Generalized symmetry - a bird-eye/holographic perspective

Xiao-Gang Wen (MIT)

(holo-eq) Symmetry in *n*-dim space \leftrightarrow Braided fusion *n*-category

2024/07, PiTP

Kong Wen 1405.5858 Kong Wen Zheng 1502.01690 Ji Wen 1905.13279 Ji Wen 1912.13492 Kong Lan Wen Zhang Zheng 2005.14178

Simons Collaboration on

Ultra-Quantum Matter

Xiao-Gang Wen (MIT)

Generalized symmetry – a bird-eye/holographic perspective

 $Z_n(C)$

 $Z_n(\mathcal{D}_n)$

 $\mathcal{D}_n = f^{(1)}_n = \mathcal{C}_n$

RECEIVED: February 1, 2015 ACCEPTED: February 1, 2015 PUBLISHED: February 26, 2015

Generalized global symmetries

Davide Gaiotto,^a Anton Kapustin,^{b,1} Nathan Seiberg^c and Brian Willett^c

 ^a Perimeter Institute for Theoretical Physics, 31 Caroline St., Waterloo, Ontario, N2L 2Y5, Canada
 ^b Simons Center for Geometry and Physics, State University of New York, Stony Brook, NY 11790, U.S.A.
 ^c School of Natural Sciences, Institute for Advanced Study,

1 Einstein Dr., Princeton, NJ 08540, U.S.A.

Top-down view = bird-eye view = viewing from one higher dimension

Xiao-Gang Wen (MIT)

Symmetry (quantum, internal, old picture)

A local quantum system is described by (V_N, H). (1) V_N: a Hilbert space with a tensor decomposition V_N = ⊗^N_{i=1}V_i. (2) H: a local Hamiltonian acting on V_N, H = ∑ Ô_{ij}

• A symmetry for a local quantum system:

(1) $\{U_g \mid g \in G, U_g U_h = U_{gh}, U_g^{\dagger} = U_{g^{-1}}\}$, where U_g act on the Hilbert space $\mathcal{V} = \bigotimes_i \mathcal{V}_i$.

(2) The set of **local symmetric operators**: $\{O_i^{\text{symm}} \mid U_g O_i^{\text{symm}} = O_i^{\text{symm}} U_g\}.$

(3) The Hamiltonian $H = \sum O_i^{\text{symm}}$.

(4) The allowed symmetric perturbations: $\delta H = \sum \delta O_i^{\text{symm}}$

Symmetry (quantum, internal, new picture)

- A symmetry for a local quantum system = a choice of subset of local operators, which form a vector space with product $\mathcal{A} = \{ O = \sum_{\alpha} O_{\alpha} \mid aO + bO' = cO'', O_{\alpha}O_{\beta} = f_{\alpha\beta}^{\gamma}O_{\gamma} \}.$
- $\{O_{\alpha}\}$ is a basis of \mathcal{A} formed by local operators.
- We refer to \mathcal{A} as a **local-operator sub-algebra**.
- Symmetric Hamiltonian $H = \sum O_i, O_i \in A$.
- The algebra of all local operators

 $\mathcal{A}_{\mathsf{no-symm}} = \{ \mathcal{O}_{\alpha} \mid \mathsf{all local operators} \}$

corresponds to the case with no symmetry.

Holo-equivalence of symmetries

- Two symmetries \mathcal{A} and $\tilde{\mathcal{A}}$ are **holo-equivalent** $\mathcal{A} \sim \tilde{\mathcal{A}}$
- if \mathcal{A} and $\tilde{\mathcal{A}}$ are isomorphic (*ie* the local operators in \mathcal{A} and $\tilde{\mathcal{A}}$ have an one-to-one correspondence $\mathcal{O}_{\alpha} \leftrightarrow \tilde{\mathcal{O}}_{\alpha}$, such that $f_{\alpha\beta}^{\gamma} = \tilde{f}_{\alpha\beta}^{\gamma}$, where $\mathcal{O}_{\alpha}\mathcal{O}_{\beta} = f_{\alpha\beta}^{\gamma}\mathcal{O}_{\gamma}$ and $\tilde{\mathcal{O}}_{\alpha}\tilde{\mathcal{O}}_{\beta} = f_{\alpha\beta}^{\gamma}\tilde{\mathcal{O}}_{\gamma}$.
- or if $\mathcal{A}\otimes\mathcal{A}_{\mathsf{no-symm}}\sim\mathcal{ ilde{A}}\otimes\mathcal{ ilde{A}}_{\mathsf{no-symm}}$

Ji Wen 1912.13492; Kong Lan Wen Zhang Zheng 2005.14178; Chatterjee Wen 2205.06244
 This leads to a notion of Holo-equivalent classes of symmetries, called categorical symmetries ↔ Isomorphic classes of local-operator sub-algebra (up to ⊗A_{no-symm})

Two examples

• Spin- $\frac{1}{2}$ on sites of square lattice, with local-operator sub-algebra $\mathcal{A}_{site} = \{Z_i Z_{i+x}, Z_i Z_{i+y}, X_k \mid generators\}$

• Spin- $\frac{1}{2}$ on links of square lattice, with local-operator sub-algebra $\mathcal{A}_{\text{link}} = \{Z_{i,i+x}, Z_{i,i+y}, X_{i,i+x}X_{i,i-x}X_{i,i+y}X_{i,i-y} \mid \text{generators}\}$

• The two local operator algebras are isomorphic and correspond to holo-equivalent symmetries.

Xiao-Gang Wen (MIT)

Symmetry (looking into holo-equivalence class)

• The symmetry transformations for the **categorical symmetry** (defined by the local-operator sub-algebra \mathcal{A}):

 $\mathcal{A}_{\mathsf{trans}} = \{ \textit{O}_{\mathsf{trans}} \mid \textit{O}_{\mathsf{trans}}\textit{O}_{\alpha} = \textit{O}_{\alpha}\textit{O}_{\mathsf{trans}}, \textit{ O}_{\alpha} \in \mathcal{A} \}$

- $\mathcal{A}_{\text{trans}}$ is an operator algebra describing symmetry transformation.
- $\mathcal{A}_{\text{trans}}$ depends on the homotopy types of space: $\mathcal{A}_{\text{trans}} = \mathcal{A}_{\text{trans},0}^{\otimes \pi_0(M)}$.
- Isomorphic algebras of the transformation operators classify/define symmetries. Isomorphic local-operator sub-algebras may have non-isomorphic transformation algebra. A holo-equivalent class of symmetries may contain different symmetries.
- If we can find a set of generators $\{U_g\}$ of \mathcal{A}_{trans} that satisfy a group-like algebra $U_g U_h = U_{gh}$, then the symmetry is a invertible group-like symmetry.

 If such set of generators does not exist, then the symmetry is non-invertible → Algebraic (higher) symmetry
 Xiao-Gang Wen (MIT)
 Generalized symmetry – a bird-eye/holographic perspective

Our two examples: $\mathbb{Z}_2^{(0)} \stackrel{\text{holo-equivalent}}{=\!\!=\!\!=\!\!=\!\!=\!\!=\!\!=\!\!=\!\!\mathbb{Z}_2^{(1)}$ in 2+1D

 \bullet The two local-operator sub-algebras \rightarrow same categroical symm

 $\mathcal{A}_{\text{site}} = \{Z_i Z_{i+x}, \quad Z_i Z_{i+y}, \\ \mathcal{A}_{\text{link}} = \{Z_{i,i+x}, \quad Z_{i,i+y}, \\ \text{\bullet But they correspond to different symmetries, } \mathbb{Z}_2^{(0)} \text{ 0-form symmetry } \\ \text{and } \mathbb{Z}_2^{(1)} \text{ 1-form symmetry:} \\ \mathcal{A}_{\text{trans}}^{\text{site}} = \{\prod_i X_i\} \rightarrow \mathbb{Z}_2^{(0)}. \\ \mathcal{A}_{\text{trans}}^{\text{link}} = \{\prod_{\langle ij \rangle \in \text{loop}} Z_{ij}\} \rightarrow \mathbb{Z}_2^{(1)}. \\ \end{bmatrix}$

• $2+1D \mathbb{Z}_2^{(0)}$ 0-form and $\mathbb{Z}_2^{(1)}$ 1-form Nussinov Ortiz cond-mat/0605316 symmetries are holo-equivalent. Gaiotto Kapustin Seiberg Willett 1412,5148 The systems with the two symmetries have the same phase diagram, the same set of critical points, the same local low energy dynamics. Holo-equivalent symmetries can be mapped into each other via duality transformations (gauging)

Xiao-Gang Wen (MIT)

Generalized symmetry – a bird-eye/holographic perspective

More examples holo-equivalent symmetries

- In 1+1D, Z₂ × Z₂ with the mixed anomaly is holo-equivalent to Z₄ symmetry.
 Chatterjee Wen 2203.03596; Zhang Levin 2206.01222
- In 1+1D, Z₂ × Z₂ × Z₂ with a triple-mixed anomaly is holo-equivalent to D₄ symmetry (*ie* D^ω(Z₂ × Z₂ × Z₂) = D(D₄)).
- In 1+1D, Z₂ × Z₂ × Z₂ with another triple-mixed anomaly is holo-equivalent to Q₈ symmetry. Goff Mason Ng math/0603191
- In 1+1D, G symmetry is holo-equivalent to $\mathcal{R}ep(G)$ symmetry, which is non-invertible if G is non-Abelian.

An example of non-invertible (n-1)-symmetry

- A *n*-dimensional lattice model with states on link-*ij* labeled by $g_{ij} \in G$. The algebra of symmetry transformations is given by
 - $\mathcal{A}_{\text{trans}} = \{ U_q | \{g_{ij}\} \rangle = \text{Tr} \prod_{ij \in \text{loop}} R_q(g_{ij}) | \{g_{ij}\} \rangle \mid q \text{ is a rep of } G \}$

$$U_{q_1}U_{q_2} = \sum_{q_3} N_{q_1,q_2}^{q_3} U_{q_3}, \quad q_1 \otimes q_2 = \bigoplus_{q_3} N_{q_1,q_2}^{q_3} q_3$$

 $\mathcal{A}_{\text{localops}} = \{f(g_{ij}), |g_{ij}h_j^{-1}, h_jg_{jk}\rangle\langle g_{ij}, g_{jk}|\}\} \text{ Ji Wen 1912.13492}$ Kong Lan Wen Zhang Zheng 2005.14178; Bhardwaj Schafer-Nameki Wu 2208.05973 • Such a (n-1)-symmetry (denoted as $n \operatorname{\mathcal{R}ep}(G)$) is a non-invertible higher symmetry (*ie* an algebraic higher symmetry) if G is

- non-Abelian. This (n 1)-symm is holo-equivalent to G 0-symm.
- More examples of intrinsic non-invertible symmetry come from duality maps of self-dual models, Choi Cordova Hsin Lam Shao 2111.01139; Kaidi Ohmori Zheng 2111.01141; Bhardwaj Bottini Schafer-Nameki Tiwari 2204.0656; ... Seiberg Shao 2307.02534; Chatterjee Aksoy Wen 2405.05331; Gorantla *etal* 2406.12978 as well as from local-operator sub-algebras. Chatterjee Ji Wen 2212.14432

Xiao-Gang Wen (MIT)

Two claims (unified theory for generalized symm)

• Claim 1: Holo-equivalent classes of (generalized) symmetries in *n*-dimensional space are classified by braided fusion *n*-categories \mathcal{M} in trivial Witt-class (*ie* the center of a fusion *n*-category.) Kong Wen Zheng 1502.01690; Ji Wen 1912.13492

Kong Lan Wen Zhang Zheng 2005.14178

 Claim 2: Anomaly-free (generalized) symmetries in n-dimensional space are classified by local fusion n-categories. Both symmetry charges and symmetry defects are described by (potentially different) local fusion n-categories, R_{char} and R_{def}.

(Generalized) symmetries are classified by fusion *n*-categories \mathcal{R}_{def} , which describes symmetry defects.

Thorngren Wang 1912.02817 (1+1D); Freed Moore Teleman 2209.07471

• Two symmetries \mathcal{R}_{def} and \mathcal{R}'_{def} are holo-equivalent if their **center** is the same $\mathcal{Z}(\mathcal{R}_{def}) = \mathcal{Z}(\mathcal{R}'_{def})$

Xiao-Gang Wen (MIT)

What is a fusion higher category?

 $2{+}1D$ spacetime with world-sheet, world-line, and instanton

- (1) Co-dimension-1 excitation (objects of category) (2) Co-dimension-2 excitation = interface between co-dimension-1 excitations, ... → Fusion *n*-category (Co-dimension-*n* = 0-dimension in spacetime, *ie* instantons)
- Symmetry charges in *n*-dimensional space form a fusion higher category \mathcal{R}_{char} .
- Symmetry defects in *n*-dimensional space form a dual fusion higher category $\tilde{\mathcal{R}}_{def}.$

What is a braided fusion higher category?

3+1D spacetime with world-sheet, world-line, and instanton

- (1) Co-dimension-2 excitation (objects of category) (2) Co-dimension-3 excitation = interface between co-dimension-2 excitations, ... → Braided fusion *n*-category M (Co-dimension-*n* = 0-dimension in spacetime, *ie* instantons)
- \mathcal{M} describes the (extended) excitations in a topological order in (n+1)-dimensional space (also denoted by \mathcal{M}). The excitations on a gapped boundary are described by a fusion *n*-category \mathcal{R} . The boundary \mathcal{R} uniquely determine the bulk \mathcal{M} : $\mathcal{M} = \mathcal{Z}(\mathcal{R})$ (\mathcal{Z} is called a center functor) \rightarrow **topological holographic principle**. Kong Wen 1405.5858; Kong Wen Zheng 1502.01690

Local fusion *n*-category classify anomaly-free symm

- A symmetry *R*_{def} is anomaly-free if there exists a symmetric system with a gapped non-degenerate ground state on any closed spaces. Thorngren Wang 1912.02817 (1+1D); Kong Lan Wen Zhang Zheng 2005.14178
- A fusion *n*-category \mathcal{R} is **local** if there exists another fusion *n*-category $\tilde{\mathcal{R}}$ (dual of \mathcal{R}) with the same center, such that the tensor product of \mathcal{R} and $\tilde{\mathcal{R}}$ over their center $\mathcal{M} = \mathcal{Z}(\mathcal{R}) = \mathcal{Z}(\tilde{\mathcal{R}})$ is trivial: $\mathcal{R} \otimes_{\mathcal{M}} \tilde{\mathcal{R}} = n\mathcal{V}ec$. Kong Lan Wen Zhang Zheng 2005.14178
- **Physical picture**: the stacking of the dual-pair $(\mathcal{R}, \tilde{\mathcal{R}})$ through their bulk \mathcal{M} is a trivial topological order $\rightarrow n_{\text{Nec}}$
- A local fusion *n*-category \mathcal{R} always has a dual local fusion $\overset{\ell}{\underset{\mathcal{R}}{\overset{\mathcal{R}}{\underset{\text{def}}{\overset{\mathcal{R}}{=}}}}$ always has a dual anomaly-free symmetry described by $\mathcal{R}_{def} = \mathcal{R}$.
- Excitations in local fusion *n*-category have integral quantum dims **Proof**: Boundary excitation \mathcal{R} can be viewed as *n* $\mathcal{V}ec$ -excitations

Homomorphism between QFTs

How to understand/derive the above two claims?

Homomorphism, as a map that preserve some structure, is the most important concept in mathematics.

What is the Homomorphism between quantum field theories?

- A morphism between two anomaly-free quantum field theories is given by a domain wall OFT OFT'
- A morphism between two anomalous quantum field theories is given by a domain wall on the boundary and a domain wall in the bulk topological order that describes the anomaly

- **Topological holographic principle**: the gravitational anomaly (obstruction to have lattice UV completion, usually non-invertible) in a theory QFT_{ano} is given by its **center** $\mathcal{M} = \mathcal{Z}(QFT_{ano})$, *ie* by its bulk topological order \mathcal{M} . Kong Wen 1405.5858

Xiao-Gang Wen (MIT)

topo

order'

OFT_{ano}

topo

order

OFTano

Homomorphism between QFTs with grav anomaly

• If we only interested in local low energy properties, *ie* long distance correlations of local operators, we can define two quantum field theories, *QFT* and *QFT'*, to be **local-low-energy equivalent** if

 $QFT \boxtimes Gapped = QFT' \boxtimes Gapped'$. Kong Wen Zheng 1502.01690

Local-low-energy homomorphism between anomalous *QFT* and *QFT*': *QFT*' is exact simulated by the composite theory of *QFT*, M, *R̃* ε_{iso} : *QFT*' ≅ *QFT* ⊠_M *R̃*, which is called an isomorphic holographic decomposition.

- Local low energy excitations of QFT can be embedded into $QFT' \rightarrow$ Local-low-energy homomorphism $(\epsilon, \tilde{R}) : QFT \rightarrow QFT'$

- If the n + 1D QFT's are gapped, they become fusion *n*-categories, and $(\tilde{\mathcal{R}}, \varepsilon_{iso})$ is the monoidal functor between fusion *n*-categories. Xiao-Gang Wen (MIT) Generalized symmetry – a bird-eye/holographic perspective 16/26

Symmetry \cong non-invertible gravitational anomaly

- A symmetry is generated by an unitary operator U. H commutes with U: UH = HU.
- Now, we consider a symmetric system restricted in the symmetric sub-Hilbert space

 $U\mathcal{V}_{\mathsf{symmetric}} = \mathcal{V}_{\mathsf{symmetric}}.$

The symmetry U acts trivially within $V_{\text{symmetric}}$.

How to know there is a symmetry? How to identify the symmetry?

- The total Hilbert space \mathcal{V}_{tot} has a tensor product decomposition $\mathcal{V}_{tot} = \bigotimes_i \mathcal{V}_i$, where *i* labels sites, because the system live on lattice.
- The symmetric sub-Hilbert space $\mathcal{V}_{symmetric}$ does not have a tensor product decomposition $\mathcal{V}_{symmetric} \neq \bigotimes_i \mathcal{V}_i$, indicating the presence of a symmetry.
- Lack of tensor product decomposition \rightarrow gravitational anomaly \rightarrow Symmetry \cong Non-invertible gravitational anomaly \cong Topological order in one higher dimension

Ji Wen 1912.13492; Kong Lan Wen Zhang Zheng 2005.14178

17 / 26

Isomorphic holographic decomposition→Symmetry

The **isomorphic holographic decomposition** expose the hidden symmetry (*ie* the hidden gravitational anomaly) in *QFT*_{symm}

• The bulk TO \mathcal{M} is the symmetry-topological order (SymTO). SymTOs classify generalized symmetries in one lower dim (up to holo-equivalence). The top boundary excitations are gapped, which form a fusion category $\tilde{\mathcal{R}}_{def}$ of symmetry defects. Since $\mathcal{M} = \mathcal{Z}(\tilde{\mathcal{R}}_{def})$, the n + 1D (anomaly-free) generalized symmetries are classified by (local) fusion *n*-category $\tilde{\mathcal{R}}_{def}$.

Fröhlich Fuchs Runkel Schweigert 0909.5013 (1+1D); Kong Lan Wen Zhang Zheng 2005.14178

• A generalized symmetry is described by a pair (quiche *"keesh"*) $(\rho, \sigma) = (\tilde{\mathcal{R}}_{def}, \mathcal{M} = \mathcal{Z}(\tilde{\mathcal{R}}_{def})).$ Freed Moore Teleman 2209.07471

5

Symmetry \cong topological order in one higher dim

 Systems with a (generalized) symmetry (restricted within V_{symmetric}) can be fully and exactly simulated by boundaries of a topological order, called SymTO (has lattice UV completion and no symmetry) or SymTFT (has symmetry).
 Symmetry Symmetric SymTO) symmetric
 Symmetry Symmetry Symmetry

Apruzzi Bonetti Etxebarria Hosseini Schafer-Nameki 2112.02092

\rightarrow Symm/TO correspondence

 SymTO or SymTFT was originally called categorical symmetry in Ji Wen 1912.13492; Kong etal 2005.14178

• Three pictures of SymTO: Taco, Spider, Sandwich

Operator algebra \rightarrow (braided) fusion *n*-categories

From a local-operator sub-algebra \mathcal{A} (that defines a symmetry), how to discover the braided fusion *n*-category, that describes the SymTO/SymTFT?

- Braided fusion *n*-category \mathcal{M} for a symmetry:
- The local operators in the sub-algebra *A* carries zero total symmetry charge/defect, but can be viewed as hopping of symmetry charge/defect (quantum current).
- We use the local operators to construct a MPO patch operator with **transparent** bulk (transparent = invisible, topological defect):

 $O_{\text{patch}} = \sum_{i \in \text{patch}} O_i, \ O_{\text{patch}} O_i = O_i O_{\text{patch}}, \ O_i \in \mathcal{A}, \ i \text{ far from } \partial \text{patch}$

The boundary of such patch operator is symmetry charge/defect.

Ji Wen 1912.13492; Chatterjee Wen 2205.06244; Lan Zhou 2305.12917 **Example**: For 1+1D \mathbb{Z}_2 symmetry, $\mathcal{A} = \{Z_i Z_{i+1}, X_i\}$, transparent patch operators $O_{i,j}^{char} = \prod_{i \le k < j} Z_k Z_{k+1} = Z_i Z_j$, $O_{i,j}^{def} = \prod_{i < k < j} X_k$

Xiao-Gang Wen (MIT)

20 / 26

How to calculte braided fusion catgeory data?

- Using the transparent string operators O^a_{i,j} in 1d
- Fusion rule: $O_{i,j}^{a}O_{i,j}^{b} \sim \sum_{c} N_{c}^{ab}O_{i,j}^{c}$ up to local operators $O_{i}, O_{j} \in \mathcal{A}.$

- Self-statistics: $O_{10}^{a} O_{21}^{a} O_{31}^{a} = e^{i\theta_{a}} O_{31}^{a} O_{21}^{a} O_{10}^{a}$ - Mutual-statistics: $O_{13}^{b} O_{20}^{a} = e^{i\theta_{ab}} O_{20}^{a} O_{13}^{b}$
- The *F*-symbol: $O_{13}^{c} O_{12}^{b} O_{21}^{ab} O_{12}^{ab} O_{10}^{a}$ $= F^{abc} O_{12}^{b} O_{13}^{c} O_{21}^{ab} O_{10}^{a} O_{12}^{ab}$

Levin-Wen cond-mat/0302460

Xiao-Gang Wen (MIT)

21 / 26

Not every topological order describes a generalized symmetry. **Finite symmetries (up to holo-equivalence) are one-to-one classified by SymTOs in one higher dimension (***ie* **Witt-trival MTCs)**

• We can use 2+1D SymTOs (instead of groups) to classify 1+1D finite (generalized) symmetries (up to holo-equivalence):

		-							-			
# of symm charges/defects	1	2	3	4	5	6	7	8	9	10	11	12
# of 2+1D TOs	1	4	12	18	10	50	28	64	81	76	44	≥212
# of symm classes (symm-TOs)	1	0	0	3	0	0	0	6	6	3	0	≥3
# of (anomalous) group-symm	$\mathbb{1}_{\mathbb{Z}_1}$	0	0	$2_{\mathbb{Z}_2^\omega}$	0	0	0	$6S_3^{\omega}$	$3_{\mathbb{Z}_3^\omega}$	0	0	0

Ng Rowell Wen 2308.09670

• The three SymTOs at rank-12 come from Haagerup-Izumi modular data. Evans Gannon 1006.1326

Rank 4 generalized symmetries & lattice realization

Three holo-equivalence classes of 1 + 1D symmetries at rank-4:

- \mathbb{Z}_2 -symmetry: SymTO = \mathbb{Z}_2 -gauge theory with anyons $\mathbf{1}, e, m, f$
- Local operator subalgebra \mathcal{A} is generated by $X_i, Z_i Z_{i+1}$.
- Transformation algebra \mathcal{A}_{trans} is generated by $U = \prod_i X_i$.

 $Vec(Z_2)$

- $A_m = 1 \oplus m$ give LET_{ano} LET_{ano} rise to the "same" gapped boundary \rightarrow the same \mathbb{Z}_2 symmetry. - When two condensations give rise to the same symmetry (same gapped boundary $\tilde{\mathcal{R}}_{def}$) \rightarrow There can be a duality symmetry.
- Anomalous \mathbb{Z}_2 -symmetry: SymTO = Double-semion TO
- Local-operator sub-algebra \mathcal{A} is generated by $Z_i Z_{i+1}$, $X_i Z_{i-1} X_i Z_{i+1}$, $Z_{i-1} X_i + X_i Z_{i+1}$.
- Transformation algebra \mathcal{A}_{trans} is generated by a \mathbb{Z}_2 non-on-site transformation: $U = \prod_i X_i \prod_i i^{\frac{-Z_i + Z_{i+1} + Z_i Z_{i+1} 1}{2}}$

Xiao-Gang Wen (MIT)

Two condensations

 $A_e = \mathbf{1} \oplus e$ and $A_m = \mathbf{1} \oplus m$ give $\mathcal{R}ep(\mathbb{Z}_{2})$

 $\mathcal{M}_{Z_{2}-\text{gauge}} \left\{ LET_{af} = LET_{ano} \boxtimes_{\mathcal{M}_{2}} \mathcal{R}_{Z_{2}} \right\}$

Rank 4 generalized symmetries & lattice realization

• Fibonacci symmetry: SymTO = double-Fibonacci TO

Realization:

- A slab of Levin-Wen model realizing the double-Fibonacci topological order \mathcal{M}_{dEib} with large gap.

$$\mathcal{R}_{\text{Fib}} \quad \text{LET} = \text{low energy theory}$$
$$\mathcal{M}_{\text{dFib}} \quad \text{LET}_{af} = LET_{ano} \boxtimes_{\mathcal{M}_{\text{dFib}}} \overset{\mathcal{H}}{\mathcal{R}}_{\text{Fib}}$$

2

Chatterjee Ji Wen 2212.14432

- A boundary \mathcal{R}_{Fib} with large gap from $\phi \overline{\phi}$ condensation.
- Another small-gap/gapless boundary LET_{ano} .
- Local operator subalgebra is generated by the operators on the low energy boundary LET_{ano}.
- Transformation algebra $\mathcal{A}_{\text{trans}}$ is generated by closed-string operators creating anyon pair (ϕ, ϕ) or (ϕ, ϕ) , that do not condense on the \mathcal{R}_{Eib} boundary. Symm charge $= \phi \overline{\phi}$. Fibonacci symm is anomalous (ϕ is not bosonic) and non-invertible (ϕ is a non-Abelian) Wen 1812 02517 Xiao-Gang Wen (MIT)

SPT phases for anomaly-free non-invertible symm

 $\left\{\begin{array}{c} \mathcal{\widetilde{R}}_{def} \\ \mathbf{\alpha} \quad \mathbf{A}_{char} \\ \mathcal{M} \quad \mathbf{A}_{flux} \\ \mathbf{\alpha} \quad \mathbf{A}_{flux} \\ \mathbf{A}_$

- The SPT phases for an anomaly-free (non-invertible) symmetry $\tilde{\mathcal{R}}_{def}$ is assified by the automorphisms α of the SymTO $\mathcal{M} = \mathcal{Z}(\tilde{\mathcal{R}}_{def})$, that leaves A_{char} invariant. Here A_{char} is the condensable algebra that product the gapped boundary $\tilde{\mathcal{R}}_{def}$.
- The automorphisms α of $\mathcal M$ are invertible domain walls in $\mathcal M$.
- In order for the automorphisms α to leave A_{char} invariant, the domain walls are formed by condensing symmetry charges in A_{char} .
- In order for the domain walls to be invertible, the condensation cannot be a SSB state, which is not invertible. The condensation produces a SPT phase on the domain wall.

Xiao-Gang Wen (MIT)

The essence of a symmetry

Emergent finite symmetries can go beyond groups, higher groups, and/or anomalies. But theiy can always be described by
 a gappable-boundary topological order in one higher
 dimension (with lattice UV completion) = SymTO

 The same topological order (in one higher dimensions) can have different shadows → holo-equivalent symmetries.

BF *n*-Category \leftrightarrow Generalized symmetry (in *n* + 1D, up to holo-equivalence) Xiao-Gang Wen (MIT) Generalized symmetry – a bird-eye/holographic perspective