CHARACTERICTIC CLASSES IN MOTIVIC HOMOTOPY **THEORY** (PRELIMINARY VERSION)

F. DÉGLISE

CONTENTS

REFERENCES

- algebraic geometry: [5] for an introduction to scheme theory $(\S12-16)$, [4] for intersection theory $(\S1, \text{Appendix } (A), B \text{ will be useful}),$ [more classical [7] (Chap. I, II, III, appendix A)]
- \bullet algebraic topology: [8] (Chap. 0-5, +chap. 16)
- the ∞ -categorical language: [6] (for example).

Date: June 2024.

- general introduction to motivic homotopy theory: [1], [2] (stable case, use ∞-categories), [3] (more comprehensive)
- basic algebraic K-theory: [9], chap. IV

CONVENTIONS

We fix a base scheme S , which is only assumed to be noetherian finite dimensional.

By convention, smooth S-schemes will mean smooth separated of finite type S-schemes. We let $\mathscr{S}m_S$ be the category of such smooth S-schemes.

1. Oriented spectra and their characteristic classes

1.1. Stable homotopy theory. Stable homotopy: P1-spectra

Ring spectra and associated cohomology theory

examples: classical cohomology (=mixed Weil theories) mot. coh. (and Chow groups), K-theory (and KH), cobordism theory (MGL and Levine-Morel) representability of Picard group

1.2. Spectra and orientation theory. definition, first Chern class examples, beware of non-orientability

1.3. Projective bundle theorem and Chern classes. statement of the theorem

definition of Chern classes properties (pullback, invariance under iso, Whitney sum) the splitting principle

- 1.4. The formal group law of oritend spectra. quick recall on Formal groups construction via Segre embedding examples
- 1.5. Thom classes. The Euler spectra sequence Thom classes and thom isomorphism (vb case) formula via Chern classes

2. Fundamental classes and Grothendieck-Riemann-Roch theorem

Intro: fundamental classes and algebraic cycles \Rightarrow cohomology with support. cobordism, cobordism classes. aim for a unification of the two concepts a preliminary: virtual bundle and associated Thom space

2.1. Bivariant theory. a glimpse on the 6 functors formalismm: adjunction and exceptional direct image properties: support, purity, base change

definition of twisted bivariant theory (generalisation of Fulton-MacPherson) example: cohomology with support, Borel-Moore homology

2.2. Construction of fundamental classes. Main theorem

idea of proof: case of closed immersion (deformation to the normal cone) smooth case and glueing

Examples: functorial trace maps, Gysin morphism in cohomology Comparison with other theories (Chow groups, K-theory)

Remark: the 4 theories, singular case.

2.3. GRR theorems. Morphisms of ring spectra and change of orientation.

Todd class associated to a change of orientation. Interpretation via stric morphisms of FGL.

Applications: abstract Riemann-Roch formulas: fundamental clasess, Gysin morphisms, duality and purity, residue maps

Example: Chern character, Adams operations

3. Generalized orientation and quadratic classes

3.1. Generalized cohomology and quadratic forms.

3.2. Generalized orientations. linear algebraic groups and torsors

Panin-Walter's definition examples: GL, SL, Sp Associated cobordism theory stable Thom classes Euler classes: obstruction theory (Barge-Morel, Asok, Fasel)

3.3. The symplectic case. hyperbolic projective plane, symplectic projective bundle formula

Borel classes example: link with Chern classes in the oriented case properties of Borel classes, the symplectic splitting principle

3.4. Formal ternary laws. definition

examples the walter ring height of FTL and computations

3.5. The quadratic Riemann-Roch theorem. morphism of spectra and change of orientation, symplectic todd classes

formulation examples: K3 surfaces

MOTIVIC CHARACTERICTIC CLASSES 4

REFERENCES

- [1] B. Antieau and E. Elmanto. A primer for unstable motivic homotopy theory. In Surveys on recent developments in algebraic geometry, volume 95 of Proc. Sympos. Pure Math., pages 305–370. Amer. Math. Soc., Providence, RI, 2017.
- [2] F. Deglise. An intoductory course on motivic homotopy theory. http://deglise.perso.math.cnrs.fr/docs/2021/PCMI2.pdf.
- [3] B. I. Dundas, M. Levine, P. A. \varnothing stvær, O. Röndigs, and V. Voevodsky. *Motivic homotopy* theory. Universitext. Springer-Verlag, Berlin, 2007. Lectures from the Summer School held in Nordfjordeid, August 2002.
- [4] W. Fulton. Intersection theory, volume 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, second edition, 1998.
- [5] A. Gathmann. Algebraic geometry. https://agag-gathmann.math.rptu.de/class/alggeom-2021/alggeom-2021.pdf.
- [6] M. Groth. A short course on ∞-categories. In Handbook of homotopy theory, CRC Press/Chapman Hall Handb. Math. Ser., pages 549–617. CRC Press, Boca Raton, FL, 2020.
- [7] R. Hartshorne. Basic algebraic geometry. Volumes 1 and 2. Third edition. SIAM Rev., 56(4):716–718, 2014.
- [8] R. M. Switzer. Algebraic topology—homotopy and homology. Classics in Mathematics. Springer-Verlag, Berlin, 2002. Reprint of the 1975 original.
- [9] Charles A. Weibel. The K-book, volume 145 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2013. An introduction to algebraic K-theory.