PCMI: \mathbb{A}^{1}-HOMOTOPY THEORY AND THE WEIL CONJECTURES PROBLEM SESSIONS

KIRSTEN WICKELGREN

Contents

1. Problem Session for Lecture 1 1
2. Problem Session for Lecture 2 1

References 2

1. Problem Session for Lecture 1

Problem 1. Let X be a dualizable object of a symmetric monoidal category $(\mathcal{C}, \otimes, 1, \tau)$ with dual $\mathbb{D X}$. Show there is a natural bijection

$$
\operatorname{Map}(\mathbf{X} \otimes \mathbf{Y}, \mathbf{Z})=\operatorname{Map}(\mathbf{Y}, \mathbb{D} \mathbf{X} \otimes \mathbf{Z})
$$

Problem 2. Compute the categorical trace of a rational function on \mathbb{P}^{1}, e.g. $z \mapsto z^{3}, z \mapsto z^{2}+z+1$, $z \mapsto \frac{z^{5}+1}{z^{2}+2 z+1}$
Problem 3. Compute the Zeta function of \mathbb{P}^{n} over a finite field.
Problem 4. Show that $\operatorname{Th}\left(\mathbf{P}^{1}, \mathcal{O}(2)\right) \simeq \operatorname{Th}\left(\mathbf{P}^{1}, \mathcal{O}(-2)\right) \simeq\left(\mathbf{P}^{1}\right)^{\wedge 2} \vee \mathbf{P}^{1}$.
Problem 5. [Sil09, V §2] Let E be an elliptic curve over a finite field and let F denote the relative Fröbenius. Show the Zeta function of E is of the form

$$
\frac{\left(1-\mathrm{aT}+\mathrm{q}^{2}\right)}{(1-\mathrm{T})(1-\mathrm{qT})}
$$

as follows. Let $\mathrm{T}_{\ell} \mathrm{E}$ denote the Tate module. Let $\operatorname{End}(\mathrm{E}) \rightarrow \operatorname{End}\left(\mathrm{T}_{\ell} \mathrm{E}\right)$ be denoted by $\psi \mapsto \psi_{\ell}$. One can use the Tate pairing to show that $\operatorname{det} \psi_{\ell}=\operatorname{deg} \psi . E\left(\mathbb{F}_{q^{m}}\right)=\operatorname{deg}\left(1-F^{m}\right)$. Compute $\operatorname{det}\left(T-F_{\ell}^{m}\right)$ in terms of roots of $\operatorname{det}\left(T-F_{\ell}\right)$.

2. Problem Session for Lecture 2

Problem 6. Let \mathfrak{u} be a non-square in $\mathbf{F}_{\mathbf{q}^{m}}$. Compute $\operatorname{Tr}_{\mathbf{F}_{\mathfrak{q}^{m}} / \mathbf{F}_{\mathbf{q}}}\langle\mathfrak{u}\rangle$ for $\mathfrak{m}=1,2,3, \ldots$
Problem 7. Compute the logarithmic \mathbb{A}^{1}-zeta function of \mathbb{P}^{n} over a finite field.
Problem 8. Check that a symmetric monoidal functor (also called a \otimes-functor) $\mathrm{H}: \mathcal{C} \rightarrow \mathcal{D}$ takes dualizable objects to dualizable objects and $\operatorname{Tr} \mathrm{H}=\mathrm{H}$ Tr.

Date: July 14, 2024.

Problem 9. (See e.g. [Mil13, Lemma 27.5]) Let P be the characteristic polynomial of an endomorphism F of a finite dimensional vector space. Suppose $\mathrm{P}(\mathrm{t})=\prod_{\mathrm{r}}\left(1-\alpha_{\mathrm{r}} \mathrm{t}\right)$. Show that $\operatorname{Tr}\left(\mathrm{F}^{\mathrm{m}}\right)=\sum \alpha_{i}^{\mathrm{m}}$ and

$$
d \log P(t)=-\sum_{m} \operatorname{Tr}\left(F^{m}\right) t^{m-1}
$$

where $\mathrm{d} \log \mathrm{P}(\mathrm{t})=\mathrm{P}^{\prime}(\mathrm{t}) / \mathrm{P}(\mathrm{t})$.
Problem 10. [Mor12, Lemma 3.5] We've asserted that $\mathrm{GW}(\mathrm{k}) \cong \mathrm{K}_{0}^{\mathrm{MW}}(\mathrm{k})$. This exercise is to help get comfortable with that. We define $\mathrm{K}_{*}^{\mathrm{MW}}(\mathrm{k})$ as the graded associative ring generated by symbols [a] for each a in k^{*} of degree 1 and a symbol η of degree -1 subject to the relations
(1) $[a][1-a]=0$
(2) $[a b]=[a]+[b]+\eta[a][b]$
(3) $\eta[a]=[a] \eta$
(4) $h \eta=0$ where $h=1+1+\eta[-1]$.

Define $\langle\mathrm{a}\rangle$ in $\mathrm{K}_{0}^{\mathrm{MW}}(\mathrm{k})$ by $\langle\mathrm{a}\rangle=1+\eta[\mathrm{a}]$. Show that $[\mathrm{ab}]=[\mathrm{a}]+\langle\mathrm{a}\rangle[\mathrm{b}]=[\mathrm{a}]\langle\mathrm{b}\rangle+[\mathrm{b}]$, and that $\langle b a\rangle=\langle a\rangle\langle b\rangle$.

REFERENCES

[Mil13] J.S. Milne, Lectures on etale cohomology (2013). Available at https://www.jmilne.org/math/ CourseNotes/LEC.pdf. 19
[Mor12] Fabien Morel, \mathbb{A}^{1}-algebraic topology over a field, Lecture Notes in Mathematics, vol. 2052, Springer, Heidelberg, 2012. MR2934577 10
[Sil09] Joseph H. Silverman, The arithmetic of elliptic curves, Second, Graduate Texts in Mathematics, vol. 106, Springer, Dordrecht, 2009. MR2514094 切
K. Wickelgren, Department of Mathematics, Duke University, 120 Science Dr, Durham NC

Email address: kirsten.wickelgren@duke.edu
URL: https://services.math.duke.edu/ ${ }^{\text {kgw/ }}$

