Characteristic classes in stable motivic homotopy theory: TA 4

Symplectic Grassmanian

Let (V, φ) be a trivial symplectic bundle of rank 2n + 2. The symplectic group $\operatorname{Sp}_{2n+2} = \operatorname{Sp}(V, \varphi)$ acts on the grassmanian $\operatorname{Gr}(2, V)$. Show that it has a natural closed orbit, whose complementary parametrizing the planes on which φ is nondegenderate, which we call the quaternionic projective space $\operatorname{HP}p^n$. Show that $\operatorname{HP}^1 \simeq (\mathbb{P}^1)^{\wedge 2}$ in $\operatorname{SH}(S)$.(Here $S = \operatorname{Spec} k$).

Sp-orientation of a Gl-orientation.

Let (\mathbb{E}, c) be a GL-oriented motivic spectra. Compute the FTL associated to the Sp-orientation induced by the map MSp \rightarrow MGL. You may begin by proving that $b_i(V, \varphi) = (-1)^i c_{2i}(V)$.

Chow-Witt groups.

Let (K, v) be a discretely valued field (one may assume that K = k(C) is the function field of a smooth projective curve). Let $\omega_v = (\mathfrak{m}/\mathfrak{m}^2)^{\vee}$ be the normal cone. Show that there exists residue maps

$$\partial_v \colon \mathrm{K}^{\mathrm{MW}}_n(K) \to \mathrm{K}^{\mathrm{MW}}_{n-1}(\kappa_v, \omega_v)$$

such that ∂_v commutes with η and for $u_i \in K^{\times}$ and π an uniformiser with $u_1 = v_1 \pi^m$ and $v(u_i) = 0$ for i > 1 we have

$$\partial_v([u_1,\ldots,u_n]) = m_{\varepsilon} \langle \overline{v_1} \rangle [\overline{u_2},\ldots,\overline{u_n}] \otimes \overline{\pi}^*$$

Show that the divisor map is well defined, and use this to define Chow-Witt groups. Prove that they have localisation.