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Regular Berry phase

— As the higher Berry phase is a generalization of regular Berry phase, let's start by
reviewing the regular Berry phase

— In a typical setup, we consider a quantum state |¢)) that depends smoothly on

some parameter X = (X', X2 ...). X can change over some manifold M
("parameter space”).

(X))

— Berry phase is the phase accumulated by |¢)) as we change X smoothly or
adiabatically.
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— The Berry phase along a loop =y can be calculated as

i f deXO) &) =i § dt { B (X)) -

dXH

=AL(X)

:z‘fWAHdX” :z‘fWA

— The Berry phase is invariant under (small) gauge transformation,

[9(X)) = (X)), Ay = Ay + O
$ASS(Atrdp)=f A+ o=§ A
- ./4“ couples to a conserved current (particle trajectory) in parameter space,
i =i [dP jH
zﬁ/.A zfd X Auj
JH(X) = [dtsP (X — X (¢) X+

4/28



Topological classification

We can also consider a topological classification of parameterized families of
[9(X)) over M.

Each family can be thought of as defining a complex line bundle. Here, a fibre
corresponds to a quantum state (projector) or its phase ambiguity part.

Complex line bundles are classified by Chern numbers and Chern classes — these
are topological invariants of vector bundles (line bundles).

There are various ways to think about them. E.g.,

® In terms of curvature
® |n terms of transition functions
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Curvature

In the first viewpoint, we consider Berry curvature,
1
F=dA=0,A,dXHdX" = 5]—'WdX”dX"

The Berry curvature F/2mi can be integrated over any 2-cycle in M (with
integer coefficients). By Dirac’s argument, the integral is quantized to be an
integer independent of the connection.

On the other hand, F/2mi is a closed, and globally defined 2-form (does not
depend on the gauge choice for patches).

Therefore, it defines an element in the 2nd cohomology group,
H?2(M,R) = space of closed 2-forms/space of exact 2-forms.

Because of the Dirac quantization, it is natural to consider Chern classes as an

element of cohomology group with integer coefficients, [F/2mi] € H?(M,Z).
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Transition functions

— Wu-Yang's approach to magnetic monopoles

— Consider to patch M, so that for each patch, we can define a smooth gauge of
wavefunction.

@[(B)y = i
ALY =e
() o

@97 /\
} [y = e”"““W((»))

p(@)

— Within the intersection U, N Ug, two wave functions, one from each patch, must
be physically equivalent, and related by a gauge transformation

[a) = €aBlpg),  e'®aB: transition function
— The data ({Ua}, {¢®=8}) topologically defines a complex line bundle.

— [e**aB] € HY(M,U(1)) ~ H2(M,Z).
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Examples

® Single spin with M = S2

) —i¢/2 0/2
o\ ix [ e/ %cos/
p(7) = e ( eti®/25ing/2 )

® Thouless pump [Thouless (83)]

H= Z [~ +0)fld; — (= 0)fldiyy + hc. + A(S] £, — dld))]

1
Ch= [dt [T dkF(k,t)/2mi = integer

[C.f. Experiment; Nakajima et al (16)]
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Introduction to higher Berry phase
So far: Berry phase for a single quantum spin; Berry phase is associated with a

wave function overlap,

o ey a (%(x}/

i

U [ L{'&U)>

In many-body physics, we have many spins. So we may consider:

A 2 AN

|

\v¢ VARKv]

But such a product state is too boring.

We will consider more correlated states, described by MPS:

- - L

Faithful representation of short-range entangled or invertible states
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— Roughly, we generalize X (t) — X (t,0) and |[¢(X (1)) — |[¢[X (¢, 0)]).

— Now we can define "string current”, which generalizes "particle current”:
. dX“/
#(X) = [ dtsP (X — X (1) %X

" _ D 1 [oXH oXxV oXY aXxXH
— j#(X) = [ didosP (X — X (1)L [2X" 0X" 09X ox1]

— Such string current can couple to a two-form gauge field By, :

— As before, we can consider ifM BuujHtv = if”r BuydXHdX".
There is a 1-form gauge invariance, By — Buy + 0uéy — 0uéy.

Jonoralive

— So this is what we would expect; We will have 2-form connection.
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Gapped states in (1+1)d and higher Berry phase

— Short-range entangled or invertible states in (1+1)d

— Can be expressed using matrix product states (MPS)

Beaas o L

[Previous and related works on higher Berry phase:

Kitaev (2019); Cordova-Freed-Lam-Seiberg (19); Kapustin-Spodyneiko (20); Kapustin-Sopenko (22); Hsin-Kapustin-Thorngren (20);
Artymowicz-Kapustin-Sopenko (23); Choi-Ohmori (22); Shiozaki (21); Wen-Qi-Beaudry-Moreno-Pflaum-Spiegel-Vishwanath-Hermele
(21); Beaudry-Hermele-Moreno-Pflaum-Qi-Spiegel (23); Ohyama-Shiozaki-Sato (22); Ohyama-Terashima-Shiozaki (23);
Beaudry-Hermele-Moreno-Pflaum-Qi-Spiegel (23); Qi-Stephen-Wen-Spiegel-Pflaum-Beaudry-Hermele (23); Shiozaki-Heinsdorf-Ohyama
(23); Sommer-Wen-Vishwanath (24); Sommer-Vishwanath-Wen (24) ... |
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MPS for short-range entangled states

— We consider normal MPS, for which the transfer matrix has a unique largest
eigenvalue.

— Transfer matrix:

and its left and right actions:

M:}:) Ty M= M-Ty=

— We denote the unique dominant left and right eigenvectors as AL and AR,
By taking the right canonical form, we can take A* =1 as the most dominant
right eigenvector with eigenvalue 1. Biz, Zs As. 1.4t =1
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Double intersection

Now, as before, we patch M, {Ua}.
@Dy

For each patch, MPS representation A (X) is smooth over U,.

When two patches intersect, two MPS represent the same physical state.

The fundamental theorem then states that the MPS are related as
A = ga@Agg;@eiX

Gap 9

This relation should play a simliar role as |¢q) = e'Pap [g).
We call gog transition function.
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Triple intersection

— When three patches intersect, on U, N Ug N U, we can consider three transition
functions, gag, 98+, g5 (With ggo = glﬁ etc.)

Us
Us

U,
— Recall that previously, we had eiPap eiPsy, _ei""ra._
They satisfy the cocycle condition ei®av = ¢®aB 87 since we can "relate”

[1)4) and |ta) in two different ways:

[Ya) = ewa”’wq) . direct way
) = e'Pan lvg) = e'PaBe®By|4h,) - indirect way

These should be consistent, and hence we have the cocycle condition.
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Triple intersection

Let us repeat this argument, and relate A% and A7 in two different ways:

A2 :ga.YA,Sygiw . direct way

«
Al = Qa,BAZQLﬁ = gaﬁ%wf‘ig;vglg : indirect way
Once again, we demand the consistency; however, there is a U(1) ambiguity,

Japdpy = Gay X Capy

" Ambiguity of ambiguity” (g is an ambiguity of A, c is an ambiguity of g)
Recall that {e‘?e8} defines an element in H'(M,U(1)) ~ H?(M,Z). Biz, Chern
class.

(We can show that c.g-, satisfies the cocycle condition. Hence —)
Similarly, {cap~} defines an element in H2(M,U(1)) ~ H3(M,Z). This class is
called the Dixmir-Douady class, which is a topological invariant.
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Triple inner product

— The transition function e*?a8 can be "extracted” from the wavefunction overlap
(tal|tbg) — This is the work of Wu-Yang relating physics (QM with monopole)
and mathematics (complex line bundle).

Is there any physical quantity related to cog~?

— As a candidate, let us consider the triple inner product,

Ap Aq

7
7
Ly
,

A

— Recall that the regular inner product:

.

takes two quantum states (MPS) and spits out one complex number.
The triple inner product takes three states and spits one number.
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— Now, how can we calculate the triple inner product?

— Recall that the regular inner product can be computed by using the transfer
matrix. In the thermodynamic limit, only fixed points of T4 matter. So:

MDA

L
e 0 e
L
CH R D B Tt =7 A

(by wormet ww)
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— Similarly, we consider:

— This diagram is evaluated as

A
Afa
YR T O
//// = tr (AL AE AR ) = tr (ALgaslngs1nd
AR A, .)R ( at By ’Ya) aJapingpy ngva)
=t (A&)Capy
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Curvature and connection

®  [Kapustin-Spodyneiko (20)]
® [Kapustin-Sopenko (22)] [Artymowicz-Kapustin-Sopenko (23)]
®  [Shiozaki-Heinsdorf-Ohyama (23)]

®  [Sommer-Wen-Vishwanath (24)] [Ohyama-SR (24)]
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Higher Berry connection

[Sommer-Wen-Vishwanath (24)] [Ohyama-SR (24)]
— 2-form connection:
oo
Z dAL
Ba = « .
k=0 dAa

— Can also be written as

1
Bo = dAéC 1T D '
o dAa

by summing over “ladder diagrams”:

> T T - - £)C

— For fixed point MPS:

dAa
L
Ba = dA“( > H® = gaL¢ ).

dA
@ dAq

20/28



Example; M = S3

[Wen-Qi-Beaudry-Moreno-Pflaum-Spiegel-Vishwanath-Hermele (21)]

H (@) = Hon—site(w) + H°dd(w4) + Heven(w4)

wy = 1: . — — — —
HOMSIte () (-1)Pw - o
P 0<ws<l: @ O—® O0—©® O0—® O0—®
P w=0 ® O ® O ® O ® O ®
H () = N@)op - o
s AR “l<w<n @0 -0 0 &0 ©
p:odd
wq = —1: —e — — —e .
HE (wy) = E oS (@)op opi1-
p:even
4 - .
— By an explicit calculation,
M=S3={u‘;=(w,w4)|§ wi:l} .
1
et B® = -3 cos(t) cos(0)dt A do,
Nigy = dwa 0<wi<n), dB® /2 = —1
g (””{0 (1< wy <0, Joo /

(wa = cos(t), 0 <t <),

S CEENCERES
. M’{—w (-1<wy <0).
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[Sommer-Wen-Vishwanath (24)]

—— 1i=00 J=00 T‘"/n“:u.qwns
S04l oL om0 omaes
s -~ J=00 L=02 ﬁ/n = 0.99966
Eoffe s=02 s=00 L fa®=100
H 2 & [ar=1002
8 -« = si=02 n=02 i/!l":l.ll)llﬂ
o2}

a
£
E
=
00 -
0 /4

[Shiozaki-Heinsdorf-Ohyama (23)]

(. J2) = (0.0, 0.2), v(|S?|) = 1.00029

T a6 N,
T T, T, T, T, T, T,
O et NANNNNNNNN
—7§ 28 L'//L LV/L !VL Lyl
HEX:
7.7 % %
Ele ., rltdlcalcalraltalcalca
2§ 128 igllellyllellglelly
o [® 2 .057507% 7
o 222257757
00 o A e e
e il
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Higher dimensions

— Let us briefly discuss generalization to (241)d. [Ohyama-SR (24)

Qi-Stephen-Wen-Spiegel-Pflaum-Beaudry-Hermelel (23)]

A natural generalization of triple inner product is quadruple inner product that

assigns a complex number for four quantum states. It can be defined as follows.

— We start with (2+1)d invertible states. They can be represented by 2d tensor
network, e.g., PEPS of some sort.

— We first divide the 2d space into three regions, A, B, C:

— Consider four states, ¥, \Il@, V., Ws. Each of them are tripartitioned.

— We can now "connect” or "contract” these states with each other.
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Qudruple inner product

It's a bit complicated to draw, but U
the contraction looks like this: K
( Vs

A simplified notation: the triple inner W,
product for three bipartite states, VY
[¥) = > izli)ali) -

e
In this notation, the regular inner
product is simply a line segment: U
The quadruple inner product is Ya Ps Yo
defined for four tripartite states,
[9) =3, wieldl) k). So, each
wave function may be viewed as a
trivalent vertex. v, \Z

\Ila
\I’ﬂ Wy
v,
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Qudruple inner product

Let us move on to the "evaluation”
of the quadruple product.

As in the (141)d case, it is important
to think what happens at infinities.

For example, two states ¥, and Vg
"meet”: Following the (1+1)d case,
we need to contract the boundary
indices. So we use Matrix Product
Operators (MPO) or Matrix Product
Unitaries (MPU).

This is not the end of the story. We
also have corners, where three states
meet
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Qudruple inner product

— At the corners, three MPU must
meet. So, we also need a tensor to

connect different MPUs: ]
Oup 0.,
— In the end, the quadruple inner ‘o
product reduces to a network ‘

(tetrahedron) formed by 3-leg tensors
(and MPU): Mg

Capes = /¥\
— This is analogous to (1+1)d case l GREE R Y

where the triple inner product reduces Nese “/

to a triangle of fixed point tensors.

(de =

Ner Ny
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Comments

— Concrete implementation and calculations using semi injective PEPS
[Molnar-Ge-Schuch-Cirac (18)]

— higher Berry curvature [sommer-Vishwanath-Wen (24)]

— Bulk-boundary correspondence: [Bowei Liu-Kusuki-Ohyama-SR, to appear]

C
[C.f. Yuhan Liu-Kusuki-Sohal-Kudler-Flam-SR (23)]

Quadruple inner product can be represented by a CFT partition function in
(14+1)d:

l
NG \
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Summary/Comments

Constant-rank vs non-constant rank

Underlying mathematical structure: gerbe, a generalization of a principal bundle
[Ohyama-SR (23)] [Qi-Stephen-Wen-Spiegel-Pflaum-Beaudry-Hermelel (23)]

Application to symmetry-protected topological phases

Flow of Berry curvature, bulk-boundary correspondence.
[C.f. Kapustin-Spodyneiko (20), Wen-Qi-Beaudry-Moreno-Pflaum-Spiegel-Vishwanath-Hermele (21)]
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