PCMI: \mathbb{A}^1 -HOMOTOPY THEORY AND THE WEIL CONJECTURES PROBLEM SESSIONS

KIRSTEN WICKELGREN

CONTENTS

Ref	ferences	2
2.	Problem Session for Lecture 2	1
1.	Problem Session for Lecture 1	1

1. Problem Session for Lecture 1

Problem 1. Let X be a dualizable object of a symmetric monoidal category $(C, \otimes, 1, \tau)$ with dual $\mathbb{D}X$. Show there is a natural bijection

$$\operatorname{Map}(X \otimes Y, Z) = \operatorname{Map}(Y, \mathbb{D}X \otimes Z)$$

Problem 2. Compute the categorical trace of a rational function on \mathbb{P}^1 , e.g. $z \mapsto z^3$, $z \mapsto z^2 + z + 1$, $z \mapsto \frac{z^5 + 1}{z^2 + 2z + 1}$

Problem 3. Compute the Zeta function of \mathbb{P}^n over a finite field.

Problem 4. Show that $\operatorname{Th}(\mathbf{P}^1,\mathcal{O}(2)) \simeq \operatorname{Th}(\mathbf{P}^1,\mathcal{O}(-2)) \simeq (\mathbf{P}^1)^{\wedge 2} \vee \mathbf{P}^1$.

Problem 5. [Sil09, V §2] Let E be an elliptic curve over a finite field and let F denote the relative Fröbenius. Show the Zeta function of E is of the form

$$\frac{(1-\alpha T+qT^2)}{(1-T)(1-qT)}$$

as follows. Let $T_\ell E$ denote the Tate module. Let $\operatorname{End}(E) \to \operatorname{End}(T_\ell E)$ be denoted by $\psi \mapsto \psi_\ell$. One can use the Tate pairing to show that $\det \psi_\ell = \deg \psi$. $E(\mathbb{F}_{q^m}) = \deg(1-F^m)$. Compute $\det(T-F_\ell^m)$ in terms of roots of $\det(T-F_\ell)$.

2. Problem Session for Lecture 2

Problem 6. Let u be a non-square in \mathbf{F}_{q^m} . Compute $\mathrm{Tr}_{\mathbf{F}_{q^m}/\mathbf{F}_q}\langle u \rangle$ for $m=1,2,3,\ldots$

Problem 7. Compute the logarithmic \mathbb{A}^1 -zeta function of \mathbb{P}^n over a finite field.

Problem 8. Check that a symmetric monoidal functor (also called a \otimes -functor) $H: \mathcal{C} \to \mathcal{D}$ takes dualizable objects to dualizable objects and $\operatorname{Tr} H = H \operatorname{Tr}$.

Date: July 14, 2024.

Problem 9. (See e.g. [Mil13, Lemma 27.5]) Let P be the characteristic polynomial of an endomorphism F of a finite dimensional vector space. Suppose $P(t) = \prod_r (1 - \alpha_r t)$. Show that $\operatorname{Tr}(F^m) = \sum_r \alpha_i^m$ and

$$d\log P(t) = -\sum_{\mathfrak{m}} \operatorname{Tr}(F^{\mathfrak{m}}) t^{\mathfrak{m}-1},$$

where $d \log P(t) = P'(t)/P(t)$.

Problem 10. [Mor12, Lemma 3.5] We've asserted that $GW(k) \cong K_0^{MW}(k)$. This exercise is to help get comfortable with that. We define $K_*^{MW}(k)$ as the graded associative ring generated by symbols $[\alpha]$ for each α in k^* of degree 1 and a symbol η of degree -1 subject to the relations

- (1) [a][1-a]=0
- (2) $[ab] = [a] + [b] + \eta[a][b]$
- (3) $\eta[\mathfrak{a}] = [\mathfrak{a}]\eta$
- (4) $h\eta = 0$ where $h = 1 + 1 + \eta[-1]$.

Define $\langle a \rangle$ in $K_0^{MW}(k)$ by $\langle a \rangle = 1 + \eta[a]$. Show that $[ab] = [a] + \langle a \rangle[b] = [a] \langle b \rangle + [b]$, and that $\langle ba \rangle = \langle a \rangle \langle b \rangle$.

REFERENCES

- [Mil13] J.S. Milne, Lectures on etale cohomology (2013). Available at https://www.jmilne.org/math/CourseNotes/LEC.pdf. \gamma9
- [Mor12] Fabien Morel, A¹-algebraic topology over a field, Lecture Notes in Mathematics, vol. 2052, Springer, Heidelberg, 2012. MR2934577 ↑10
 - [Sil09] Joseph H. Silverman, *The arithmetic of elliptic curves*, Second, Graduate Texts in Mathematics, vol. 106, Springer, Dordrecht, 2009. MR2514094 ↑5

K. Wickelgren, Department of Mathematics, Duke University, 120 Science Dr, Durham NC

Email address: kirsten.wickelgren@duke.edu

URL: https://services.math.duke.edu/~kgw/