Torsors over affine curves Problem sessions

Exercise 1. Let $d \ge 1$ be an integer and let R' be a $\mathbb{Z}/d\mathbb{Z}$ -Galois extension, i.e., Spec R' is a $\mathbb{Z}/d\mathbb{Z}$ -torsor over Spec R. We denote by σ the canonical generator of $\mathbb{Z}/d\mathbb{Z}$.

- 1. Show that the formula $N(y) = y \sigma(y) \cdots \sigma^{r-1}(y)$ defines a group scheme homomorphism $N: R_{R'/R}(\mathbb{G}_m) \to \mathbb{G}_m.$
- 2. Show that $1 \to \ker(N) \to R_{R'/R}(\mathbb{G}_m) \to \mathbb{G}_m \to 1$ is an exact sequence of *R*-group schemes.
- 3. Deduce an exact sequence involving $H^1(R, \ker(N))$.
- 4. Show that the flat quotient of $R_{R'/R}(\mathbb{G}_m)$ by \mathbb{G}_m exists in the category of schemes and is isomorphic to ker(N).
- 5. Construct an exact sequence

$$R^{\times} \to (R')^{\times} \xrightarrow{\sigma-1} \ker(N)(R) \to \ker(\operatorname{Pic}(R) \to \operatorname{Pic}(R')).$$

- 6. Discuss the case of the coordinate ring $A = R[\ker(N)]$ of $\ker(N)$.
- 7. For $R = \mathbb{R}$ and $S = \mathbb{C}$, is the \mathbb{G}_m -torsor $R_{S/R}(\mathbb{G}_m) \to R_{S/R}(\mathbb{G}_m)/\mathbb{G}_m$ trivial?

Exercise 2. Let k be a field of caracteristic p. We denote by F the Frobenius morphism.

Let G be a smooth algebraic group. Show that the map $g \mapsto g.F(g^{-1})$ is an étale isogeny, i.e., it is surjective and finite étale. Deduce that $SL_{n,\overline{\mathbb{F}_p}}$ is not simply-connected in the sense of [Gro71].

Exercise 3. Let R' be a finite locally free R-algebra. Let $r \ge 0$ be an integer. Let f denote the map from Spec R' to Spec R.

- 1. Show that the *R*-functor $S \mapsto \operatorname{End}_{S \otimes_R R'} \left((S \otimes_R R')^r \right)^*$ is representable by an affine *R*-group scheme. We denote it by $\widetilde{G} = R_{R'/R}(\operatorname{GL}_r)$ (the Weil restriction).
- 2. Show that a $\operatorname{GL}_{r,R'}$ -torsor is locally trivialised by an open of the form $f^{-1}(U)$ where U is an open of Spec R.
- 3. Show that the category of \widetilde{G} -torsors is equivalent to the category of locally free R'-modules of rank r.
- 4. Give an interpretation of the map $H^1(R, \operatorname{GL}_r) \to H^1(R, \widetilde{G})$ and show that this map is not in general injective nor surjective.

Exercise 4. Let \mathbb{H} be the quartenion of Hamilton. Show that $A = \mathbb{H}[x, y]$ admits an invertible (right) \mathbb{H} -module which is not free.

[Hint : One can consider the exact sequence

$$0 \to P \to A^2 \xrightarrow{f} A \to 0$$

where $f: (\gamma, \mu) \mapsto (X+i)\gamma - (Y+j)\mu$.

Then one can find two solutions (γ_1, μ_1) and (γ_2, μ_2) of degree two and deduce a contradiction.]

References

[Gro71] Alexander Grothendieck. Revêtements étales et groupe fondamental (SGA 1). Vol. 224. Lecture notes in mathematics. Springer-Verlag, 1971.