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1. Introduction and Background

Let K be an algebraic number field of degree d over Q, v a place of K, and Kv the
completion of K at v. We select two absolute values from the place v. The first is
denoted by ∥ ∥v and defined by:

(i) if v|∞ then ∥ ∥v is the unique absolute value on Kv that extends the usual
absolute value on Q∞ = R,

(ii) if v|p then ∥ ∥v is the unique absolute value on Kv that extends the usual
p-adic absolute value on Qp.

The second absolute value is denoted by | |v and defined by |x|v = ∥x∥dv/d
v for all x in

Kv, where dv = [Kv : Qv] is the local degree. If α is in the multiplicative group K×

then the product formula asserts that

(1.1)
∏
v

|α|v = 1.

Let Q be an algebraic closure of Q and Q×
the multiplicative group of nonzero

elements in Q. The absolute, Weil height (or simply the height)

H : Q× → [0,∞)

is defined as follows. Let α be a nonzero algebraic number, select an algebraic number
field K containing α and write MK for the collection of all places of K. Then define

(1.2) H(α) =
∏

v∈MK

max
{
1, |α|v

}
,

where the formally infinite product on the right of (1.2) has at most finitely many
terms distinct from 1. Then H(α) is well defined because the product on the right of
(1.2) does not depend on the choice of K. Sometimes we use the absolute, logarithmic
Weil height which is

(1.3) h(α) = logH(α) =
∑

v∈MK

log+ |α|v.

Combining (1.1) and (1.3) we get the useful identity

(1.4) 2h(α) =
∑
v

∣∣log |α|v∣∣,
where | | (an absolute value without a subscript) is the usual archimedean absolute
value on R or C.
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For each number field K we define two multiplicative subgroups

(1.5) SK =
{
α ∈ K× : ∥α∥w = 1 at each archimedean place w of K

}
,

and

(1.6) UK =
{
α ∈ K× : ∥α∥w = 1 at each nonarchimedean place w of K

}
.

It follows easily that

SK ∩ UK = Tor
(
K×).

Then UK is the group of units in OK and

UK/Tor
(
UK

)
is a free abelian group of finite rank. The group SK is less well known. However, it
can be shown either SK = {±1}, or

SK/Tor
(
SK

)
is a free abelian group with countably infinite rank.

Next we recall that a number fieldK is a CM-field ifK is totally complex, and there
exists a totally real subfield k ⊆ K such that K/k is a quadratic extension. The term
CM-field originates in the work [8] of Shimura and Taniyama on abelian varieties. It
is known that the composite of each finite collection of CM-fields is a CM-field. And
if K is a CM-field then each conjugate of K over Q is a CM-field, and also the Galois
closure of K is a CM-field.

It follows from a result of Blanksby and Loxton [2] that if L is an algebraic number
field and α ̸= ±1 is an element of the group SL, then the subfield

K = Q(α) ⊆ L

is a CM-field. Moreover, if L is itself a CM-field then there exists an element β ̸= ±1
in the group SL such that L = Q(β). It is clear from these remarks that SL = {±1}
if and only if no subfield of L is a CM-field.

Let K be a CM-field and k ⊆ K the totally real subfield such that K/k is a
quadratic extension. Then K/k is a Galois extension and we write τ : K → K for the
unique automorphism that generates the Galois group Aut(K/k). It follows that

NormK/k(α) = ατ(α).

And if K is a CM-field it can be shown that the group SK is the kernel

SK = {α ∈ K× : NormK/k(α) = 1}.
When K is a CM-field it is useful to define the homomorphism

ψ : K× → K×

at α in K× by

ψ(α) =
α

τ(α)
.

Applying Hilbert’s Theorem 90 we find that

{α ∈ K× : ψ(α) = 1} = k×, and {ψ(α) : α ∈ K×} = SK .

It follows that ψ induces an isomorphism

(1.7) ψ̃ : K×/k× → SK .
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Combining (1.7), a result of Brandis [3], and a result of Lawrence [5], we find that the
multiplicative group SK is a free abelian group of countably infinite rank.

2. Generators of number fields with small height

Let K be an algebraic number field, ∆K the discriminant of K, and d = [K : Q]
its degree. We also define the positive constant

cK =

(
2

π

)s/d∣∣∆K

∣∣1/2d,
where s is the number of complex places of K. In [7] W. Ruppert asked the following
question:

Question 2.1. [Ruppert, 1998] Does there exist a positive constant A = A(d) such
that if K is an algebraic number field of degree d over Q, then there exists an element
α in K such that

K = Q(α), and H(α) ≤ A
∣∣∆K

∣∣1/2d ?
In [7, Proposition 2] Ruppert obtained a positive answer to his question when

[K : Q] = 2. He also proved that if K is a real quadratic extension of Q, then
the generator α can be selected from the ring OK of algebraic integers in K. In [9]
the second and third named collaborators provided the following partial answer to
Ruppert’s question.

Theorem 2.1. Assume that K has an embedding into R. Then there exists an alge-
braic integer α in OK such that

K = Q(α), and H(α) ≤ cK .

In Theorem 2.1 the generator α is an algebraic integer, a requirement that was not
stated in Ruppert’s question, while the height of α is bounded in a manner that was
anticipated in Ruppert’s question. Hence Theorem 2.1 generalizes Ruppert’s earlier
result to number fields K that have at least one real embedding.

In a recent work [1] we proved the following new result.

Theorem 2.2. Assume that K is a number field such that

(2.1) cK < min
{
H(α) : α ∈ OK and K = Q(α)

}
,

and let F denote the maximal totally real subfield of K. Then K/F is a Galois
extension, K is totally complex, and Tor

(
K×) = {±1}.

During our stay at IAS, we generalized the above theorem further. We proved the
following.

Theorem 2.3. Let H ≥ 1. Assume that K is a number field such that

cKH < min
{
H(α) : α ∈ OK and K = Q(α)

}
.

Then K is totally complex, K is Galois over its maximal totally real subfield F , and
every α ∈ OK with α ≤ H lies in F .
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In the above theorem, α denotes the house of α, that is the maximal modulus of
the algebraic conjugates of α.

In addition, for every integer N ≥ 2 we constructed a family of examples of CM-
fields of degree d = 2N that satisfy (2.1). These new findings will be added to our
previously submitted manuscript [1].

While at IAS, we met and discussed this ongoing project with Michael Mossinghoff,
an expert in computational number theory who works at Center for Communications
Research, Princeton. By incorporating some experimental approaches, we hope to
have a more precise classification of number fields without small integral generators
in the near future.

3. Equidistribution of points in SK

LetK be a CM-field. We assume thatK is embedded in C and write | | : C → [0,∞)
for the ordinary archimedean absolute value on C. Then

T = {z ∈ C : |z| = 1}

is a compact, abelian group and the dual of (T, ·) is the discrete group (Z,+). Each
continuous character on T is given by a map

(3.1) z 7→ zn, for a unique n in Z.

Obviously n = 0 determines the principal character.
As K is embedded in C it follows from (1.5) that each element α in SK is contained

in T. If F : T → C is continuous, or if F has bounded variation, we write

SK(F,H) =
∑

α∈SK

H(α)≤H

F (α)

where 1 ≤ H. We have been working on showing that the points of SK are equidis-
tributed in T when ordered by increasing height. For n ̸= 0 the maps (3.1) are the
nonprincipal characters on T. Therefore it follows from Weyl’s criterion (see [4, Chap-
ter 1, Section 2]) that the points of SK are equidistributed in T when ordered by
increasing height if and only if

(3.2) lim
H→∞

SK(zn,H)

SK(1,H)
= 0

for each nonzero integer n. For imaginary quadratic fields K such a result has been
established by Petersen and Sinclair [6].

We have improved our earlier work on this topic during our visit to IAS and have
established an explicit estimate for the sums SK(F,H) for an arbitrary CM-field K.
Such a bound leads to a corresponding estimate for the discrepancy of the finite subset{

α ∈ SK : H(α) ≤ H
}
⊆ T.

Our immediate future plan is to prepare and submit an article containing these new
results on equidistribution in CM-fields.
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