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Q,:Cy, Gy, G5, Cs

s N(s,))  1ogIN(s, /)1 A(s)
5 151 5.0173 Two circles
Bass notes 6 529 ©6.2710 1.254
7 1915 7.5575 1.287 8
8 6 832 8.8294 1.272
9 25 375 10.1415 - 1.312
10 94 135 11.4525 1.311
11 347 380 12.7582 1.306
12 1278 563 14.0613 1.303

Phillips and Sarnak, ca. 1983

dim = 1.305688



Billlards |

Periodic trajectories and Hilbert modular surfaces



Billiards in a regular pentagon

A dense set of slopes are perio

Which ones?

How do the periodic trajectories behave”



Lengths: Experiments

L(s) = L(4s) = 469 L(20s) = 2338

L(6765s) = 1.734 x 102>



Lengths and heights

Theorem

The periodic slopes coincide with
Q(+/5)s, and log L(xs) = O(h(x)?).

h(n) = log(n)
can have L(10") ~ 10"

exponent 2 is sharp



Renormalization

Theorem (Veech)

The periodic slopes for billiards in a regular
pentagon correspond to the cusps of
the triangle group A5 C SL,(R).



Renormalization group As for the pentagon




Power of renormalization

Up to renormalization:

There is only 1 type of
periodic billiard in a pentagon

!

(cusp of V = H/Ay)

5
: F\ e




Thin group perspective

K=0®/5), Ox=2ZIyl, y=(++5/2

SL,(Og) C SL,(R)?
IS an arithmetic lattice.

As C SL,(Og)
IS a thin, nonarithmetic subgroup.



Non-arithmetic groups
: Ns =
are mysterious!

(o 1)(50)

y = (1++/5)/2

matrix entries = ?
columns = ?
Cusps = 7




Theorem

The cusps of As coincide with P1(Q(+/5)),

and satisty quadratic height bounds.

5 packing hits all points in Q(~/5)




Continued fractions

Every s € Q(v) can be expanded as a|finite|golden continued fraction,

1
1

s =lai,az,as,...,anN| = a7y +

az”y + n

an-y

with a; € Z. y =(14+4/5)/2

Height bounds: length N and a; are O(1+h(s)) .



Golden Fractions

Corollary
Every x in K= Q(~/5) can be written uniquely
as a ‘golden fraction’ x = a/c, up to sign.

a,cinZly] relatively prime
(a,c) column of a matrix in As

Quadratic height bounds: h(a)+h(c) = O(1+h(x)?) .



Complex geodesics

Xv
V:H/AS > .ﬂz — > ﬂz

Jac(Xy)

has real multiplication

Hilbert modular surface

V = Kobayashi geodesic curve



Curves on a Hilbert modular surface

Assuming K is real quadratic:

Theorem
The cusps of "every’ geodesic curve V=H/A on Xk

coincide with PY(K) , and satisfy quadratic
height bounds.

Corollary
Results on billiards and A follow.



Helghts



Heights and descent

Classical: To show the "continued fraction’ for x in P1(K)

terminates, show a suitable height H(x)
decreases at each step.

discrete, clever H

Modern : To show a geodesic y in V c Xk heads towards
a cusp at x in P1(K), show Ha(x) = O
as A e Xk moves along y.

continuous, natural H



Classical height on Pn(K)

H(x)=H(xg:x1: - :xp) :Hmax\a:i\v. > |

comparable to

~~

H(x) :ianma,X\aﬂv, lag = -+t an] = [a].
“ o ai integers

only requires knowledge of integers O
and infinite places of K



Real multiplication

A = a polarized abelian variety
K = totally real number field, deg(K) = dim(A)

A has real multiplication by K if we are given a map
T: K— End(A) ® Q,

and Tk is self-adjoint for all k in K.



The projective line P! 41 (K)

A = abelian variety with real multiplication by K
Hl (A7 Q) = K2
P (K) = space of K-lines in H,(X, Q)

Also get an orthonormal basis of eigenforms
lw, :v]|oco} C QA)



Hodge height on P} (K)

1/g
Hy(x) = inf 3 ] J w,| :CeH(A,Z),[C]=x
C

v|oo

— inf chl product of Hodge valuations
[Cl=x ' with C integral

v]oo

= [he classical height and Hodge height are comparable
= The Hodge height is > c(A) > 0.



For Hilbert modular surfaces

HA(X)Z <

K

C

K quadratic

Can drive first term to zero like exp(-t)

along a geodesic y cV c Xk

Second term grows slower than exp(t)

— H,(x) -» 0 alongy
— y — oo InVand X

Schwarz lemma

Conclusion: any x in P1(K) is a cusp of V
(with quadratic height bounds). QED



beyond quadratic fields... Undecidabllity?

CUSP(n) = Given s = a/b in K, decide it
S Is a cusp of An.

Question

Isthereann=7,9, 11, ... such that
CUSP(n) is undecidable?



Open already for n=7

K = a cubic number field

L(1)=7, L(1+14&5) = 10%.

No known way to test for periodicity of billiards.
How long must we wait for continued fraction to terminate”?



Billiards ||

modular symbols and equidistribution



Distribution

Theorem (Veech

Every infinite trajectory is
uniformly distributed.

Do long periodic trajectories equidistribute”?

Davis-Lelievre: Not always!



Distribution

Theorem (Veech
Every infinite trajectory is
uniformly distributed.
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Do long periodic trajectories equidistribute”?

Davis-Lelievre: Not always!
Cantor set?



Countability

Theorem

The Iimit measures Ms form a

countable set, homeomorphic to
ww + 1.
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Hidden structure

Let R = {x'/x : x occurs as a matrix entry in As},

Theorem

The closure of R, rescaled, is a semigroup in
[-1,1], homeomorphic to w®+1.



Modular symbols

V = H/An hyperbolic surface

modular symbol =
chain of geodesics between cusps of V

S(V) = {symbols} = w® — (limit measures Ms)

Source of structure



Billiards Il

combinatorics, congruence and chaos



Combinatorics

OO0O0

Given s, which midpoint mk gives a vertex connection?



Combinatorics

Theorem

The midpoint mk gives a vertex connection at slope s
= [5s], = [£8], € PY(Ok/2).

® | ocation of vertex connection
IS a congruence invariant.



10

20

Chaos for n=12

Wi+ 1) = W) + (- l)k = vertex connection at slope t

1500 2000

500

® | ocation of vertex connection is not
a congruence invariant.

- o (. Does W(t)/t tend to zero? ....



Representations

m(V) acts on
(edge midpoints of P) ~ (Weierstrass points of X) —

H'\(X,Z/2) = (64/2)". Instance of

m1(V) = An = SL,(O /") monodromy rep

Galois rep
associated to E/Q

Gal(Q/Q) = GLL(Z/¢)



Adelic perspective
[SL,(Ok) : A ] = oo
[SL,( O, ) : A ]is finite

Q. What is the adelic closure of An?

A. F Calegari, The congruence completions of triangle groups

Corollary

The location of the vertex connections is a congruence
invariant unless n=0 mod 4 and n = 2a,



Compléement

A spectral gap for
triangles



Triangle groups
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Moduli space of all triangles
A= (R/2Z3E = (S1)

a = (a1,az,a3) gives angles (1a;)
Triangle T(a) may be spherical, Euclidean or hyperbolic

Galois orbit: When a in A is torsion of order n,
Gal(a) = (Z/n)"-a. ai roots of |



Spectral gap

Ramification density:
#(b in Gal(a) : T(b) is spherical)
#Gal(a)

p(a) =

Theorem
There exist constants O < pH<ps< 1, such that

o(a) e {0,1} u [pH, Ps].

— Probably [pn ps]=[1/12,4/5].
— Usually p(a) = 1/3.
— Cases p(a) = 0 or 1 understood, modulo finite set



Proof of spectral gap

— Equidistribution:
m(a) = uniform measure on Gal(a)
m(an) = m(B) = uniform measure on torus translate
critical: an is in B for all n > 0.

— Geometry:
Find possibilities for B
Moving tablecloth game















Spectral gap — encore

Theorem

For all but finitely many A(p,q,r),
# spherical and # hyperbolic places are about the same.

Cor (Takeuchi)
There are only finitely many arithmetic triangle groups.

Cor (Waterman—Maclachlan)
There are only finitely many totally hyperbolic triangle groups.



-xample

111 112 113
a= \2"737 2’377 2’377

hyperbolic  spherical  spherical

Only 1 hyperbolic
A(2,3,7) Is arithmetic

o(a) = 2/3.



-xample

1 1 1) (1 813) (3 417)
14721 42 14721 42 14721 42
3 10 11 5 2 19 5 5 5
(— =)~ (— =)~ (—,—,——)
14721 42 14721 42 14721 42

a= (

all hyperbolic
A(14,21,42) is totally hyperbolic

o(a) = 0.



/6 cocompact arithmetic triangle groups

| l (e1,e2,e3) I Field Ram |
1| (2,3,00),(2,4,00),(2,6,00), (2,00, 00), Q ]
(3,3,0), (3, 00,0), (4,4, 00),
(6,6, 00), (00, 00, 00)
2 | (2,4,6),(2,6,6),(3,4,4), (3,6,6) Q 2,3
31 (2,3,8),(2,4,8),(2,6,8),(2,8,8),(3,3,4), | Q(2) P
(3,8,8),(4,4,4), (4,6,6),(4,8,8)
4| (2,3,12),(2,6,12),(3,3,6), (3,4, 12), Q(v/3) Ps
(3,12,12), (6,6, 6)
51 (2,4,12),(2,12,12), (4,4, 6), (6,12, 12) Q(V3) Ps
6 | (2,4,5),(2,4,10),(2,5,5),(2,10,10), Q(V/5) P2
(4,4,5), (5,10, 10)
7| (2,5,6),(3,5,5) Q(V5) Ps
8 | (2,3,10),(2,5,10),(3,3,5), (5,5,5) Q(V5) Ps
9 (3,4, 6) Q(\/6> P>
10 | (2,3,7),(2,3,14),(2,4,7),(2,7,7), Q(cosm/7) | @
(2,7,14),(3,3,7),(7,7,7)
11 | (2,3,9),(2,3,18),(2,9,18),(3,3,9), Q(cosm/9) | 0
(3,6,18),(9,9,9)
12 | (2,4,18),(2,18,18), (4,4,9), (9,18, 18) Q(cosm/9) | P2, Ps
13 | (2,3,16),(2,8,16),(3,3,8), Q(cos7/8) P2
(4,16, 16), (8,8, 8)
14 | (2,5,20), (5,5, 10) Q(cos/10) | P2
15 | (2,3,24),(2,12,24),(3,3,12), (3,8, 24), Q(cos7/12) | P2
(6,24,24), (12,12, 12)
16 | (2,5,30),(5,5,15) Q(cos/15) | Ps
17 | (2,3,30),(2,15,30),(3,3,15), Q(cosm/15) | Ps
(3,10, 30), (15, 15, 15)
18 | (2,5,8),(4,5,5) Q(2,V5) | P2
19 | (2,3,11) Q(cosm/11) | 0

Takeuchi

Maclachlan-Reid



11 known totally hyperbolic triangle groups
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(4,6,12) (6,9,18) (14,21,42) M, Maclachlan-Waterman



Problem

Are there more examples of totally
hyperbolic triangle groups?



=Xperimental Evidence

There are no other purely hyperbolic triangle groups
with (p,q,r) < 5000.

Recently verified using 5,000 cores running in parallel
from 1-30 mins.

Number of Galois conjugates
(out of 109)
examined to find a spherical triangle.

150000 |-

100000 -

Randomized

50000 -

0-. ) \ \ \ \ \ \ \ H

2 4 6 8 10 12

Total execution time 587 hours



The importance of being
(14,21,42)



Motivation

Theorem (Veech)
Every geodesic curve V = My has a cusp.

T MOosSt cases

Theorem

‘Every’ geodesic curve V = Xk has a cusp,
provided dim(Xk)=2

What happens when dim(Xk) > 27



What happens if dim Xk > 27

Theorem

There exists a compact geodesic curve
V' .on a 6D Hilbert modular variety,

V=H/A"- X,

such that there is no compact Shimura variety with
VcScXk

(A" is Zariski dense in SL,(O))



Matrix models

A = A(p,q,r) c SLo(R)

K = Q(traces of elements in A)

A can be realized as a subgroup of SLa(K)

Fallacy Correction

& quaternion algebra B = Q(A) splits over K

= A is totally hyperbolic (B splits at all v|eo)



Theorem

Among the 11 known totally hyperbolic cocompact
triangle groups, only

A(14,21,42)
IS also split at all finite places.

Corollary
A(14,21,42) embeds in SLo(K).

K = Q(cos m/21) degree 6



Theorem (Cohen-Wolfart)

From the group theory:
A(14,21,42) c SL,(0Oy),

we obtain a geodesic curve
V=H/A"- Xg.

Special to triangles!



Start with A(14,21,42)




Pass to A’ of iIndex 2




Construct 6 maps H to H
from 6 real places of K

(uses Riemann mapping theorem)

el
P




Resulting map H— H® covers exotic V — Xk

Q)




Conclusion

V gives an exotic compact geodesic curve on Xk, dim=06.

(exotic because A" c SL,(O) is Zariski dense,
so V is contained in no Shimura subvariety)



Conjecture

A(14,21,42) is the only triangle group
whose invariant quaternion algebra splits.

Problem

Are there more examples of exotic curves?
For example, with dim Xk = 37

How to construct more geodesic curves?
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