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Regular Berry phase

– As the higher Berry phase is a generalization of regular Berry phase, let’s start by
reviewing the regular Berry phase

– In a typical setup, we consider a quantum state |ψ⟩ that depends smoothly on
some parameter X = (X1, X2, · · · ). X can change over some manifold M
(”parameter space”).

– Berry phase is the phase accumulated by |ψ⟩ as we change X smoothly or
adiabatically.
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– The Berry phase along a loop γ can be calculated as

i
∮

γ
dt ⟨ψ(X(t))| d

dt
|ψ(X(t))⟩ = i

∮
γ
dt ⟨ψ(X))|

∂

∂Xµ
|ψ(X)⟩︸ ︷︷ ︸

≡Aµ(X)

dXµ

dt

= i
∮

γ
AµdXµ = i

∮
γ

A

– The Berry phase is invariant under (small) gauge transformation,
|ψ(X)⟩ → eiϕ(X)|ψ(X)⟩, Aµ → Aµ + ∂µϕ:∮

γ
A →

∮
γ

(A + dϕ) =
∮

γ
A +

∮
∂γ
ϕ =

∮
γ

A

– Aµ couples to a conserved current (particle trajectory) in parameter space,

i
∮

γ
A = i

∫
dDX Aµjµ

jµ(X) =
∫
dt δD(X −X(t))Ẋµ
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Topological classification

– We can also consider a topological classification of parameterized families of
|ψ(X)⟩ over M .

– Each family can be thought of as defining a complex line bundle. Here, a fibre
corresponds to a quantum state (projector) or its phase ambiguity part.

– Complex line bundles are classified by Chern numbers and Chern classes – these
are topological invariants of vector bundles (line bundles).

– There are various ways to think about them. E.g.,
• In terms of curvature
• In terms of transition functions
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Curvature

– In the first viewpoint, we consider Berry curvature,

F = dA = ∂µAνdX
µdXν =

1
2

FµνdX
µdXν

– The Berry curvature F/2πi can be integrated over any 2-cycle in M (with
integer coefficients). By Dirac’s argument, the integral is quantized to be an
integer independent of the connection.

– On the other hand, F/2πi is a closed, and globally defined 2-form (does not
depend on the gauge choice for patches).

– Therefore, it defines an element in the 2nd cohomology group,
H2(M,R) = space of closed 2-forms/space of exact 2-forms.

– Because of the Dirac quantization, it is natural to consider Chern classes as an
element of cohomology group with integer coefficients, [F/2πi] ∈ H2(M,Z).
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Transition functions

– Wu-Yang’s approach to magnetic monopoles
– Consider to patch M , so that for each patch, we can define a smooth gauge of

wavefunction.

– Within the intersection Uα ∩ Uβ , two wave functions, one from each patch, must
be physically equivalent, and related by a gauge transformation

|ψα⟩ = eiϕαβ |ψβ⟩, eiϕαβ : transition function

– The data ({Uα}, {eiϕαβ }) topologically defines a complex line bundle.
– [eiϕαβ ] ∈ Ȟ1(M,U(1)) ≃ H2(M,Z).
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Examples

• Single spin with M = S2

|ψ(n⃗)⟩ = eiχ

(
e−iϕ/2 cos θ/2
e+iϕ/2 sin θ/2

)

• Thouless pump [Thouless (83)]

H =
∑

i

[
−(J + δ)f†

i di − (J − δ)f†
i di+1 + h.c.+ ∆(f†

i fi − d†
idi)

]
Ch =

∫ T

0 dt
∫ π

−π
dkF(k, t)/2πi = integer

[C.f. Experiment; Nakajima et al (16)]
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Introduction to higher Berry phase

– So far: Berry phase for a single quantum spin; Berry phase is associated with a
wave function overlap,

– In many-body physics, we have many spins. So we may consider:

But such a product state is too boring.
– We will consider more correlated states, described by MPS:

– Faithful representation of short-range entangled or invertible states
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– Roughly, we generalize X(t) → X(t, σ) and |ψ(X(t))⟩ → |ψ[X(t, σ)]⟩.

– Now we can define ”string current”, which generalizes ”particle current”:

jµ(X) =
∫
dtδD(X −X(t)) dXµ

dt

→ jµν(X) =
∫
dtdσδD(X −X(t)) 1

2

[
∂Xµ

∂t
∂Xν

∂σ
− ∂Xν

∂t
∂Xµ

∂σ

]
– Such string current can couple to a two-form gauge field Bµν :

– As before, we can consider i
∫

M
Bµνjµν = i

∫
γ
BµνdXµdXν .

There is a 1-form gauge invariance, Bµν → Bµν + ∂µξν − ∂νξµ.

– So this is what we would expect; We will have 2-form connection.
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Gapped states in (1+1)d and higher Berry phase

– Short-range entangled or invertible states in (1+1)d

– Can be expressed using matrix product states (MPS)

[Previous and related works on higher Berry phase:

Kitaev (2019); Cordova-Freed-Lam-Seiberg (19); Kapustin-Spodyneiko (20); Kapustin-Sopenko (22); Hsin-Kapustin-Thorngren (20);

Artymowicz-Kapustin-Sopenko (23); Choi-Ohmori (22); Shiozaki (21); Wen-Qi-Beaudry-Moreno-Pflaum-Spiegel-Vishwanath-Hermele

(21); Beaudry-Hermele-Moreno-Pflaum-Qi-Spiegel (23); Ohyama-Shiozaki-Sato (22); Ohyama-Terashima-Shiozaki (23);

Beaudry-Hermele-Moreno-Pflaum-Qi-Spiegel (23); Qi-Stephen-Wen-Spiegel-Pflaum-Beaudry-Hermele (23); Shiozaki-Heinsdorf-Ohyama

(23); Sommer-Wen-Vishwanath (24); Sommer-Vishwanath-Wen (24) ... ]
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MPS for short-range entangled states

– We consider normal MPS, for which the transfer matrix has a unique largest
eigenvalue.

– Transfer matrix:

and its left and right actions:

– We denote the unique dominant left and right eigenvectors as ΛL and ΛR.
By taking the right canonical form, we can take ΛR = 1 as the most dominant
right eigenvector with eigenvalue 1. Biz,

∑
s
As · 1 ·As† = 1
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Double intersection

– Now, as before, we patch M , {Uα}.

– For each patch, MPS representation Aα(X) is smooth over Uα.
– When two patches intersect, two MPS represent the same physical state.
– The fundamental theorem then states that the MPS are related as

As
α = gαβA

s
βg

†
αβ
eiχ

This relation should play a simliar role as |ψα⟩ = eiϕαβ |ψβ⟩.
We call gαβ transition function.
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Triple intersection

– When three patches intersect, on Uα ∩ Uβ ∩ Uγ , we can consider three transition
functions, gαβ , gβγ , gγδ (with gβα = g†

αβ
etc.)

– Recall that previously, we had eiϕαβ , eiϕβγ , eiϕγα .
They satisfy the cocycle condition eiϕαγ = eiϕαβ eiϕβγ since we can ”relate”
|ψγ⟩ and |ψα⟩ in two different ways:

|ψα⟩ = eiϕαγ |ψγ⟩ : direct way

|ψα⟩ = eiϕαβ |ψβ⟩ = eiϕαβ eiϕβγ |ψγ⟩ : indirect way

These should be consistent, and hence we have the cocycle condition.

14 / 28



Triple intersection

– Let us repeat this argument, and relate As
γ and As

α in two different ways:

As
α = gαγA

s
γg

†
αγ : direct way

As
α = gαβA

s
βg

†
αβ

= gαβgβγA
s
γg

†
βγ
g†

αβ
: indirect way

– Once again, we demand the consistency; however, there is a U(1) ambiguity,

gαβgβγ = gαγ × cαβγ

”Ambiguity of ambiguity” (g is an ambiguity of A, c is an ambiguity of g)
– Recall that {eiϕαβ } defines an element in H1(M,U(1)) ≃ H2(M,Z). Biz, Chern

class.
– (We can show that cαβγ satisfies the cocycle condition. Hence –)

Similarly, {cαβγ} defines an element in H2(M,U(1)) ≃ H3(M,Z). This class is
called the Dixmir-Douady class, which is a topological invariant.
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Triple inner product

– The transition function eiϕαβ can be ”extracted” from the wavefunction overlap
⟨ψα|ψβ⟩ – This is the work of Wu-Yang relating physics (QM with monopole)
and mathematics (complex line bundle).
Is there any physical quantity related to cαβγ?

– As a candidate, let us consider the triple inner product,

– Recall that the regular inner product:

takes two quantum states (MPS) and spits out one complex number.
The triple inner product takes three states and spits one number.
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– Now, how can we calculate the triple inner product?
– Recall that the regular inner product can be computed by using the transfer

matrix. In the thermodynamic limit, only fixed points of TA matter. So:
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– Similarly, we consider:

– This diagram is evaluated as
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Curvature and connection

• [Kapustin-Spodyneiko (20)]

• [Kapustin-Sopenko (22)] [Artymowicz-Kapustin-Sopenko (23)]

• [Shiozaki-Heinsdorf-Ohyama (23)]

• [Sommer-Wen-Vishwanath (24)] [Ohyama-SR (24)]

• · · ·
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Higher Berry connection
[Sommer-Wen-Vishwanath (24)] [Ohyama-SR (24)]

– 2-form connection:

Bα =
∞∑

k=0

dΛL
α · · ·

dAα

.

– Can also be written as

Bα = dΛL
α

1
1 − T ′

α dAα

.

by summing over “ladder diagrams”:∑
m

· · · = 1
1 − T ′

α

+
∑

m

.

– For fixed point MPS:

Bα = dΛL
α

dAα

H(3) = dΛL
α

dAα

dAα

.
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Example; M = S3

[Wen-Qi-Beaudry-Moreno-Pflaum-Spiegel-Vishwanath-Hermele (21)]

H(w⃗) = H
on-site(w) + H

odd(w4) + H
even(w4)

H
on-site(w) =

∑
p

(−1)pw · σp,

H
odd(w4) =

∑
p:odd

g
N(w⃗)σp · σp+1,

H
even(w4) =

∑
p:even

g
S(w⃗)σp · σp+1.

M = S
3 = {w⃗ = (w, w4) |

4∑
µ=1

w
2
µ = 1}

g
N(w⃗) =

{
w4 (0 ≤ w4 ≤ 1) ,

0 (−1 ≤ w4 ≤ 0) ,

g
S(w⃗) =

{
0 (0 ≤ w4 ≤ 1) ,

−w4 (−1 ≤ w4 ≤ 0) .

– By an explicit calculation,

B
(2) = −

i

2
cos(t) cos(θ)dt ∧ dϕ,∫

S3 dB(2)/2πi = −1

(w4 = cos(t), 0 ≤ t ≤ π),
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[Sommer-Wen-Vishwanath (24)]

[Shiozaki-Heinsdorf-Ohyama (23)]
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Higher dimensions

– Let us briefly discuss generalization to (2+1)d. [Ohyama-SR (24);

Qi-Stephen-Wen-Spiegel-Pflaum-Beaudry-Hermele1 (23)]

– A natural generalization of triple inner product is quadruple inner product that
assigns a complex number for four quantum states. It can be defined as follows.

– We start with (2+1)d invertible states. They can be represented by 2d tensor
network, e.g., PEPS of some sort.

– We first divide the 2d space into three regions, A, B, C:

– Consider four states, Ψα, Ψβ , Ψγ , Ψδ. Each of them are tripartitioned.
– We can now ”connect” or ”contract” these states with each other.
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Qudruple inner product

– It’s a bit complicated to draw, but
the contraction looks like this:

– A simplified notation: the triple inner
product for three bipartite states,
|Ψ⟩ =

∑
ψij |i⟩A|j⟩B .

– In this notation, the regular inner
product is simply a line segment:

– The quadruple inner product is
defined for four tripartite states,
|Ψ⟩ =

∑
ijk

ψijk|i⟩|j⟩|k⟩. So, each
wave function may be viewed as a
trivalent vertex.
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Qudruple inner product

– Let us move on to the ”evaluation”
of the quadruple product.

– As in the (1+1)d case, it is important
to think what happens at infinities.

– For example, two states Ψα and Ψβ

”meet”: Following the (1+1)d case,
we need to contract the boundary
indices. So we use Matrix Product
Operators (MPO) or Matrix Product
Unitaries (MPU).

– This is not the end of the story. We
also have corners, where three states
meet
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Qudruple inner product

– At the corners, three MPU must
meet. So, we also need a tensor to
connect different MPUs:

– In the end, the quadruple inner
product reduces to a network
(tetrahedron) formed by 3-leg tensors
(and MPU):

– This is analogous to (1+1)d case
where the triple inner product reduces
to a triangle of fixed point tensors.
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Comments
– Concrete implementation and calculations using semi injective PEPS

[Molnar-Ge-Schuch-Cirac (18)]

– higher Berry curvature [Sommer-Vishwanath-Wen (24)]

– Bulk-boundary correspondence: [Bowei Liu-Kusuki-Ohyama-SR, to appear]

[C.f. Yuhan Liu-Kusuki-Sohal-Kudler-Flam-SR (23)]

Quadruple inner product can be represented by a CFT partition function in
(1+1)d:

27 / 28



Summary/Comments

• Constant-rank vs non-constant rank
• Underlying mathematical structure: gerbe, a generalization of a principal bundle

[Ohyama-SR (23)] [Qi-Stephen-Wen-Spiegel-Pflaum-Beaudry-Hermele1 (23)]

• Application to symmetry-protected topological phases
• Flow of Berry curvature, bulk-boundary correspondence.

[C.f. Kapustin-Spodyneiko (20), Wen-Qi-Beaudry-Moreno-Pflaum-Spiegel-Vishwanath-Hermele (21)]
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