V )).
(
− c1(λ)

)n−i

using the notation of Theorem 1.2.4. We define the refined Thom class
th(V ) of V as the unique element of E2n,n(Th(V )) such that

π∗( th(V )
)
= th(V ).

It follows from the split exact sequence (2.5) of E∗∗(X)-modules that
the following map

(2.6) E∗∗(X) → E∗∗(Th(V )), λ 7→ λ. th(V )

is an isomorphism of bidegre (2n, n), called the Thom isomorphism
associated with the vector bundle V/X and with coefficients in the
oriented ring spectrum (E, c).

We deduce from the analogous properies of Chern classes that Thom
classes are compatible with base change and invariant under isomor-
phisms of vector bundles.

Example 2.1.3. Recall the universal quotient bundle ξ on P(V ⊕A1)
is defined by the exact sequence

0 → O(−1) → p−1(V ⊕ 1) → ξ → 0.

23Beware however it could also be considered as an object of HA1

• (X), which is
reflected in the more precise notation ThX(V ).

24Recall that Ẽ∗∗(Th(V )) can also be described as the E-cohomology of V with
support in the 0-section of V/X.
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Thus the Whitney sum formula Proposition 1.2.11 gives the following
relation between Thom and Chern classes:

(2.7) th(V ) = cn(ξ) = e(ξ).

2.1.4. It will be useful to work internally, and relatively. Consider the
notation of the previous definition and let p : X → S be a smooth
morphism.

Recall we have the base change functor p∗ : SH(S) → SH(X) with
left adjoint p♯. We put EX = p∗(E). Note the orientation of E de-
termines a canonical orientation of EX . The object EX is a commu-
tative monoid of Ho SH(X) so we can consider the additive category
of EX-modules. Then the Thom isomorphism associated with a vector
bundle V of rank r over X actually corresponds to an isomorphism of
EX-modules:

th(V ) : EX ⊗ Σ∞ Th(V ) → EX(r)[2r].

2.1.b. Universal property of algebraic cobordism.

2.1.5. Construction of algebraic cobordism. Let us now recall the con-
struction of the algebraic cobordism spectrum MGLS (which is mod-
eled on the construction of the topological spectra MU, MO, ...).

Though all objects will be considered over S, we drop the index in
the notation for simplicity. We consider the tautological rank n vector
bundle γn on the classifying space BGLn viewed as a smooth S-scheme
via the model given by the infinite grasmannian:

BGLn = colimm≥nGrn(Am).

As γn ⊕Ar as rank n+ r, one deduces a (homotopy) cartesian square:

γn ⊕ Ar
(∗)

//

��

γn+r

��
BGLn

// BGLn+r.

One deduces from (∗) a canonical map of Thom spaces in HA1

• (S):

Th(γn)(r)[2r] = Th(γn ⊕ Ar) → Th(γn+r).

In particular, one deduces a tower in SH(S):

Σ∞ Th(γ0) → Σ∞ Th(γ1)(−1)[−2] →
. . . → Σ∞ Th(γn)(−n)[−2n] → . . .

One defines the algebraic cobordism spectrum as the homotopy colimit:

(2.8) MGLS = hocolimn≥0Σ
∞ ThS(γn)(−n)[−2n].
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Further, using the canonical map γn × γm → γn+m one can build ring
structure on MGLS.

25

Note that the vector bundle γ1 over BGm,S can be identified with
the canonical line bundle OP∞(−1) on P∞ via the weak A1-equivalence
BGm,S ≃ P∞

S . We need the following lemma.

Lemma 2.1.6. Consider the above notion. Then there exists a canon-
ical weak A1-homotopy equivalence of pointed motivic spaces over S:

P∞
S ≃ Th(γ1).

Proof. We consider the closed immersion:

Pn−1
S

ιn−→ Pn
S.

The normal bundle of ιn is the canonical line bundle OPn−1(−1) on
Pn−1. Moreover, the open complementary Pn

S − Pn−1
S is isomorphic to

the affine line An
S, so it is contractible. Using Morel-Voevodsky’s purity

theorem, one gets:

(Pn
S, 1) ≃ Pn

S/(Pn
S − Pn−1

S ) ≃ Th(OPn−1)(−1)).

It is important to note that this isomorphism is functorial with respect
to the inclusion ιn. Therefore, one can take the homotopy limit over
n, and this defines the required isomorphism. □

2.1.7. Canonical orientation of MGLS. One deduces from the above
lemma a canonical map:

cMGL : Σ∞ P∞
S → Σ∞ Th(γ1) → MGLS(1)[2].

By construction (see the above proof for n = 1), the restriction of this
map to (P1

S,∞) corresponds up to P1-desuspension to the unit:

Σ∞ S+ = Σ∞ Th(γ0) → MGLS

Therefore, cMGL is an orientation of MGLS.
The main theorem of this section is the following universality theo-

rem:

Theorem 2.1.8 (Vezzosi, Panin-Pimenov-Röndigs, Nau-
mann-Østvær-Spitzweck). Let E be a ring spectrum over S. Then the
following sets are in bijective correspondence:

(i) orientations c of E;
(ii) morphisms of ring spectra φ : MGLS → E.

25In fact, Tom Bachmann and Marc Hoyois have shown in [BH21, 16.2] how to
give an E∞-ring structure on MGLS using the so-called motivic J-homomorphism,
which is an ∞-categorical enhancement of the stable Thom space functor.
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by the map:

(2.9) (ii) → (i), φ 7→ φ∗(c
MGL)

where φ∗ : MGL∗∗ → E∗∗ is the induced map on cohomology.

In other words, MGLS is the universal oriented ring spectrum over
S.

Idea of Proof. There are several steps for this proof, which works as in
topology.

The first step is to determine the E-cohomology of BGL∞ =
colimn BGLn, for (E, c) oriented. As in topology, one gets:

E∗∗(BGL∞) ≃ E∗∗(S)[[c1, c2, ...]]

where cn is the n-th Chern class of the tautological rang n bundle on
BGLn. Note in passing that the preceding computation uses the Milnor
exact sequence:

0 → lim
n≥0

1E∗∗(BGLn) → E∗∗(BGL∞) → lim
n≥0

E∗∗(BGLn) → 0

and the vanishing of the first term (as in Remark 1.2.5).
One deduces, from a similar Milnor exact sequence and formula (2.8)

that the following canonical maps are isomorphism:

E∗∗(MGLS) → lim
n≥0

E∗+2n,∗+n(Th(γn))

th−−→ lim
n≥0

E∗∗(BGLn). th(γn) ≃ E∗∗(BGL∞),

where th is given by the Thom isomorphisms of γn constructed previ-
ously.

It follows that the sequence (th(γ0), th(γ1), ...) uniquely defines an
element thc ∈ E00(MGLS), canonically associated to the orientation
c. It remains to prove that thc : MGLS → E is in fact a morphism of
ring spectra. And moreover, the application c 7→ thc is a left and right
inverse to (2.9). □

Remark 2.1.9. This result was first proved over a field by Vezzosi in
[Vez01]. It was later revisited in [PPR08], still over a field. Both proofs
were in fact valid over a general base. A definitive refrence, valid over
an arbitrary base was finally given in [NSØ09], partly based on the
Landweber exactness theorem.
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2.1.c. Virtual Thom classes.

2.1.10. The Thom classes associated with on oriented ring spectrum
(E, c) are multiplicative. Let p : X → S be a smooth morphism and
consider an exact sequence of vector bundles over X:

(2.10) 0 → V ′ → V → V ′′ → 0.

One deduces from this exact sequence a canonical isomorphism in
SH(X):

(2.11) Σ∞ Th(V ) ≃ Σ∞ Th(V ′)⊗X Σ∞ Th(V ′′).

Further:

Lemma 2.1.11. Consider the above assumptions. Then, the isomor-
phism (2.11) induces an identification:

E∗∗(Th(V )) ≃ E∗∗(Th(V ′))⊗E∗∗(X) E∗∗(Th(V ′′)),

and through this identification, one has: th(V ) = th(V ′)⊗ th(V ′′).

Proof. One reduces to the case where the sequence is split. Then we
have an isomorphism of vector bundles over P(V ):

ξ = p−1(V )/O(−1) ≃ p−1(V ′)/O(−1)⊕ p−1(V ′′)/O(−1) = ξ′ ⊕ ξ′′.

According to the Whitney sum formula, one deduces e(ξ) = e(ξ′).e(ξ′′).
One concludes using the fact P(V ) − P(V ′) is a vector bundle over
P(V ′′). □

2.1.12. We can elaborate on the previous result as follows. Consider
the previous notation.

We let K(X) be the Picard 1-category of virtual vector bundle.26

One deduces from the isomorphisms of the form (2.11) that the Thom
spectrum functors extends to a virtual Thom spectrum functor 27:

K(X) → HoSH(X), v 7→ Th(v).

The cohomology with coefficients in E can be defined on these virtual
Thom spectra:

En,i(Th(v)) = [Th(v),EX(i)[n]]X .

There is an obvious E∗∗(X)-module structure on these groups. More-
over, the preceding lemma shows that these E∗∗(X)-modules are free of

26This is the groupoid associated with Quillen K-theory space K(X). A direct
construction is given in [Del87].

27One can deduce it by elementary means, but we now know that this is actually
the truncation of the motivic J-homomorphism defined by Tom Bachmann and
Marc Hoyois: J : K(X) → Pic(SH(X)). See [BH21, §16.2].
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rank 1, and moreover, admits a canonical E∗∗(X)-basis th(v) of bide-
gree (2r, r), where r ∈ Z is the rank of v.28

Definition 2.1.13. Given a virtual vector bundle v over a smooth S-
scheme X, of virtual rank r ∈ Z, we let th(v) ∈ E2r,r(Th(v)) be the
class defined above.

Bydefinition, the following morphism:

E∗∗(X) → E∗∗(Th(v)), α 7→ α. th(v).

is an isomorphism of E∗∗(X)-modules, called the Thom isomorphism
of v associated with the orientation c on E.

Note finally that, as in 2.1.4, one deduces a isomorphism of EX-
modules:

(2.12) th(v) : EX ⊗ Th(v)
∼−→ EX(r)[2r].

2.2. Formal group laws and orientations

2.2.a. Recall on formal group laws.

2.2.1. From the point of view of algebraic geometry, a commutative
formal group law of dimension 1 over a ring R is an abelian group
object structure on the formal scheme Spf(R[[x]]), in the category of
formal schemes.29 We will say FGL (over R) for abelian formal group
law of dimension 1.

This is equivalent to the (usual) concrete definition: such an FGL is
given by a power series F (x, y) ∈ R[[x, y]] satisfying the properties:

(1) Neutral element. F (x, 0) = x.
(2) Commutativity. F (x, y) = F (y, x).
(3) Associativity. F (x, F (y, z)) = (F (x, F (y, z))).30

(Recall that the existence of the formal inverse follows from these con-
ditions; see e.g. [Str19, Lem. 2.7].) We will consider the following
generic form for such an FGL:

F (x, y) = x+ y +
∑
i,j

aij.x
iyj.

28More precisely, one uses the universal property of the Picard category K(X)
and the preceding lemma to get both results.

29We see R[[x]] as an admissible ring via the ideal of definition (x). Therefore
Spf(R[[x]]) is nothing else than the topological space Spec(R) seen as a ring space
via the sheaf associated to the pro-ring R[[x]].

30Note that the substitutions are licite because property (1) implies that F (x, y)
has no constant term.
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Example 2.2.2. Recall that the only examples of formal group laws
such that F (x, y) has only finitely many coefficients are:

(1) Additive FGL: Fadd(x, y) = x+ y.
(2) u-Multiplicative FGL: Fmul,u(x, y) = x+ y + u.xy, for u ∈ R.

Remark 2.2.3. FGL can be based changed: given a morphism of rings
φ : R → R′, and an FGL F (x, y) over R, we obtain an FGL FR′(x, y)
over R′ by applying φ coefficient-wise.

2.2.4. Let R be a ring, and F (x, y), G(x, y) two FGL with coefficients
in R. An isomorphism θ from F (x, y) to G(x, y) will be a power series
θ(t) = a1.t + a2.t

2 + . . . such that a1 ∈ R×, and the following relation
holds in R[[x, y]]:

θ(F (x, y)) = G(θ(x), θ(y)).

When one considers (R,F (x, y)) and (R′, G(x, y)) two FGL with
different ring of coefficients, one defines a morphism from the first to
the second as a pair (φ, θ) such that φ : R → R′ is a morphism of rings,
and θ : FR′(x, y) → G(x, y) is an isomorphism of FGL over R′. One
deduces a fibered category FG L over rings whose objects are pairs
(R,F (x, y)) and morphisms are described as above.

Let us recall that the theorem of Lazard asserts that FG L admits
an initial object (L, FL) such that L = Z[a1, a2, ...] is a polynomial ring,
now called the Lazard ring.

2.2.b. Orientations and FGL.

2.2.5. We fix an oriented motivic ring spectrum (E, c) over S (Defini-
tion 1.2.1), with ring of coefficients E∗∗ = E∗∗(S).
As the group scheme Gm is abelian, one immediately deduces that

BGm is an h-group i.e. a group object in the homotopy category
of Sh∞(SmS), and therefore also after applying the A1-localization
functor.

On the other hand P∞
S , being the moduli space of line bundles (rel-

ative to S), it automatically acquires a structure of an abelian group
object in the category of ind-smooth S-schemes, corresponding to the
existence of tensor product of line bundles, as well as the inverse functor
λ 7→ λ∨. In particular, we get a canonical map:

σ : P∞
S ×S P∞

S → P∞
S

The reader can check that it is actually given by the classical Segre
embedding.

Consider an oriented ring spectrum (E, c). The projective bundle
formula Theorem 1.2.4 implies that E∗∗ satisfies the Künneth formula
on product of projective spaces. This, together with the preceding
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observation, readily implies that E∗∗(P∞
S ) is an abelian co-group object.

In other words, abelian group structure on P∞
S determines an FGL with

coefficients in E∗∗(S): one has a canonical map:

E∗∗[[c]] ≃ E∗∗(P∞
S )

σ∗
−→ E∗∗(P∞

S ×S P∞
S ) ≃ E∗∗[[x, y]]

and one defines Fc(x, y) as the image of c.

Definition 2.2.6. Given the above notation, we will say that Fc(x, y)
is the formal group law associated with the oriented ring spectrum
(E, c).

We will say that (E, c) (or just c) is respectively additive or
multiplicative (with parameter u) if Fc(x, y) is the additive or (u-
)multiplicative) FGL.

There is a constraint on the coefficients say aSij of Fc(x, y) coming

from the fact E∗∗ is bigraded: in fact aSij has bidegree (2−2i−2j, 1−i−j)
in E∗∗.

Note that by base change along p∗ : E∗∗(X) → E∗∗(S) = E∗∗, for
any smooth map p : X → S, we deduce from the FGL Fc(x, y) over
E∗∗ and FGL over E∗∗(X) that we will denote by FX

c (x, y) (or simply
Fc(x, y) when X is clear).

Before giving examples, let us explain what is the concrete significa-
tion of the above FGL in term of characteristic classes.

Proposition 2.2.7. Consider the notations of the previous definition.
Then for any line bundles L1, L2 over X, one has the following re-

lation in E2,1(X)

c1(L1 ⊗ L2) = FX
c

(
c1(L1), c1(L2)

)
.

Note in particular that this relation makes sense because the classes
c1(L) and c1(L

′) are nilpotent in E∗∗(X) (see 1.2.7). The proof is in
fact tautological.

Example 2.2.8. Consider the absolute oriented ring spectra of Exam-
ple 1.2.2:

(1) The first Chern class associated with the canonical orientation
of motivic cohomology is nothing else than the canonical iso-
morphism:

Pic(X) ≃ CH1(X) ≃ H2,1
M (X).

As this is an isomorphism of groups, the associated FGL is
additive, i.e. the motivic Eilenberd-MacLane ring spectrum
HMZ is additive.
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(2) Similarly, for the ring spectrum Hϵ represented by a mixed Weil
cohomology, the first Chern class associated with the canonical
orientation is induced by the cycle class:

cϵ1 : Pic(X) ≃ CH1(X) → H2
ϵ(X).

Therefore, the oriented ring spectrum Hϵ is additive.
(3) For the orientation on the algebraic K-theory spectrum KGLS,

it follows easily from the definition that the first Chern class
of a line bundle L over a smooth S-scheme X is given by the
formula:

cKGL
1 (L) = β−1.(1− [L∨]).

One deduces that the FGL associated with KGLS is the mul-
tiplicative one with parameted −β:

FKGL(x, y) = x+ y − β.xy.

(4) many more example have been constructed: an algebraic ver-
sion of the Brown-Peterson spetrum ([Vez01]), of the Morava
K-theory31, elliptic ring spectrum ([LYZR19]). These construc-
tions are all based on the next theorem and on the motivic
version of the Landweber exactness theorem [NSØ09].

2.2.c. Algebraic cobordism and the Lazard ring. We end up this
course with a discussion of the motivic analog of Quillen’s theorem on
complex cobordism and the Lazard ring.

Let us recall that Lazard has proved that there is a universal formal
group law (L, FL), whose coefficient ring L = Z[b1, b2, ...] is a poly-
nomial algebra over Z with infinitely many variables. In particular,
for any scheme S, the canonical orientation on MGLS gives rise to a
canonical map

φS : L → MGL2∗,∗(S)

where the right hand-side is the graded part (2n, n) of the algebraic
cobordism ring of S. In his ICM talk in 1998, Voevodsky made the
following conjecture (see [Voe98]):

Conjecture. For any regular local scheme S, the map φS is an iso-
morphism.

Here is the current best result on this conjecture.

Theorem 2.2.9 (Levine, Hoyois, Spitzweck). Let S be a local pro-
smooth scheme over a field of characteristic exponent e or a DVR of
mixed characteristic (0, e).

31initially proposed by Voevodsky in a 1995 preprint
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Then the map φS[1/e] is an isomorphism, and the algebraic cobor-
dism MGLS[1/e] as the universal formal group law.

In fact, Levine was the first to give the proof, in [Lev09], of the
above theorem when S is the spectrum of a field k of characteristic 0.
It was in fact a corollary of the isomorphism between the geometric
part of the cohomology represented by MGLk and the “concrete” al-
gebraic cobordism theory, defined by explicit generators and relations,
by Levine and Morel ([LM07]). Indeed, Levine and Morel had proved
that the analogous of the above theorem for their cobordism theory in
characteristic 0.

Hoyois ([Hoy15]) proved the above theorem directly when S is a
field of characteristic exponent e = p, by coming back to the strategy
of Quillen, using the following fundamental relation between algebraic
cobordism and the motivic Eilenberg-MacLane spectrum: under the
above assumption, the canonical morphism of motivic spectra

MGLS/(b1, b2, ...) → HMZS

is an equivalence after inverting e. The global strategy as well as the
above isomorphism were devised by Hopkins and Morel (unpublished).

Then Spitzweck proved the theorem in the case stated above in
[Spi20], by using the preceding result, extended to a general S us-
ing his construction of the motivic Eilenberg-MacLane spectrum, and
also by using the slice filtration.

Exercices

Exercice 1. Prove that infinite suspension of Thom spaces induce
a functor on the groupoid of virtual vector bundles. Using the
method of Riou: see 4.1 in http://www.math.u-psud.fr/~riou/doc/

operations.pdf.
Eventually: explain the construction of Bachmann-Hoyois: [BH21,

16.1] ?

Exercice 2 (FGL). Prove the existence and unicity of the exponential
strict isomorphism associated to a rational FGL. [Str19]

Show the existence of the Lazard ring.
Show Lazard theorem. (cf. https://people.math.harvard.edu/

~lurie/252xnotes/Lecture2.pdf, +lecture3,4) ?

Exercice 3. Compute Chern classes of a tensor product for multiplica-
tive FGL.
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Astérisque, (425):ix+207, 2021.
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