PCMI: \mathbb{A}^1 -HOMOTOPY THEORY AND THE WEIL CONJECTURES PROBLEM SESSIONS

KIRSTEN WICKELGREN

CONTENTS

1.	Problem Session for Lecture 1	1
2.	Problem Session for Lecture 2	1
3.	Problem Session for Lecture 3	2
4.	Problem Session for Lecture 4	2
References		3

1. PROBLEM SESSION FOR LECTURE 1

Problem 1. Let X be a dualizable object of a symmetric monoidal category $(C, \otimes, 1, \tau)$ with dual $\mathbb{D}X$. Show there is a natural bijection

$$\operatorname{Map}(\mathsf{X}\otimes\mathsf{Y},\mathsf{Z})=\operatorname{Map}(\mathsf{Y},\mathbb{D}\mathsf{X}\otimes\mathsf{Z})$$

Problem 2. Compute the categorical trace of a rational function on \mathbb{P}^1 , e.g. $z \mapsto z^3$, $z \mapsto z^2+z+1$, $z \mapsto \frac{z^5+1}{z^2+2z+1}$

Problem 3. Compute the Zeta function of \mathbb{P}^n over a finite field.

Problem 4. Show that $\operatorname{Th}(\mathbf{P}^1, \mathcal{O}(2)) \simeq \operatorname{Th}(\mathbf{P}^1, \mathcal{O}(-2)) \simeq (\mathbf{P}^1)^{\wedge 2} \vee \mathbf{P}^1$.

Problem 5. [Sil09, V §2] Let E be an elliptic curve over a finite field and let F denote the relative *Fröbenius. Show the Zeta function of* E *is of the form*

$$\frac{(1 - aT + qT^2)}{(1 - T)(1 - qT)}$$

as follows. Let $T_{\ell}E$ denote the Tate module. Let $\operatorname{End}(E) \to \operatorname{End}(T_{\ell}E)$ be denoted by $\psi \mapsto \psi_{\ell}$. One can use the Tate pairing to show that $\det \psi_{\ell} = \deg \psi$. $E(\mathbb{F}_{q^m}) = \deg(1 - F^m)$. Compute $\det(T - F_{\ell}^m)$ in terms of roots of $\det(T - F_{\ell})$.

2. PROBLEM SESSION FOR LECTURE 2

Problem 6. Let u be a non-square in \mathbf{F}_{q^m} . Compute $\operatorname{Tr}_{\mathbf{F}_{q^m}/\mathbf{F}_q}\langle u \rangle$ for $m = 1, 2, 3, \ldots$

Problem 7. Compute the logarithmic \mathbb{A}^1 -zeta function of \mathbb{P}^n over a finite field.

Date: July 14, 2024.

Problem 8. Check that a symmetric monoidal functor (also called a \otimes -functor) $H : C \to D$ takes dualizable objects to dualizable objects and $\operatorname{Tr} H = H \operatorname{Tr}$.

Problem 9. (See e.g. [Mil13, Lemma 27.5]) Let P be the characteristic polynomial of an endomorphism F of a finite dimensional vector space. Suppose $P(t) = \prod_r (1 - \alpha_r t)$. Show that $Tr(F^m) = \sum \alpha_i^m$ and

$$d\log P(t) = -\sum_m \operatorname{Tr}(F^m) t^{m-1},$$

where $d \log P(t) = P'(t)/P(t)$.

Problem 10. [Mor12, Lemma 3.5] We've asserted that $GW(k) \cong K_0^{MW}(k)$. This exercise is to help get comfortable with that. We define $K_*^{MW}(k)$ as the graded associative ring generated by symbols [a] for each a in k^* of degree 1 and a symbol η of degree -1 subject to the relations

(1) [a][1 - a] = 0(2) $[ab] = [a] + [b] + \eta[a][b]$ (3) $\eta[a] = [a]\eta$ (4) $h\eta = 0$ where $h = 1 + 1 + \eta[-1]$.

Define $\langle a \rangle$ *in* $K_0^{MW}(k)$ *by* $\langle a \rangle = 1 + \eta[a]$. *Show that* $[ab] = [a] + \langle a \rangle[b] = [a] \langle b \rangle + [b]$, and that $\langle ba \rangle = \langle a \rangle \langle b \rangle$.

3. PROBLEM SESSION FOR LECTURE 3

Problem 11. Compute the logarithmic \mathbb{A}^1 -zeta function of $\mathbb{Gr}(2,4)$ over a finite field, where $\mathbb{Gr}(2,4)$ denotes the Grassmannian of \mathbb{P}^1 's in \mathbb{P}^3 or equivalently the Grassmannian of dimension 2 subspaces of a 4 dimensional vector space.

Problem 12. The Möbius inversion formula says: Let $f, g : \mathbb{N} \to \mathbb{C}$ be functions. Suppose that $g(n) = \sum_{d|n} f(d)$ for every $n \ge 1$. Then $f(n) = \sum_{d|n} \mu(d)g(\frac{n}{d})$ for every integer $n \ge 1$. Here μ is the Mobius function with takes an integer divisible by a square to 0, and takes square free integers m to $(-1)^e$ where e is the number of factors of m. Let X be a scheme over \mathbb{F}_q . Let $\alpha(m)$ denote the number of closed points of X with residue field \mathbb{F}_{q^m} . Show that the numbers $|X(\mathbb{F}_{q^m})|$ for $m = 1, 2, \ldots$ determine the numbers $\alpha(m)$ for $m = 1, 2, \ldots$ and vice versa.

Problem 13. Show that the left adjoint to a lax symmetric monoidal functor is oplax. Similarly, the right adjoint to an oplax symmetric monoidal functor is lax.

Problem 14. A compact object is an object x satisfying $map(x, \lim_{i \to \infty} x_i) \simeq \lim_{i \to \infty} map(x, x_i)$ for all filtered colimits $\lim_{i \to \infty} x_i$. Show that dualizable objects are compact.

Problem 15. Show filtered colimits commute with all finite limits.

4. PROBLEM SESSION FOR LECTURE 4

Problem 16. Work with 1-categories. Let $y : B \to Fun(B^{op}, Set)$ denote the Yoneda embedding sending $b \in B$ to map(-, B). Let $f : B \to A$ be a functor to a category A admitting all colimits. Then the left Kan extension LKE : $Fun(B^{op}, Set) \to A$ sends a presheaf \mathcal{P} to $\varinjlim_{(b,\alpha:y(b)\to\mathcal{P})} f(b)$. Show the left Kan extension preserves colimits.

Problem 17. Let $f : \mathbb{P}^1 \to \mathbb{P}^1$ be a rational map over a field k such and x a rational point of \mathbb{P}^1 such that $f^{-1}(y)$ is étale over k in the sense that $f^{-1}(y)$ consists of finitely many points at which the derivative of f does not vanish. We then have deg $f = \sum_{x \in f^{-1}(y)} \operatorname{Tr}_{\mathbb{C}/\mathbb{R}}\langle f'(x) \rangle$ in $\operatorname{GW}(\mathbb{R})$. Compute $\operatorname{Tr}_{\mathbb{C}/\mathbb{R}}\langle 1 \rangle$ and its signature. Then compute the degree of f(z) = z(z-1) and $f(z) = z^3 - 1$ and verify that the signature of the \mathbb{A}^1 -degree is the topological degree.

Problem 18. Compute the real and complex realizations of

- (1) $(\mathbb{P}^1)^{\wedge a} \wedge (S^1)^{\wedge b}$
- (2) Spec $\mathbb{Q}[x,y]/(y^2 x(x-1)(x-2))$

Problem 19. Show that $15 + 12\langle -5 \rangle$ and $3 + 12(\langle 2 \rangle + \langle -6 \rangle)$ are equal in GW(Q).

REFERENCES

- [Mil13] J.S. Milne, Lectures on etale cohomology (2013). Available at https://www.jmilne.org/math/ CourseNotes/LEC.pdf. ↑9
- [Mor12] Fabien Morel, A¹-algebraic topology over a field, Lecture Notes in Mathematics, vol. 2052, Springer, Heidelberg, 2012. MR2934577 ↑10
 - [Sil09] Joseph H. Silverman, The arithmetic of elliptic curves, Second, Graduate Texts in Mathematics, vol. 106, Springer, Dordrecht, 2009. MR2514094 ↑5

K. WICKELGREN, DEPARTMENT OF MATHEMATICS, DUKE UNIVERSITY, 120 SCIENCE DR, DURHAM NC

Email address: kirsten.wickelgren@duke.edu

URL: https://services.math.duke.edu/~kgw/