PCMIL: A¹-HOMOTOPY THEORY AND THE WEIL CONJECTURES

KIRSTEN WICKELGREN

CONTENTS

Problem Session for Lecture 1
References
1

1. Problem Session for Lecture 1

Problem 1. Let X be a dualizable object of a symmetric monoidal category $(C, \otimes, 1, \tau)$ with dual $\mathbb{D}X$. Show there is a natural bijection

$$\operatorname{Map}(X \otimes Y, Z) = \operatorname{Map}(Y, \mathbb{D}X \otimes Z)$$

Problem 2. Compute the categorical trace of a rational function on \mathbb{P}^1 , e.g. $z \mapsto z^3$, $z \mapsto z^2 + z + 1$, $z \mapsto \frac{z^5 + 1}{z^2 + 2z + 1}$

Problem 3. Compute the Zeta function of \mathbb{P}^n over a finite field.

Problem 4. *Show that* $\operatorname{Th}(\mathbf{P}^1, \mathcal{O}(2)) \simeq \operatorname{Th}(\mathbf{P}^1, \mathcal{O}(-2)) \simeq S^0 \vee \mathbf{P}^1$.

Problem 5. [Sil09, V §2] Let E be an elliptic curve over a finite field and let F denote the relative Fröbenius. Show the Zeta function of E is of the form

$$\frac{(1-\alpha T+qT^2)}{(1-T)(1-qT)}$$

as follows. Let $T_\ell E$ denote the Tate module. Let $\operatorname{End}(E) \to \operatorname{End}(T_\ell E)$ be denoted by $\psi \mapsto \psi_\ell$. One can use the Tate pairing to show that $\det \psi_\ell = \deg \psi$. $E(\mathbb{F}_{q^m}) = \deg(1 - F^m)$. Compute $\det(T - F_\ell^m)$ in terms of roots of $\det(T - F_\ell)$.

REFERENCES

[Sil09] Joseph H. Silverman, *The arithmetic of elliptic curves*, Second, Graduate Texts in Mathematics, vol. 106, Springer, Dordrecht, 2009. MR2514094 ↑5

K. Wickelgren, Department of Mathematics, Duke University, 120 Science Dr, Durham NC

Email address: kirsten.wickelgren@duke.edu

 $\it URL: {\tt https://services.math.duke.edu/~kgw/}$