
Conventions. Schemes will be Noetherian. Smooth will mean smooth
of finite type. Unless stated otherwise, the Grothendieck topology on
SmS is the Nisnvich topology. Therefore, sheaves will mean sheaves
for the Nisnevich topology.

We use the language of ∞-categories.1 We let Cat∞ (resp. Cat⊗∞)
be the ∞-category of presentable ∞-categories with left adjoint ∞-
functors (resp. presentable symmetric closed monoidal ∞-category
with left adjoint and symmetric monoidal ∞-functors). All our ∞-
categories will be presentable ∞-categories. Similarly, monoidal ∞-
categories will be presentable monoidal ∞-categories. On the other
hand, we mostly work in the associated homotopy category in this
course.

Monoidal means symmetric monoidal. All our monoids are commu-
tative. We denote by 1S the “sphere spectrum” over S i.e. the unit of
the monoidal structure on SH(S).

Unless stated otherwise, spectrum means motivic spectrum, and ring
spectrum means commutative motivic spectrum.
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Cours 1. Oriented spectra and Chern classes

Introduction

The theory of characteristic classes of fiber bundles arose at exactly
the same time than (singular) cohomology, in 1935. That year, Stiefel
(in his PhD) and Whitney both introduced the notion of fiber bundle
and some associated characteristic class.2 Meanwhile, at the Moscow
international conference on topology, Alexander and Kolmogorov in-
dependently introduced cohomology and the (soon to be called) cup-
product.

The history of the subject of characteristic classes was then marked
by the introduction of Pontryagin classes, out of the computation of
the homology of real grassmanianns, by Pontryagin in 1942, and by
the introduction of Chern classes, obtained through the determination
of the cohomology of complex Grassmanians by Chern in 1946. A last
event I want to mention is the course ”characteristic classes” given at
the University of Princeton by John Milnor in 1957.3

Here is a list of the characteristic classes that emerged from the works
mentioned above:4

name fiber b. notation group
Stiefel-Whitney smooth real v.b. wi H i(B,Z/2)
Pontryagin smooth real v.b. pi H4i(B,Z)

Chern smooth complex v.b. ci H2i(B,Z)
Note that fiber bundle had already appeared: first in works of E.

Cartan on Lie groups and their associated homogeneous spaces, and
in the work of Stiefel, slightly earlier in 1933, who was interested in
constructing new 3-dimensional varieties (in view of the Poincaré con-
jecture). Recall that in the most general form, a fiber bundle is a map
p : E → B such that there exists an open cover W → B and a W -
homeomorphism: (F ×W ) → E ×B W for some space F .5 One calls

2The terminology “fiber bundle” is due to Stiefel, though he actually only con-
sidered smooth real vector bundles, while it was Whitney that formally introduced
the so-called characteristic classes.

3Notes by Stasheff were available at that time. They were finally published in
1974, [MS74].

4Recall that Pontryagin classes are actually particular cases of Chern classes
according to the formula: pi(V ) = (−1)i.c2i(V ⊗R C), where V ⊗R C is the com-
plexification of the real vector space V .

5Variants arise first by working in other categories than topological spaces. In al-
gebraic geometry, one also considers covers from various (Grothendieck) topologies:
Zariski, Nisnevich, étale, fppf (mainly).
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B, E, F respectively the base (space), the total space and the fiber
(space) of the fiber bundle.6

Example 1.0.1. Here are some of the most famous examples of fiber
bundles:

• tangent bundles. p : TM → M , projection from the tangent
bundle of a smooth (resp. analytic) manifold M . This is a
particular case of smooth real (resp. complex analytic) vector
bundles.

• homogeneous spaces. for G a Lie group, and H ⊂ G a closed
subgroup, p : G → G/H. This is a particular case of a principal
G-bundle.

• Covering spaces. P → X. The fiber is then a discrete space.
• The Möbius strip T is (non trivially!) fibered over S1, the map
T → S1 being the projection.

• The Hopf fibration: S3 → S2, with fiber S1.

In the previous list, only vector bundles were considered. In topology,
more general fiber bundles naturally appear in the so-called obstruc-
tion theory. They arise as morphisms in the Postnikov tower, in good
cases (simple, or more generally nilpotent spaces). The attendees have
already seen this theory at work in the talk of Aravind Asok: primary
and secondary obstructions can be seen as characteristic classes In this
course however, we will focus on algebraic vector bundles, in order to
draw a picture similar to the above table.

Characteristic classes are invariant under isomorphism of fiber bun-
dles. In particular, they can differentiate the homotopy type of the
total space. However, they are far from determining this homotopy
type (let alone the diffeomorphism type), even if one adds the homo-
topy type of the base.7 In his groundbreaking 1954 work on cobordism,
Thom proved a therefore very surprising fact: the cobordism class of
an unoriented closed smooth manifold M is completely determined by
the so-called Pontryagin numbers, which are computed through Pon-
tryagin classes of the tangent space of M . This was the beginning
of a deep revolution in algebraic topology, which contribute to led to
generalized cohomology theories, aka spectra such as cobordism, com-
plex (real, Morava,...) K-theory, elliptic cohomology, and the beautiful
picture painted by chromatic homotopy theory.

6Remark that such a fiber space is in particular a Hurewicz fibration, and
therefore a Serre fibration. So one sometimes abusively says “fibration” for “fiber
bundle”.

7This can already be seen in the classification of Seifert fibrations, mentioned
above.
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In this talk, we will consider the theory of characteristic classes as
it was developed in motivic homotopy theory, after Voevodsky, Morel,
Panin, Levine, and many more! The authors interest on the subject
arose during his PhD under the supervision of Fabien Morel, during the
years 1999-2002. This interest has grown during all my carrier (as can
be seen in one’s bibliography). I would like to seize this opportunity
to thank Fabien again to having shared his visions on, and led me to,
this wonderful world of motivic homotopy.

1.1. Stable motivic homotopy

1.1.a. Motivic spectra.

1.1.1. Stable homotopy theory. Recall from the preceding talks that the
A1-homotopy category HA1

(S) over a scheme S is obtained by consid-
ering the ∞-topos Sh∞(SmS) of Nisnevich sheaves over the smooth
site SmS and by localizing it further with respect to A1-homotopy:
that is we invert for any smooth S-scheme X the maps A1

X → X in
Sh∞(SmS) via the Yoneda embedding.

On the associated ∞-category HA1

• (S) of pointed objects in HA1
(S),

we even get a symmetric monoidal ∞-category where the tensor prod-
uct is the so-called smash product.

We have seen in the talk of F. Morel that there are several models of
spheres in motivic homotopy theory: the simplicial sphere S1, the mul-
tiplicative group (Gm, 1), and the projective line (P1,∞). All objects

are considered in HA1

• (S) without indicating the bases scheme S (which
plays no specific role here) in the notation. And they are related by
the relation:

(1.1) P1 ≃ S1 ∧Gm

As in classical topology, we obtain the stable motivic homotopy cat-
egory by ⊗-inverting the third model of sphere, P1. For completeness,
we will now state the main theorem that will give us our fundamental
category (see also the talk of Kirsten Wickelgren).

Theorem 1.1.2 (Robalo). Let S be any scheme. There exists a univer-
sal presentable monoidal ∞-category SH(S) equipped with a monoidal
∞-functor:

Σ∞ : HA1

• (S) → SH(S)

which admits a right adjoint Ω∞ and such that Σ∞ P1 is ⊗-invertible.8

8An object X in a monoidal ∞-category is ⊗-invertible if the ∞-functor X⊗? is
an equivalence of categories.
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Actually, the proposition could be stated more abstractly for an ar-
bitrary presentable monoidal ∞-category and an arbitrary object S.
Under, this form the proof is due to Robalo: [Rob15].

1.1.3. It follows from the construction, and the isomorphism (1.1) that,
all the possible spheres S = P1

S,Gm,S, S
1, becomes ⊗-invertible after

applying Σ∞.
The resulting ∞-category acquires a very important property: it is

stable in the sense of [Lur17, Def. 1.1.1.9]. This implies that the asso-
ciated homotopy category admits a triangulated structure (see [Lur17,
1.1.2.13]). Note that the suspension functor for this triangulated struc-
ture is given by the formula:

E[1] = E⊗ Σ∞ S1.

Definition 1.1.4. The monoidal ∞-category SH(S) is called the stable
motivic homotopy category over S. Its objects are calledmotivic spectra
over S.

The unit object with respect to the monoidal structure is denoted by
1S. One defines the Tate twist as 1S(1) = Σ∞ P1[−2] = Σ∞ Gm,S[−1].
By construction, this is a ⊗-invertible objects in SH(S) so that one also
denotes by ?(n) the n-th tensor product with respect to this object.

If this does not cause confusion, we will denote by

[E,F]S = HomSH(S)(E,F) = π0MapSH(S)(E,F)

the abelian group of morphisms in the homotopy category associated
to the ∞-category SH(S). We usually even drop the index S in the
notation.

It might be useful to have in mind the classical model for motivic
spectra9 given here without taking care about the monoidal structure.
A model for a motivic spectrum E is the data of a sequence (En)n≥0

where En is a pointed simplicial Nisnevich sheaf together with suspen-
sion maps:

P1 ∧ En → En+1.

1.1.b. Representable cohomology theories. For us, the main func-
tion of the stable homotopy category is that its objects, the P1-spectra,
represent cohomology theory. The originality of the theory is that these
cohomology theories are bigraded.

9That is the objects of an underlying model category whose associated ∞-
category is equivalent to the above one.
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Definition 1.1.5. Cohomology theories. Let E be a motivic spectrum
over S. For any smooth S-scheme X and any pair of integers (n, i) ∈
Z2, one defines the E-cohomology of X in degree n and twists i as:

En,i(X) = [Σ∞ X+,E(i)[n]].

These cohomologies have the distinctive features of being contravari-
ant, additive, A1-homotopy invariant and P1-stable. Moreover, one gets
long exact sequences of Mayer-Vietoris type but with respect to Nis-
nevich distinguished squares.

Example 1.1.6. There are many examples of cohomology theories
which are representable in the stable motivic homotopy category, over
a given base field S = Spec(k).

(1) All the classical Weil cohomologies admits canonical extensions
over smooth k-schemes which are representable.10

• char(k) = 0: algebraic de Rham cohomology;
• char(k) = p > 0: rigid cohomology (Berthelot)
• given an embedding σ : k ⊂ C, the rational singular coho-
mology of the σ-complex points of a smooth k-scheme X;
this is called simply the rational Betti cohomology.

• give a prime ℓ invertible in k, the Qℓ-adic étale cohomology
of X⊗k k̄; this is called the geometric Qℓ-adic cohomology.

We will denote by Hϵ the spectrum representing one of these
Weil cohomologies: ϵ =dR, rig, B, ℓ respectively. In all these
cases, twists does not change the cohomology up to an isomor-
phism (see loc. cit. Introduction before theorem 1).

(2) Note that Betti cohomology can be taken with integral coef-
ficients. It is still representable in SH(k), and twists do not
change the cohomology (up to an isomorphism as above). We
will denote by Hσ R the corresponding spectrum over k with
coefficients in a ring R.

(3) Given now a real embedding σ : k ⊂ R. One can consider the
integral singular cohomology of the real points:

Hn(Xσ(R),Z).

This is representable by a ring spectrum that will be denoted
by Hσ Z. In that case, twists just shift cohomology degrees,
again up to isomorphisms:

(Hσ Z)n,i(X) = Hn−i(Xσ(R),Z).
10This has been axiomatized in the notion of mixed Weil cohomology theory in

[CD12].
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Example 1.1.7. The following examples are absolute cohomology in
the sense of Beilinson. In the motivic homotopy categorical sense, it
means that the base scheme does not really matter when one computes
the associated representable cohomology.11

(1) Motivic cohomology with coefficients in a ring R, HM,SR can be
defined for any scheme S.12 The distinctive feature of motivic
cohomology is:

H2n,n
M (X,Z) = CHn(X) X/S smooth, S =field, Dedekind ring

Hn,n
M (k,Z) = KM

n (k) k any field.

where CHn(X) denotes the Chow group of X: classes of codi-
mension n algebraic cycles up for the rational equivalence, and
KM

n (X) is the n-th Milnor K-group: the tensor algebra over the
abelian group k× modulo the Steinberg relation.

(2) Quillen algebraic K-theory over a regular scheme S. This is
represented by a spectrum that we will denote by KGLS. This
spectrum is periodic, in the sense that there exists a canonical
isomorphism, the “Bott isomorphism”:

β : KGLS(1)[2] → KGLS.

Taken into account this isomorphism one gets the following dis-
tinctive property for any smooth S-scheme X:

KGLn,i(X) = K2i−n(X)

where the right hand-side is Quillen algebraic K-theory: the
(2i − n)-th homotopy group of the nerve of the Q-category
associated with the exact category of vector bundles over X
(pointed by the 0-object).

If one wants a true absolute spectrum, one will replace
Quillen K-theory by Weibel homotopy invariant K-theory. We
will still denote by KGLS the resulting spectrum, for an arbi-
trary base scheme S.

11Concretely, this means that these cohomologies are representable by an ab-
solute motivic spectrum: a collection of motivic spectra ES over any scheme S,
equipped for any morphism f : T → S, with an isomorphism f∗(ES) ≃ ET sat-
isfying the usual cocycle condition. This is also a cartesian section of the fibred
category SH over the category of schemes.

12The first definition of such a spectrum is due to Voevodsky. At the time being,
one uses a definition based on higher Chow groups and due to Spitzweck. Both
definitions coincide if S is smooth over a field.



8

(3) Algebraic cobordism over any base scheme S, denoted by
MGLS. We will recall later the definition of this spectrum,
and state a universal property.

1.1.8. Extended cohomology. Representable cohomology theory au-
tomatically acquire more structures.For once, a motivic spectrum E
defines a family of contravariant functors:

Ẽn,i :
(
HA1

• (S)
)op → A b,X 7→ [Σ∞X ,E(i)[n]].

Formally, this functor turns cofiber sequences in HA1

• (S) into long exact
sequences of abelian groups.

An interesting remark is that the E-cohomology is therefore invariant
under weak motivic equivalences.13

Secondly, one immediately gets a definition of cohomology with sup-
port. A closed S-pair (X,Z) will be a pair of schemes such that X
is a smooth S-scheme, and Z ⊂ X a closed subscheme. By taking
homotopy cofibers, in the pointed motivic homotopy category, one can
define the object X/X − Z which fits into a cofiber sequence:

(X − Z)+
j∗−→ X+ → X/X − Z

One defines the E-cohomology of X with support in Z in degree n and
twist i as:

En,i
Z (X) := Ẽn,i(X/X − Z).

Therefore, it fits into a long exact sequence:

. . .En,i
Z (X) → En,i(X)

j∗−→ En,i(X − Z)
∂X,Z−−−→ En+1,i

Z (X) . . .

This cohomology with support enjoys good properties:

(1) Contravariance: for any morphism f : Y → X of smooth S-
schemes, there exists a pullback functor:

f ∗ : En,i
Z (X) → En,i

f−1(Z)(Y ).

(2) Covariance: for any closed immersion i : T → Z of closed
subschemes of X, one gets:

i∗ : En,i
T (X) → En,i

Z (X).

Remark 1.1.9. (1) All the previous examples admit a natural no-
tion of cohomology with support, which agree with the above
definition.

13To get a nice picture on weak motivic equivalences, we refer the survey paper
[AOsr21].
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(2) Morel-Voevodsky purity theorem implies the following property
of cohomology with support, in the case where Z ⊂ X is a
smooth subscheme of codimension c:

En,i
Z (X) ≃ En−2c,i−c(Z).

1.1.c. Ring spectra and cup-products. The next definition is the
last piece of structure one needs on cohomology to get characteristic
classes.

Definition 1.1.10. A (commutative) ring spectrum E over the base
scheme S is a (commutative) monoid object in the homotopy category
associated with SH(S).

In particular, the structure of a ring spectrum on E is given by a
unit 1E : 1S → E and a product µ : E ⊗S E → E, which satisfies the
usual axioms. If one wants to be precise, we will say that (E, µ, 1E) is
a motivic ring spectrum.

One deduces a product on E-cohomology, which is often called the
cup-product14: given cohomology classes:

a : Σ∞ X+ → E(i)[n], b : Σ∞ X+ → E(j)[m]

one defines a ∪µ b as the composite map:

Σ∞ X+
δ∗−→ Σ∞(X×SX)+ = Σ∞ X+⊗SΣ

∞ X+
a⊗b−−→ E⊗E(i+j)[n+m]

µ−→ E(i+j)[n+m].

We will usually denote this product simply as ab.
It follows that for any smooth S-scheme X, E∗∗(X) is a bi-graded

algebra over the bigraded ring E∗∗(S), usually called the coefficient ring
of E and simply denoted by E∗∗.

Remark 1.1.11. One should be careful that the above bigraded algebra
is not simply graded commutative with respect to the first index. To
state the required formula one neesd the special element ϵ ∈ [1S,1S],
which acts as a scalar on any representable cohomology theory, de-
fined by the switch map inverse map x 7→ x−1 on Gm, and using that
Σ∞(Gm, 1) = 1S(1)[1].

Then the ϵ-graded commutativity formula, for a, b as above, reads
as follows:

(1.2) ab = (−1)n+m−i−j.ϵi+j.ba

The proof is formal once one notices that ϵ can also be defined, up
to A1-homotopy, by the map switching the factors on Gm × Gm (see
[Mor04, Lemma 6.1.1]).

14This terminology, due to Whitney for the product on singular cohomology,
has firmly remained in algebraic topology, due to the tremendous importance of its
introduction in the thirties.
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Example 1.1.12. All the examples of cohomology theories of Exam-
ple 1.1.6 and Example 1.1.7 are in fact representable by motivic ring
spectra, and the associated cup-product corresponds to their usual
product.

Remark 1.1.13. The theory developed below only requires the above
definition. However, all the examples considered admits a highly struc-
tured product, i.e. it is the object in the homotopy category associ-
ated with a (commutative) algebra object of the monoidal ∞-category
SH(S). Beware that in general, it is fundamental in classical (and mo-
tivic) stable homotopy theory to give a clear distinction between those
two kinds of structure.

1.1.d. Representability of the Picard group.

1.1.14. In algebraic topology, given an abstract group G, one can de-
fine its classifying space BG as an explicit simplicial set: the nerve of
the groupoid associated with G, made of a single object ∗, a morphism
for any element of g, the composition being given by the group law.

It is more common to consider topological groups (eg. Lie groups) G,
and then one can still define a classifying space BG (as an explicit CW-
complex) with the distinctive feature that for any topological space X,
the homotopy classes of (unpointed) maps [X,BG] are in bijhection
with the principal homogeneous G-spaces.

In motivic homotopy theory, Morel and Voevodsky have provided an
analog of the second construction but using the first one and the frame-
work of simplicial sheaves. For an algebraic group G over a scheme S,
and a smooth S-scheme X, we denote by H1

Nis(X,G) the set of G-
torsors on X for the Nisnevich topology. Let us state a particular case
of Morel-Voevodsky’s construction relevant in our case.

Proposition 1.1.15. Let S be a scheme, and G be an algebraic group
over S.

Then there exists an object BG in HA1

• (S) and for any smooth S-
scheme X, a canonical functorial application of (pointed) sets:

(1.3) H1
Nis(X,G) → [X,BG]unS .

Moreover, if the left hand-side is A1-invariant over all smooth S-
schemes, this map is an isomorphism.

Note that it is very rare that the second condition holds. The only
example we have in mind is that of G = Gm when S is regular. To
sum-up in the case of Gm, we get a canonical map:

Pic(X) → [X,BGm,S]
un
S
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which is bijective whenever S is regular. Note also that the theory of
Morel and Voevodsky shows that BGm,S admits the geometric model
that one expect: it is the infinite projective space P∞

S , that is the infinite
Grassmanian of lines in an affine space:

BGm,S = lim−→n≥0
Pn
S

where the colimit can be taken in the category of simplicial sheaves
on SmS (to get an explicit model). Note that P∞

S will be seen as a
pointed sheaves via the point at ∞ of all the Pn

S. We will recall from
this discussion the canonical map:

(1.4) Pic(X) → [X,P∞
S ]unS .

Remark 1.1.16. (1) Assume S = Spec(k) is the spectrum of a field.
If one restricts our attention to smooth affine k-schemes X,
then the map (1.3) is an isomorphism for an isotropic reductive
k-group schemes: e.g. G = GLn, SLn, Sp2n. This is a theorem
which was first obtained by Morel in certain cases, and in gen-
eral by Asok, Hoyois and Wendt (see [AHW20] for the extra
condition needed for G).

(2) Morel and Voevodsky also give geometric models for over classi-
fying spaces: as an example, for any n ≥ 0, BGLn is equivalent
to the infinite grassmanian of sub-n-vector bundles:

BGLn = lim−→r≥0
Gr(n, n+ r).

1.2. Oriented ring spectra

1.2.a. Definition and examples. Given the notation of the previ-
ous section, we have all the ingredients to formulate the notion of
orientation, which has been introduced in motivic homotopy theory,
by analogy with topology, at the time of the first proof of the Milnor
conjecture by Voevodsky.

Definition 1.2.1. Let (E, µ, 1E) be a ring spectrum over S . Let i :
P1
S → P∞

S be the canonical inclusion of pointed Nisnevich sheaves, both
being pointed by the point at ∞.

An orientation of E is the data of a class c ∈ Ẽ2,1(P∞
S ) suth that

i∗(c) = 1E via the identification: Ẽ2,1(P1
S) = E0,0(S).

We will say that the pair (E, c) is an oriented (ring) spectrum.

Note that an orientation can be seen as a map:

c : Σ∞ P∞
S → E(1)[2].
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Example 1.2.2. (1) Let X be a smooth Z-scheme. We have seen
that there is an isomorphism: H2,1

M (X) ≃ CH1(X) ≃ Pic(X).
This extends to ind-smooth Z-schemes. But Pic(P∞

S ) ≃ Z.c, the
free abelian group generated by c, the class of the tautological
invertible bundle λ = OP∞

S
(−1).

Moreover, the restriction of c to P1
S is the cycle class of the

point at ∞. It is the unit of the ring structure on CH∗(P1
S) ≃

H2∗,∗
M (P1

S) ≃ Z[c].15 Therefore, the class c corresponds to an
orientation of HMZ over the base scheme Z.

Given now any scheme X, we can look at the canonical map
f : S → Z. Then f ∗, being compatible with products on mo-
tivic cohomology, f ∗(c) is an orientation of f ∗HMZ = HMZS.

(2) Let Hϵ be the ring spectrum representing one of the mixed Weil
cohomology theories, over smooth k-schemes with coefficient in
the appropriate field K of characteristic 0 as in Example 1.1.6.
The corresponding cohomology admits a cycle class map:

CHi(X) ≃ H2i,i
M (X) → H2i,i

ϵ (X)
(∗)
≃ H2i,0

ϵ (X) =: H2i
ϵ (X)

which is compatible with products (mapping intersection prod-
ucts to “cup-products”).16 Therefore, the image of c ∈
CH1(P∞

k ) in H2,1
ϵ (P∞

S ) induces a canonical orientation of the
mixed Weil spectrum Hϵ.

(3) The same strategy works for the singular cohomology of com-
plex points of smooth algebraic k-schemes, over k ⊂ C.

(4) On the contrary, the ring spectrum representing singular coho-
mology of the real points of smooth algebraic k-scheme, k ⊂ R,
is not orientable. Indeed:

H2,1
σ (P1

k) = H1(RP1,Z) = Z
H2,1

σ (P∞
k ) = H1(RP∞,Z) = Z/2.

(5) The spectrumKGL representing algebraicK-theory is oriented
by the following class:

cKGL(L) = β−1(1− [λ∨]) ∈ KGL2,1(P∞
S )

15This follows for example from the definition via pullback along the diagonal.
16We put the last isomorphism to recall that mixed Weil cohomologies are (0, 1)-

periodic. This isomorphism is non-canonical and depends on the choice of a gener-
ator of the 1-dimensional K-vector space H1,1

ϵ (Gm,k). See [CD12] as indicated in
Example 1.1.6.
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where we denote by [L] ∈ KGL0,0(X) ≃ K0(X) the class of a
line bundle L/X in the Grothendieck group of vector bundles
over X, and β ∈ KGL−2,−1(S) is the Bott element (over S).

(6) The algebraic cobordism spectrumMGLS admits, by construc-
tion, a canonical orientation. That will be cleared out in the
next course.

1.2.b. Chern classes.

1.2.3. First Chern class. Let (E, c) be an oriented ring spectrum over
S. Taken into account the canonical map (1.4), we obtain for any
smooth S-scheme X a canonical map:

Pic(X) → [X+,P∞
S ]

HA1
• (S)

Σ∞
−−→ [Σ∞ X+,Σ

∞ P∞
S ]SH(S)

c∗−→ [Σ∞ X+,E(1)[2]]SH(S) = E2,1(X).

This is called the first Chern class associated with the orientation c,
denoted simply by c1. It is clearly contravariantly functorial in the
scheme X. However we must observe at this point that c1 is simply
an application, and not necessarily a morphism of groups. In fact, all
the maps in the above compositum are morphisms of groups except the
suspension map Σ∞. This fact is extremely meaningful in the theory
of oriented ring spectra (see the next course).

The key fact of the theory is the following projective bundle formula:

Theorem 1.2.4. Consider the above notation. Let V → X be a rank
n vector bundle over a smooth S-scheme X, and let P = P(V ) be
the associated projective bundle. We let p : P → X be the canonical
projection, and let λP be the canonical line bundle on P (coming from
the fact P(V ) classifies sub-line bundles of V ).17 Then the following
map:

⊕d−1
i=0E∗∗(X) → E∗∗(P )

λi 7→
∑
i

p∗(λi).c1(λP )
i

is an isomorphism of E∗∗(X)-modules.

One can reformulate the above theorem by saying that E∗∗(P ) is a
bigraded E∗∗(X)-algebra (through the pullback map p∗) which is free
of rank n, generated by c1(λP )

i for 0 ≤ i ≤ r − 1.

17This line bundle is often denoted by OP (−1), for example by Fulton in [Ful98].
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Remark 1.2.5. Milnor sequence. In general, for a ring spectrum
(E, µ, 1E) over S, one always has the so-called Milnor exact sequence:

0 → lim
n≥0

1E2,1(Pn
S) → E2,1(P∞

S ) → lim
n≥0

E2,1(Pn
S) → 0.

It follows from the above that, whenever E is oriented, the left hand side
vanishes as the involved inductive system satisfies the Mittag-Leffler
condition. In particular, to give an orientaition on E, it is sufficient
to give classes cn ∈ E2,1(Pn

S) for all n > 0 such that c1 = 1E and
ι∗n(cn+1) = cn.

As a corollary, one gets our first family of characteristic classes,
the Chern classes of algebraic vector bundles, following a method of
Grothendieck.

Definition 1.2.6. Let (E, c) be an oriented (motivic) ring spectrum
over S. Let X be a smooth S-scheme and V/X be a vector bundle or
rank n. Then there exists a unique family (ci(V ))0≤i≤n such that the
following relation holds in E2,1(P(V )):

n∑
i=0

p∗
(
ci(V )

)
.
(
− c1(λP )

)n−i

Note in particular that ci(V ) ∈ E2i,i(X). If i > n, we put ci(V ) = 0.

1.2.7. According to the above definition, we get the following proper-
ties of Chern classes:

(1) Invariance under isomorphism. For any isomorphism V ≃ V ′

of vector bundles over X, ci(V ) = ci(V
′).

(2) Compatibility with pullbacks. For any vector bundle V/X, and
any morphism f : Y → X of smooth S-schemes, f ∗ci(V ) =
ci(f

−1V ).
(3) Triviality. For a trivializable vector bundle V , ci(V ) = 0 if

i > 0.
(4) Nilpotence. Here it is important that S is noetherian. For any

vector bundle V/X, and any i ≥ 0, the Chern class ci(V ) is
nilpotent.

The third relation follows from the fact c1(OPn(−1))n+1 = 0 (see the
proof of the projective bundle theorem). The last relation is left as an
exercice to the reader.

To go further, one needs the so-called splitting principle. It is based
on the following “splitting construction”.

Proposition 1.2.8. Let X be a smooth S-scheme, and V a vector
bundle over X. Then there exists a smooth projective map p : X ′ → X
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such that p−1(E) splits as a direct sum of line bundles and such that for
any oriented ring spectrum E over S, the pullback map p∗ : E∗∗(X) →
E∗∗(X ′) is injective.

Remark 1.2.9. A canonical construction for X ′ is to take the flag bun-
dle associated with V , which is the moduli space which parametrize
the complete flag of sub-vector bundles of V . The fact the projection
map induces an injective pullback on an oriented cohomology theory
can be seen as a motivic Leray-Hirsch theorem. The latter can be ob-
tained directly from the homotopy Leray spectral sequence of [ADN20]
associated with p and with coefficients in E.
1.2.10. Splitting principle. As a corollary of the previous proposition,
one obtains the so-called splitting principle for Chern classes associated
with any oriented ring spectrum (E, c) as above. Let V/X be a rank n
vector bundle over a smooth S-scheme X.

First, we define the total Chern class as the polynomial in t, with
coefficients in the (bigraded) ring E∗∗(X):18

ct(V ) =
∑
i≥0

ci(V ).ti.

Then the splitting principle tells us that, to compute with the Chern
classes of V , one can assume that V is split using the preceding splitting
construction. this amounts to say that the total Chern class splits: it
admits Chern roots αi such that:

ct(V ) =
n∏

i=1

(1 + αi.t)

Then any symmetric polynomial in the Chern roots αi admits an ex-
pression in terms of the Chern classes of V .

As an example, one can get the formula:

Proposition 1.2.11 (Whitney sum formula). For any exact sequence
of vector bundles over a smooth S-scheme X:

0 → V ′ → V → V ′′ → 0

one has: ct(V ) = ct(V
′).ct(V

′′).

Example 1.2.12. Consider the above notation. Given V/X a vector
bundle of rank n, one usually defines the Euler class of V as:

e(V ) = cn(V ).

18This convention for total Chern class follows Fulton [Ful98]. Other conventions,
such as for example in [MS74] simply considers the sum c(V ) =

∑
i ci(V ) in the

“total” cohomology
⊕

i E2i,i(X).
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Assume X is smooth affine of dimension n over S = Spec(k), the
spectrum of an algebraically closed field (or a field in which (−1) is a
sum of squares). Then we have seen in the talk of Aravind Asok that
the vanishing of the Euler class in motivic cohomology, is equivalent
to the fact V splits-off a trivial summand. (One direction obviously
follows from the above Whitney sum formula!)

However, to remove the assumption on k, one needs a finer version
of the Euler class, with values in the Chow-Witt group.

1.2.c. The algebraic Hopf map.

1.2.13. The endomorphism ring of the sphere spectrum, End(1S) acts
on any motivic spectrum E. Similarly, any map φ : 1S → 1S(i)[n]
induces a morphism φ⊗E : E → E(i)[n]. This can be seen as an action
of the graded ring Πn,i(S) — the stable motivic cohomotopy of S —
on E.

According to the fundamental theorem of Morel, when S is the spec-
trum of a field k, one gets Πn,n(k) ≃ KMW

n (k), the Milnor-Witt ring of
k. Other any base S, one still gets important endomorphisms:

(1) Algebraic Hopf map. η : 1S(1)[1] → 1S, which is induced by the
canonical map A2

S −{0} → P1
S, (x, y) 7→ [x : y] (in coordinates).

(2) Classes of units. for any u ∈ O(S)×, one deduces [u] : 1S →
1S(1)[1] from the map u : S → Gm,S corresponding to u. One
then puts:

< u >= 1 + η.[u],

which is an element in degree (0, 0) of the bigraded ring Π∗∗(S).

Note that one can check that ϵ = − < −1 >∈ Π0,0(S), where ϵ was
defined in Remark 1.1.11.19

As a consequence of the projective bundle theorem and using the
above mentioned remark, one deduces:

Proposition 1.2.14. Let E be an orientable ring spectrum. Then the
algebraic Hopf map η acts trivially on E: η ⊗ E = 0.

As a consequence, for every units u ∈ O(S)×, < u > acts by the
identity. In particular, ϵ acts by (−1): ϵ⊗E = − IdE. As a consequence,
relation (1.2) becomes

ab = (−1)nm.ba.

19In fact, η and ϵ are defined by pullbacks from elements of Π∗∗(Z). It is likely
that Π0,0(Z) = Z[ϵ]/(ϵ2 = 1). This would be a direct consequence of the absolute
purity property for (reduced) closed subschemes of Spec(Z).
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Proof. The first assertion follows from the cofiber sequence in the
pointed motivic homotopy category:

A2 − {0} η−→ P1
S

ι1−→ P2
S

for which we refer to [Mor04]. Indeed, if E is oriented, then E⊗ ι1 is a
split monomorphism. The rest of the assertions follow easily. □

In general, the action of the Hopf map is not sufficient to detect ori-
entability of a ring spectrum. However, we have the notable theorems.

Theorem 1.2.15. Let k be a perfect field, and E ∈ SH(k) be a homo-
topy module with a ring structure. Then the following conditions are
equivalent:

(i) E is orientable.
(ii) η ⊗ E = 0.
(iii) E admits transfers in the sense of Voevodsky ( i.e. action of

finite correspondences).

This theorem uses the equivalence between homotopy modules with
transfers and Rost cycle modules: see [Dég13]. We can now obtain a
more direct proof by using the equivalence of homotopy modules with
Milnor-Witt cycle modules: see [Fel21].

Theorem 1.2.16 (Morel, Cisinski-D.). Let E be a rational motivic
ring spectrum over a scheme S. Then the following conditions are
equivalent:

(i) E is orientable.
(ii) η ⊗ E = 0.
(iii) ϵ⊗ E = − IdE.

In fact in these case, E is a rational motive !

Sketch of proof.20 The proof relies on Morel’s decomposition of the
rational stable homotopy category into:

SH(S)Q ≃ SH(S)Q+ × SH(S)Q−

characterized by the equivalent properties:

(i) E ∈ SH(S)Q+ (resp. E ∈ SH(S)Q−).
(ii) ϵ⊗ E is equal to −1 (resp. +1).
(iii) η ⊗ E is null (resp. invertible).

Then the main point is to show that the canonical map:

1S ⊗Q+ → HB,S

20This proof is a simplification of the proof given in [CD19, Th. 16.2.13].
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is an isomorphism, where the right hand-side is Beilnson motivic coho-
mology ring spectrum (representing the 0-th graded piece of rational
algebraic K-theory, over regular schemes). By a localization arguments
and invariance under inseparable field extensions, one reduces to the
case of a perfect field k. Then a devissage argument (we use rational
coefficients at this point) reduces to the preceding theorem.

Remark 1.2.17. As a complement, let us say that one now knows how
to compute both the plus and the minus part of rational motivic stable
homotopy category (see [DFJK21]):

SH(S)Q+ ≃ DM(S,Q)

is the category of rational mixed motivic complexes. In particular,
rationally, being orientable is the same as being a motivic complex.

For the minus part, one has:

SH(S)Q− ≃ HWS⊗ZQ −mod

where the right hand-side is the category of modules over the unrami-
fied rational Witt sheaf, seen over the caracteristic 0 part S ⊗Z Q of S
(in particular, it is zero on a scheme of positive charadteristic).

References
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