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Motivic Enumerative Geometry

Enumerative geometry, an example: Bézout’s theorem

Bézout’s theorem-a first example

One basic principle in enumerative geometry:

A sum of local invariants = a global invariant

Theorem (Bézout)

Let C1,C2 be curves in P2 of degree d1, d2, without common component.
Then ∑

p∈C1∩C2

mp(C1 · C2;P2) = d1d2
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Motivic Enumerative Geometry

Enumerative geometry, an example: Bézout’s theorem

Bézout’s theorem

To explain:

C1,C2 are the solutions of homogeneous polynomials
F1(x , y , z),F2(x , y , z) of degree d1, d2 in

P2 = {(x , y , z) 6= (0, 0, 0)}/(x , y , z) ∼ (tx , ty , tz), t 6= 0

At p ∈ C1 ∩ C2, mp(C1 · C2;P2) is the intersection multiplicity at p:

s, t local coordinates at p, fi ∈ k(p)[[s, t]] local defining equation for Ci ,
then

mp(C1 · C2;P2) := dimkk(p)[[s, t]]/(f1, f2) <∞.
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Motivic Enumerative Geometry

Enumerative geometry, an example: Bézout’s theorem

Bézout’s theorem

Case 1: F1 = x , F2 = x2 + y2 − z2, p = (0, 1, 1), q = (0,−1, 1). Let
fi (x , y) = Fi (x , y , 1). Then

mp(C1 · C2) := dimkk[[x , y − 1]]/(f1, f2)

= dimkk[[x , y − 1]]/(x , x2 + (y − 1)(y + 1))

=∗ dimkk[[y − 1]]/(y − 1) = dimkk = 1,

The equality =∗ follows because y + 1 is a unit in the power series ring
k[[x , y − 1]].

Similarly, mq(C1 · C2) = 1: transverse intersections.

.
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Motivic Enumerative Geometry

Enumerative geometry, an example: Bézout’s theorem

Bézout’s theorem

Case 2: F1 = yz − x2, F2 = y , p = (0, 0, 1). Then

mp(C1 · C2) := dimkk[[x , y ]]/(f1, f2) = dimkk[[x , y ]]/(y − x2, y)

= dimkk[[x ]]/(x2) = dimkk ⊕ k · x = 2.
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Motivic Enumerative Geometry

Enumerative geometry, an example: Bézout’s theorem

Bézout’s theorem

Case 3: k = R, F1 = x2 + y2 − z2, F2 = z . z = 0⇒ y 6= 0.

Take fi = Fi (x , 1, z), so R[x , z ]/(f1, f2) = R[x ]/(x2 + 1) = C⇒ a single
point of intersection p with R(p) = C.

mp(C1 · C2) := R[x , z ]/(f1, f2) = dimRC = 2.
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Motivic Enumerative Geometry

Enumerative geometry, an example: Bézout’s theorem

Bézout’s theorem

Case 1 : C1 ∩ C2 = {p, q}, d1 = 2, d2 = 1, mp + mq = 2 = d1d2,

Case 2 : C1 ∩ C2 = {p}, d1 = 2, d2 = 1, mp = 2 = d1d2,

Case 3 : C1 ∩ C2 = {p}, d1 = 2, d2 = 1, mp = 2 = d1d2,

verifying Bézout’s theorem

Theorem (Bézout)

Let C1,C2 be curves in P2 of degree d1, d2, without common component.
Then ∑

p∈C1∩C2

mp(C1 · C2;P2) = d1d2

in these cases.
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Motivic Enumerative Geometry

Enumerative geometry, an example: Bézout’s theorem

Bézout’s theorem

There is an extension to intersections of hypersurfaces in Pn.

Theorem (Bézout)

Let H1, . . . ,Hn be hypersurfaces in Pn of degree d1, . . . , dn. Suppose the
intersection H1 ∩ . . . ∩ Hn is a finite set Then∑

p∈∩n
i=1Hi

mp(H1 · · ·Hn;Pn) = d1 · · · dn

As for P2, there is an algebraic formula for the intersection multiplicity
mp(H1 · · ·Hn;Pn).
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Motivic Enumerative Geometry

The Chow ring and enumerative geometry

The Chow ring

One can systematize these intersection formulas, and also give an easy
proof of the Bézout theorems, by introducing a purely algebraic analog of
the cohomology ring: The Chow ring of algebraic cycles modulo rational
equivalence.

Definition

Let X be a smooth algebraic variety over a field k (of pure dimension n).

1. The group Z i (X ) of codimesion i algebraic cycles on X is the free
abelian group on the (reduced) subvarieties W of X of codimension i .

2. The subgroup R i (X ) ⊂ Z i (X ) is generated by cycles of the form
W · (X × 0− X ×∞) for W ⊂ X × P1 a codimension i subvariety, not
contained in X × {0,∞}.
3. The Chow group of codimension i cycles modulo rational equivalence
is

CHi (X ) := Z i (X )/R iX ).
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Motivic Enumerative Geometry

The Chow ring and enumerative geometry

The Chow ring-a picture
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Motivic Enumerative Geometry

The Chow ring and enumerative geometry

The Chow package

The Chow groups fit together to form a graded group
CH∗(X ) := ⊕dimkX

i=0 CHi (X ) with the following properties:

1. There is an intersection product

CHi (X )× CHj(X )→ CHi+j(X )

making CH∗(X ) a commutative, graded ring with unit 1X = [X ].

2. For f : Y → X a map of smooth k-varieties, there is a pull-back map

f ∗ : CH∗(X )→ CH∗(Y )

which is a ring homomorphism.

3. For f : Y → X a proper map of smooth k-varieties, there is a
push-forward map

f∗ : CHi (Y )→ CHi+dimkX−dimkY (X ).
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Motivic Enumerative Geometry

The Chow ring and enumerative geometry

The Chow package

4. For V → X a rank r vector bundle on X , we have Chern classes

ci (V ) ∈ CHi (X ), i = 1, . . . , r .

The top Chern class is given by

cr (V ) = s∗2 s1∗(1X )

where s1, s2 : X → V are any two sections (s1 = s2 is also allowed), and

c1(L⊗M) = c1(L) + c1(M).

5. For X irreducible, CH0(X ) = Z, generated by 1X := [X ].

6. For pX : X → Spec k proper of dimenison n over k , the push-foward
map pX∗ : CHn(X )→ CH0(Spec k) is called the degree map. Explicity,
for
∑

p∈X np[p] ∈ CHn(X ), we have

degk(
∑
p∈X

np[p]) =
∑
p

np · [k(p) : k].
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Motivic Enumerative Geometry

The Chow ring and enumerative geometry

The Chow package

The ring structure is (more or less) defined as we did above, for each
irreducible component Z of an intersection W1 ∩W2, one has an
algebraic formula for the multiplicity mZ (W1 ·W2;X ) ∈ Z and one sets

W1 ·W2 :=
∑

Z an irred. comp. of W1∩W2

mZ (W1 ·W2;X ) · Z

This only makes sense if the intersection is proper:

codimXZ = codimXW1 + codimXW2

and reducing to this case entails some technical difficulties.

14 / 41



Motivic Enumerative Geometry

The Chow ring and enumerative geometry

Proof of Bézout’s theorem

1. For d ∈ N, there is a line bundle OPn(d)→ Pn with global sections the
degree d homogeneous polynomials in x0, . . . , xn. One has
OPn(d) = OPn(1)⊗d .

2. Given H1, . . . ,Hn ⊂ Pn, hypersurfaces of degree d1, . . . , dn, the
defining equations Fi of Hi define a section

s := (F1, . . . ,Fn) : Pn → ⊕n
i=1OPn(di ).
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Motivic Enumerative Geometry

The Chow ring and enumerative geometry

Proof of Bézout’s theorem

3. Let s0 : Pn → ⊕n
i=1OPn(di ) be the 0-section. From general principles,

we have

cn(⊕n
i=1OPn(di )) = s∗s0∗([Pn]) = H1 · · ·Hn ∈ CHn(Pn),

cn(⊕n
i=1OPn(di )) =

n∏
i=1

c1(OPn(di )) ∈ CHn(Pn),

and
c1(OPn(di )) = di · c1(OPn(1)),

so
cn(⊕n

i=1OPn(di )) = d1 · · · dn · c1(OPn(1))n

4. Now repeat with d1 = . . . = dn = 1, and take Fi = xi , we get

degk c1(OPn(1))n = degk(x1 = . . . = xn = 0) = degk((1, 0, . . . , 0)) = 1

Putting this all together and applying degk(−) gives

degk(H1 · · ·Hn) = d1 · · · dn.
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Motivic Enumerative Geometry

The Chow ring and enumerative geometry

Other applications

1. One can count the (expected) number of lines on a smooth degree d
hypersurface in Pn, with d = 2n − 3, as

#{` ⊂ X} = deg cd+1(SymdE∨2 )

where E2 → Gr(2, n + 1) is the tautological bundle. One can work out an
explicit formula for this using the Schubert calculus (intersection theory
on the Grassmannian).

(d , n) = (3, 3)⇒ 27 lines on a cubic surface in P3.

(d , n) = (5, 4)⇒ 2875 lines on a quintic threefold in P4.
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Motivic Enumerative Geometry

The Chow ring and enumerative geometry

Other applications

2. One has an algebraic version of the Gauß-Bonnet theorem

Theorem (algebraic Gauß-Bonnet)

Let X be a smooth proper variety of dimension d over a field k, with
tangent bundle TX → X . Then we have cd(TX ) ∈ CHd(X ) and

degk cd(TX ) = χtop(X )
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Motivic Enumerative Geometry

The Chow ring and enumerative geometry

Other applications

3. Counting rational curves of degree d through 3d − 1 points in P2.
This number, Nd , is the degree of the “evaluation map”

ev : M̄0,n(P2, d)→ (P2)n, n = 3d − 1,

i.e.
ev∗([M̄0,(P2, d)]) = Nd · [(P2)n].

Using intersection theory, Kontsevich derived a recursive formula

Nd =
∑

d1,d2>0,d1+d2=d

Nd1Nd2

(
d2

1d
2
2

(
3d − 4

3d1 − 2

)
− d3

1d2

(
3d − 4

3d1 − 1

))
.
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Motivic Enumerative Geometry

The Chow ring and enumerative geometry

Summary: the Chow package

To summarize: one has a Z-valued enumerative geometry on k-varieties
based on:

1. The Chow ring with its intersection product and Chern classes of
vector bundles

2. The pull-back maps for arbitrary morphisms and push-forward maps
for proper maps, in particular, the degree map

degk : CHn(X )→ CH0(Spec k) = Z

for X smooth and proper of dimension n over k .
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Motivic Enumerative Geometry

Enumerative geometry and A1-homotopy theory

Enter A1-homotopy theory

The basic principle: Using A1-homotopy theory as a foundation, one can
construct a new “intersection theory package” where the degree map has
values in the Grothendieck-Witt ring of non-degenerate quadratic forms
over k.

There is a drawback: one does not have a full theory of Chern classes,
but only an Euler class, which refines the top Chern class.

There is a complication: the resulting package resembles the structure of
integral cohomology on not-necessarily oriented manifolds, so the groups
replacing the Chow groups come with “twisted” versions with respect to
invertible sheaves, playing the role of orientation bundles.

The twisting plays a role in the “wrong way” pushforward maps. To get
well-defined invariants by applying a pushforward, one needs to construct
compatibilities between various orientations.
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Motivic Enumerative Geometry

Enumerative geometry and A1-homotopy theory

The Grothendieck-Witt ring and the Witt ring

k a field (characteristic 6= 2). We have the notion of a non-degenerate
quadratic form on a finite dimensional k-vector space V

q : V → k

Roughly: choosing a basis for V , q is represented by a symmetric matrix
B by

q(x) = x tBx

and q is non-degenerate if detB 6= 0.
We have the relation of isometry, induced on matrices by

B ∼ S tBS ,

S invertible.
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Motivic Enumerative Geometry

Enumerative geometry and A1-homotopy theory

The Grothendieck-Witt ring and the Witt ring

We can add quadratic forms via block sum of matrices

(B1,B2) 7→
(
B1 0
0 B2

)
and multiply by the “Kronecker product”

(B1,B2) 7→ B1 ⊗ B2

These operations make the set of isometry classes into a commutative
semi-ring (there is no additive inverse) so we formally introduce one by
taking formal differences q1 − q2 with (q1 + q)− (q2 + q) = q1 − q2.

This produces the Grothendieck-Witt ring GW(k).

Sending (q,V ) to dimkV defines the rank homomorphism

rank : GW(k)→ Z

Let I = ker(rank).
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Motivic Enumerative Geometry

Enumerative geometry and A1-homotopy theory

The Grothendieck-Witt ring and the Witt ring

There is a particularly simple quadratic form, the hyperbolic form
H(x , y) = x2 − y2. This has the property that q · H = rank(q) · H, so
the ideal (H) is the subgroup Z · H. The Witt ring W (k) is

W (k) := GW(k)/(H).

In fact:

W (k) = {non-degenerate, anisotropic quadratic forms over k}/isometry
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Motivic Enumerative Geometry

Enumerative geometry and A1-homotopy theory

The Grothendieck-Witt sheaf and the Witt sheaf

Replacing k with a commutative ring R gives GW(R) and W (R),
functorial for ring homomorphisms. This defines sheaves GW and W on
the category Sm/k of smooth k-varieties.

A section of GW over some X is given locally as a formal difference of
vector bundles V → X with a (fiberwise) non-degenerate quadratic form
q : V → OX . Replacing the trivial line bundle OX with an arbitrary line
bundle L defines the sheaf GWX (L) on X . Similarly for WX (L).

The kernel I of the rank map GW → Z is a sheaf of GW-ideals.

This is all quite classical. Now for the A1-homotopy theory.
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Motivic Enumerative Geometry

Enumerative geometry and A1-homotopy theory

Milnor Witt sheaves

For a field k , we have the motivic stable homotopy category SH(k), a
symmetric monoidal category with unit object Sk , the motivic sphere
spectrum. We will treat SH(k) as the blackest of black boxes.

Given an object E ∈ SH(k) and a pair of integers a, b, we have a sheaf
πa,b(E) on Sm/k . This is an analog of the stable homotopy groups
πs
n(E ) for a spectrum E .

Since we have two indices, a, b, the motivic analog of πs
0 is the graded

sheaf ⊕nπn,n.

Definition (Theorem?)

The sheaf π−n,−n(Sk) on Sm/k is the Milnor-Witt K -sheaf KMW
n .

In fact, for a field F , Mike Hopkins and Fabien Morel have defined by
generators and relations the graded algebra KMW

∗ (F ), and Morel shows
how these extend to the sheaf KMW

∗ . So the definition is really a theorem
of Morel’s.

There is an important element η ∈ KMW
−1 : the algebraic Hopf map.
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Motivic Enumerative Geometry

Enumerative geometry and A1-homotopy theory

Milnor Witt sheaves

For a field F , one also has the Milnor K -theory of F , defined by Milnor in
1970

KM
∗ (F ) := (F×)⊗Z∗/〈{a⊗ (1− a) | a ∈ F \ {0, 1}〉

which extends to a sheaf of N-graded rings KM
∗ on Sm/k.

Theorem (Morel)

1. KMW
0
∼= GW

2. For all n < 0, KMW
n
∼=W.

3. There is a surjection of sheaves of graded rings KMW
∗ → KM

∗ with
kernel η · KMW

∗ . For n ≥ 0 the kernel of KMW
n → KM

n is In+1.

4. The map ×η : KMW
n → KMW

n−1 induces the inclusion In+1 ⊂ In for
n ≥ 1, the surjection GW →W for n = 0 and the identity on W for
n < 0.
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Motivic Enumerative Geometry

Enumerative geometry and A1-homotopy theory

Twisted Milnor Witt sheaves

Now let L→ X be a line bundle on X ∈ Sm/k . GWX (L) is a module for
GWX and KMW

n is a module for KMW
0 = GW.

Definition

The L-twised Milnor-Witt sheaf on X is

KMW
n (L) := KMW

n ⊗GW GW(L).
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Motivic Enumerative Geometry

Chow-Witt groups and quadratic enumerative geometry

Chow-Witt groups

Definition

For X ∈ Sm/k with line bundle L, and integer n ≥ 0, define the nth
L-twisted Chow-Witt group of X by

C̃H
n
(X , L) := Hn(X ,KMW

n (L))

This is a reasonable definition because of Bloch’s formula

Theorem (Kato, Elbaz-Vincent and Müller-Stach, Kerz)

For X ∈ Sm/k
CHn(X ) ∼= Hn(X ,KM

n ).

The map of sheaves KMW
n (L)→ KM

n defines the comparison map

C̃H
n
(X , L)→ CHn(X ).
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Motivic Enumerative Geometry

Chow-Witt groups and quadratic enumerative geometry

The Chow-Witt package

1. C̃H
n
(X , L) is functorial in X and L: given ρ : L

∼−→ L′, we have

ρ∗ : C̃H
n
(X , L)

∼−→ C̃H
n
(X , L′). Given f : Y → X in Sm/k we have

f ∗ : C̃H
n
(X , L)→ C̃H

n
(Y , f ∗L). Also, there is a canonical isomorphism

C̃H
n
(X , L) ∼= C̃H

n
(X , L⊗M⊗2).

for any line bundle M → X .

2. There is a multiplication map

C̃H
n
(X , L)× C̃H

m
(X , L′)→ C̃H

n+m
(X , L⊗ L′) making

⊕n,L∈Pic(X )C̃H
n
(X , L) a Z× Pic(X ) graded ring.

3. For f : Y → X proper in Sm/k , let ωf := ωY/k ⊗ f ∗ω−1
X/k . There is a

push-forward map

f∗ : C̃H
n
(Y , f ∗L⊗ ωf )→ C̃H

n+dimkX−dimkY
(X , L)
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Motivic Enumerative Geometry

Chow-Witt groups and quadratic enumerative geometry

The Chow-Witt package

4. C̃H
n
(Spec k) = 0 for n > 0 and C̃H

0
(Spec k) = GW(k). For

pX : X → Spec k in Sm/k , proper of dimension d over k, define the
quadratic degree map

d̃egk : C̃H
d

(X , ωX/k)→ C̃H
0
(Spec k) = GW(k)

to be pX∗.

5. The structures (1)-(4) are compatible with the corresponding ones on
CH∗ via the comparison maps.

31 / 41



Motivic Enumerative Geometry

Chow-Witt groups and quadratic enumerative geometry

The Chow-Witt package

Definition

Let V → X be a rank r vector bundle on pX : X → Spec k in Sm/k. Let

s0 : X → V be the zero-section and let 1X = p∗X (1) ∈ C̃H
0
(X ). . Define

the Euler class of V by

e(V ) := s∗0 s0∗(1X ) ∈ C̃H
r
(X , det(V )−1).

The comparison map sends e(V ) ∈ CHW r (X , det(V )−1) to
cr (V ) ∈ CHr (X ).

We also have e(V ) = s∗2 s1∗(1X ) for any two sections s1, s2 of V .

Warning! We do not have an analog of the Chern classes ci (V ) for i < r .
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Chow-Witt groups and quadratic enumerative geometry

Applications

With the Chow-Witt package, one can refine many results from the
Z-valued enumerative geometry to yield quadratic invariants from
geometric problems.

The main thread of proofs remains the same, except that one needs to
work on the twists whenever a pushforward map shows up.

Why bother?

The rank map GW(C)→ Z is an isomorphism, while GW(R) maps
injectively to Z× Z by (rank, signature). For enumerative problems,
applying the rank map to the quadratic degree recover the classic integer
count and applying the signature gives information on the real counts.

In general the GW-valued invariants carry some additional arithmetic
information missing in the classical Z-valued invariants.
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Chow-Witt groups and quadratic enumerative geometry

Applications

Theorem (Quadratic Bézout-S. McKean)

Given C1,C2 curves in P2 of degrees d1, d2, without common component.
Suppose d1 + d2 is odd. One defines quadratic intersection multiplicities

mp(C1 · C2) ∈ GW(k(p))

and ∑
p∈C1∩C2

Trk(p)/kmp(C1 · C2) =
d1d2

2
· H

The quadratic intersection multiplicity at p ∈ C1 ∩ C2, in the case of a
transverse intersection, is the quadratic form x 7→ ux2, where

u = det(∂fi/∂tj)(p)

with fi a local defining equation and x1, x2 are local coordinates, suitably
chosen to respect an orientation condition.
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Chow-Witt groups and quadratic enumerative geometry

Applications

Proof of Quadratic Bézout:

The idea is similar to the classical case. We have

e(O(d1)⊕ O(d2)) ∈ C̃H
2
(P2,O(−d1 − d2)).

Also ωP2 = O(−3), so

O(−d1 − d2) ∼= ωP2 ⊗ O(
−d1 − d2 + 3

2
)⊗2

We have the degree map

C̃H
2
(P2,O(−d1 − d2)) ∼= C̃H

2
(P2, ωP2 ⊗ O(

−d1 − d2 + 3

2
)⊗2))

∼= C̃H
2
(P2, ωP2 )

d̃egk−−→ GW(k)

giving

d̃egk(e(O(d1)⊕ O(d2))) = d̃egk(e(O(d1)) · e(O(d2))) ∈ GW(k).
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Chow-Witt groups and quadratic enumerative geometry

Applications

The multiplication η : KMW
n → KMW

n−1 satisfies

η · e(L) = 0,

for any line bundle L, so

η · d̃egk(e(O(d1)) · e(O(d2))) = d̃egk(η · e(O(d1)) · e(O(d2))) = 0.

But η : GW(k)→W (k) is the quotient map with kernel Z · H, so

d̃egk(e(O(d1)⊕ O(d2))) = m · H

for some m. Then m = (d1d2)/2 by taking the rank and comparing with
the classical Bézout theorem.
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Chow-Witt groups and quadratic enumerative geometry

Applications

Theorem (Quadratic Gauß-Bonnet. L., Déglise-Jin-Khan)

There is a quadratic Euler characteristic of a smooth proper variety X
over a field k , χ(X/k) ∈ GW(k). The rank recovers χtop(X ), and for
k = R, the signature recovers χtop(X (R)).
Moreover

χ(X/k) = d̃egk(e(TX )).
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Motivic Enumerative Geometry

Chow-Witt groups and quadratic enumerative geometry

Applications

Example (Quadratic count of lines on a hypersurface)

For d = 2n − 3, it turns out that det SymdE2 = ωGr(2,n+1)/k ⊗M⊗2 for
some line bundle M on Gr(2, n + 1). So we have a quadratic count of

the lines on X2n−3 ⊂ Pn, given by d̃egk(e(SymdE∨2 )), using a similar
composition as for the quadratic Bézout theorem.

In fact, the image of d̃egk(e(SymdE∨2 )) in W (k) is simply d!! ∈W (k),
d!! := d(d − 2) · · · 3 · 1, so

d̃egk(e(SymdE∨2 )) = d!! +
nd − d!!

2
H

where nd = degk cd+1(SymdE∨2 ) is the classical count.

The case n = 3 (lines on a cubic surface in P3) was first computed by
Kass-Wickelgren. Combined with the classical count of 27 lines, this
yields

d̃egk(e(SymdE∨2 )) = 3 + 12 · H ∈ GW(k).
38 / 41



Motivic Enumerative Geometry

Chow-Witt groups and quadratic enumerative geometry

Applications

Example (Quadratic counts of rational
curves-Kass-L.-Solomon-Wickelgren)

We show that the evaluation map ev : M̄0,n(P2, d)→ (P2)n has a
canonical orientation:

ωev
∼= L⊗2.

This gives an isomorphism

H0(M̄0,n(P2, d),GW) ∼= H0(M̄0,n(P2, d),GW(L⊗2))

∼= H0(M̄0,n(P2, d),GW(ωev )),

so we can define

ev∗(1M̄0,n(P2,d)) ∈ H0((P2)n,GW) ∼= GW(k)

This recovers the classical count on taking the rank and the signature
gives Welchinger’s real curve count. This extends to (most) del Pezzo
surfaces.
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Chow-Witt groups and quadratic enumerative geometry

Applications

Example (Quadratic counts of rational curves)

Sabrina Pauli and Andrés Jaramillo Puentes have used tropical methods
to give explicit computations for toric del Pezzo surfaces. Jaramillo
Puentes has given “wall-crossing formulas” in the tropical setting, and
Erwan Brugallé-Kirsten Wickelgren have another wall-crossing formula in
a more geometric setting.

Example (Counting linear spaces)

Thomas Brazelton has given quadratic versions of the classical count of
the number of p-planes in (m+p)-space intersecting mp p-planes in
general position.
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Motivic Enumerative Geometry

Chow-Witt groups and quadratic enumerative geometry

Applications

Example (Localization methods)

Quadratic analogs of torus localization and the Bott residue formula have
been applied by L. and Pauli to give quadratic counts of twisted cubics
on hypersurfaces and complete intersections.

Virtual localization formulas have been used by A. Viergever to compute
some quadratic versions of DT invariants.

Example (Quadratic knot invariants)

The quadratic machinery has been applied by Clémentine
Lemarié--Rieusset to define quadratic linking numbers.
Mario Kummer and Daniele Agostini have defined an “arithmetic
writhe”, an invariant of an embedded P1 in a P3 (with orientation data).
This not only refines a classical construction for knots, but resolves a
lack-of-independence problem with the classical construction.

And many others: Jesse Pajwani, Ambrus Pál, Tom Bachmann, Candace
Bethea, Simon Pepin Lehalleur, Srivinvas, Ran Azouri, Lukas Bröring, . . .
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