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1. PROBLEM SESSION FOR LECTURE 1

Problem 1. Let X be a dualizable object of a symmetric monoidal category (C, ®, 1, T) with dual
DX. Show there is a natural bijection

Map(X® Y, Z) = Map(Y, DX ® Z)

Problem 2. Compute the categorical trace of a rational functionon P!, e.g. z v+ 23,z — z*+2z+1,

25 +1
zZ = 2242241

Problem 3. Compute the Zeta function of P™ over a finite field.
Problem 4. Show that Th(P',O(2)) ~ Th(P',O(-2)) ~ (P")/? V P'.
Problem 5. [Sil09, V §2] Let E be an elliptic curve over a finite field and let F denote the relative
Frobenius. Show the Zeta function of E is of the form
(1 —aT +qT?)
(1-T(1 —qT)

as follows. Let TyE denote the Tate module. Let End(E) — End(T,E) be denoted by \p — ,.
One can use the Tate pairing to show that det\, = deg\. E(Fqm) = deg(1 — F™). Compute
det(T — FJ*) in terms of roots of det(T — Fy).

2. PROBLEM SESSION FOR LECTURE 2

Problem 6. Let u be a non-square in F gm. Compute Trp_,, p,(0) form=1,2,3,...
Problem 7. Compute the logarithmic A'-zeta function of P™ over a finite field.

Problem 8. Check that a symmetric monoidal functor (also called a ®@-functor) H : C — D takes
dualizable objects to dualizable objects and Tr H = H Tr.
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Problem 9. (See e.g. [Mill3, Lemma 27.5]) Let P be the characteristic polynomial of an en-
domorphism F of a finite dimensional vector space. Suppose P(t) = [].(1 — o« t). Show that
Tr(F™) = > o™ and

dlogP(t) = — Z Tr(F™)t™ ',

where dlog P(t) = P/(t)/P(t).

Problem 10. [Mor12, Lemma 3.5] We've asserted that GW (k) = KMW(k). This exercise is
to help get comfortable with that. We define KMW (k) as the graded associative ring generated by
symbols [a] for each a in k* of degree 1 and a symbol 1 of degree —1 subject to the relations

(1) [alll—a] =0

(2) [ab] = [a] + [b] 4+ nla][b]

(3) nla] = [aln

(4) hn =0 whereh =1+ 1 +n[-1].

Define (a) in KYW(k) by (a) = 1 +mnlal. Show that [ab] = [a] + (a)[b] = [al(b) + [b], and that
(ba) = (a)(b).
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