4. Lecture 4: Tropical enumerative geometry

Exercise 4.1. Find the enriched tropical curves defined by the polynomials in Exercise 3.1 and compute the \mathbb{A}^1 -intersection multiplicities at their intersections.

Exercise 4.2. Show the following.

(1) There is a bijection

$$k\{\{t\}\}^{\times}/(k\{\{t\}\}^{\times})^2 \cong k^{\times}/k^{\times}, \ a(t) = a_0 t^{q_0} + h.o.t. \mapsto a_0$$

(2) Conclude that $GW(k\{\{t\}\}) \to GW(k)$ defined by $\langle a_0 t^{q_0} + h.o.t. \rangle \mapsto \langle a_0 \rangle$ is an isomorphism by checking that this map respects the relations in the Grothendieck-Witt rings.

Exercise 4.3. Let C_1 and C_2 be two curves in $\mathbb{P}^1 \times \mathbb{P}^1$ defined by f_1 and f_2 of bidegree (d_1, d_2) and (e_1, e_2) , respectively. Then f_1 and f_2 define a section of

$$V \coloneqq \mathcal{O}(d_1, d_2) \oplus \mathcal{O}(e_1, e_2) \longrightarrow \mathbb{P}^1 \times \mathbb{P}^1$$

where $\mathcal{O}(a,b) = \pi_1^* \mathcal{O}_{\mathbb{P}^1}(a) \otimes \pi_2^* \mathcal{O}_{\mathbb{P}^1}(b)$ and $\pi_i : \mathbb{P}^1 \times \mathbb{P}^1 \longrightarrow \mathbb{P}^1$ is the *i*th projection for i = 1, 2. In case we are working over $k\{\{t\}\}$, one can associate tropical curves Γ_1 and Γ_2 with C_1 and C_2 , respectively, just like for curves in \mathbb{P}^2 .

- (1) Convince yourself that the Newton polygons of Γ_1 and Γ_2 are $\text{Conv}\{(0,0), (d_1,0), (0,d_2), (d_1,d_2)\}$ and $\text{Conv}\{(0,0), (e_1,0), (0,e_2), (e_1,e_2)\}$, and that the Newton polygon of $\Gamma_1 \cup \Gamma_2$ is $\text{Conv}\{(0,0), (d_1+e_1,0), (0,d_2+e_2), (d_1+e_1,d_2+e_2)\}$
- (2) Show that the number of intersection points of C_1 and C_2 counted with multiplicities equals $d_1e_2 + d_2e_1$ using tropical geometry.
- (3) Show that the vector bundle V is relatively orientable if and only if there are no odd points on the boundary of the Newton polygon of $\Gamma_1 \cup \Gamma_2$.
- (4) Show that $\sum_{p \in \Gamma_1 \cap \Gamma_2} \operatorname{mult}_p^{\mathbb{A}^1}(\Gamma_1, \Gamma_2) = \frac{d_1 e_2 + d_2 e_1}{2} h \in \operatorname{GW}(k)$ in the relatively orientable case.

Exercise 4.4 (Exercise 1.9 (8) in Maclagen-Sturmfels). Given five general points in \mathbb{R}^2 , there exists a unique tropical curve with Newton polygon Δ_2 passing through these points. Draw the quadratic curve through the points (0,5), (1,0), (4,2), (7,3), (9,4).

Exercise 4.5. Let k be a perfect field of characteristic not equal to 2 or 3 and let $\sigma = (L_1, \ldots, L_s)$ be a list of finite separable field extension of k with $\sum [L_i : k] = 3d - 1$. Recall that

$$N_{d,\sigma}^{\mathbb{A}^1} = \sum \operatorname{Tr}_{\kappa(C)/k}(\operatorname{Wel}_{\kappa(C)}^{\mathbb{A}^1}(C))$$

where the sum goes over all plane rational curves C through a point configuration of s points in general position with residue field L_1, \ldots, L_s . Show that if $k = \mathbb{R}$ and $\sigma = (\mathbb{R}, \ldots, \mathbb{R}, \mathbb{C}, \ldots, \mathbb{C})$ with n_2 times \mathbb{C} , it holds that

$$\operatorname{sgn}(N_{d,\sigma}^{\mathbb{A}^1}) = W_{d,n_2}$$

that is Welschinger's signed count of real curves.