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1. PROBLEM SESSION FOR LECTURE 1

Problem 1. Let X be a dualizable object of a symmetric monoidal category (C, ®, 1, T) with dual
DX. Show there is a natural bijection

Map(X® Y, Z) = Map(Y, DX ® Z)

Problem 2. Compute the categorical trace of a rational functionon P!, e.g. z — 23,z — z*+2z+1,
Z — 225—""1
z%4+2z+1

Problem 3. Compute the Zeta function of P™ over a finite field.
Problem 4. Show that Th(P',O(2)) ~ Th(P',O(-2)) ~ (P")/? V P'.
Problem 5. [Sil09, V §2] Let E be an elliptic curve over a finite field and let F denote the relative
Frobenius. Show the Zeta function of E is of the form
(1—aT+qT?)
(1=T)(1 —qT)

as follows. Let T,E denote the Tate module. Let End(E) — End(T,E) be denoted by \p +— ;.
One can use the Tate pairing to show that det\, = deg\. E(Fqm) = deg(1 — F™). Compute
det(T — F{") in terms of roots of det(T — F).

2. PROBLEM SESSION FOR LECTURE 2

Problem 6. Let u be a non-square in Fqm. Compute Trp ., (W) form=1,2,3,...
Problem 7. Compute the logarithmic A'-zeta function of P™ over a finite field.

Problem 8. Check that a symmetric monoidal functor (also called a ®@-functor) H : C — D takes
dualizable objects to dualizable objects and Tr H = H Tr.
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Problem 9. (See e.g. [Mill3, Lemma 27.5]) Let P be the characteristic polynomial of an en-
domorphism F of a finite dimensional vector space. Suppose P(t) = [].(1 — o« t). Show that
Tr(F™) = > o™ and

dlog P(t ZTr (F™)t™

where dlog P(t) = P'(t)/P(t).

Problem 10. [Mor12, Lemma 3.5] We've asserted that GW (k) = K)MW(k). This exercise is
to help get comfortable with that. We define KMW (k) as the graded associative ring generated by
symbols [a] for each a in k* of degree 1 and a symbol 1 of degree —1 subject to the relations

(1) lalll — a ~0

) [ b al + [b] +nlal[b]

(3) nla [ ]n

4) hn =0whereh=14+1+n[-1].
Define (a) in KYW(k) by (a) = 1 +nlal. Show that [ab] = [a] + (a)[b] = [al(b) + [b], and that
(ba) = (a)(b).

3. PROBLEM SESSION FOR LECTURE 3

Problem 11. Compute the logarithmic A'-zeta function of Gr(2,4) over a finite field, where
Gr(2,4) denotes the Grassmannian of P'’s in P or equivalently the Grassmannian of dimension
2 subspaces of a 4 dimensional vector space.

Problem 12. The Mobius inversion formula says Let f, g N — C be functions. Suppose that

n) =) 4. f(d) foreveryn > 1. Then f(n) = 3_,, w(d)g(F) for every integer n > 1. Here
w is the Mobius function with takes an znteger divisible by a square to 0, and takes square free
integers m to (—1)¢ where e is the number of factors of m. Let X be a scheme over Fy. Let oc(m)
denote the number of closed points of X with residue field qu Show that the numbers |X(Fym )|
form =1,2,...determine the numbers x(m) for m = 1,2, ... and vice versa.

Problem 13. Show that the left adjoint to a lax symmetric monoidal functor is oplax. Similarly,
the right adjoint to an oplax symmetric monoidal functor is lax.

Problem 14. A compact object is an object x satisfying map(x, li l_rrgxl) li_nrgmap(x, xi) for all
filtered colimits lim x;. Show that dualizable objects are compact.

Problem 15. Show filtered colimits commute with all finite limits.
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