Billiards and the

arithmetic

of non-arithmetic groups

Curtis T McMullen
Harvard University

Weil, Manin, Birch, Leutbecher, Veech, Masur, Forni, Möller, Viehweg, Hubert, Lanneau, Filip, Davis, Lelievre, Smillie, Ulcigrai, F. Calegari, ...

$\Omega_{2}: C_{1}, C_{2}, C_{3}, C_{5}$				
BaSS noteS	s	$N(s, j)$	$\log [N(s, j)]$	$\Delta(s)$
	5	151	5.0173	Two circles
	6	529	6.2710	1.254
	7	1915	7.5575	1.287
	8	6832	8.8294	1.272
	9	25375	10.1415	1.312
	10	94135	11.4525	1.311
	11	347380	12.7582	1.306
	12	1278563	14.0613	1.303

Phillips and Sarnak, ca. 1983

$\operatorname{dim}=1.305688$

Billiards I

Periodic trajectories and Hilbert modular surfaces

Billiards in a regular pentagon

A dense set of slopes are periodic.

Which ones?

How do the periodic trajectories behave?

Lengths: Experiments

$L(s)=5$
$L(4 s)=469$
$L(20 s)=2338$

$L(6765 s)=1.734 \times 10^{25}$

Lengths and heights

Theorem
The periodic slopes coincide with
$Q(\sqrt{ } 5) s$, and $\log L(x s)=O\left(h(x)^{2}\right)$.
$h(n)=\log (n)$
can have $L\left(10^{n}\right) \sim 10^{n^{2}}$
exponent 2 is sharp

Renormalization

Theorem (Veech)
The periodic slopes for billiards in a regular pentagon correspond to the cusps of the triangle group $\Delta_{5} \subset \mathrm{SL}_{2}(\mathbb{R})$.

Renormalization group Δ_{5} for the pentagon

Power of renormalization

(
Up to renormalization:
There is only 1 type of periodic billiard in a pentagon

Thin group perspective

$$
K=\mathbb{Q}(\sqrt{5}), \quad \mathcal{O}_{K}=\mathbb{Z}[\gamma], \quad \gamma=(1+\sqrt{5}) / 2
$$

$\mathrm{SL}_{2}\left(\mathcal{O}_{K}\right) \subset \mathrm{SL}_{2}(\mathbb{R})^{2}$ is an arithmetic lattice.

$\Delta_{5} \subset \mathrm{SL}_{2}\left(\mathcal{O}_{K}\right)$

 is a thin, nonarithmetic subgroup.Non-arithmetic groups
are mysterious!
$\Delta_{5}=$

$$
\begin{aligned}
& \left.\qquad\left(\begin{array}{ll}
1 & \gamma \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right\rangle \\
& \qquad \gamma=(1+\sqrt{ } 5) / 2 \\
& \text { matrix entries }=? \\
& \text { columns }=? \\
& \text { cusps }=?
\end{aligned}
$$

Theorem

The cusps of Δ_{5} coincide with $\mathbb{P}^{1}(Q(\sqrt{ } 5))$, and satisfy quadratic height bounds.

5 packing hits all points in $Q(\sqrt{ } 5)$

0
$1 / \gamma$
I
γ
2γ

Continued fractions

Every $s \in \mathbb{Q}(\gamma)$ can be expanded as a finite golden continued fraction,

$$
s=\left[a_{1}, a_{2}, a_{3}, \ldots, a_{N}\right]=a_{1} \gamma+\frac{1}{a_{2} \gamma+\frac{1}{a_{3} \gamma+\cdots \frac{1}{a_{N} \gamma}}}
$$

with $a_{i} \in \mathbb{Z}$.

$$
\gamma=(1+\sqrt{5}) / 2
$$

Height bounds: length N and a_{i} are $\mathrm{O}(1+\mathrm{h}(\mathrm{s}))$.

Golden Fractions

Corollary

Every x in $K=Q(\sqrt{ } 5)$ can be written uniquely as a 'golden fraction' $x=a / c$, up to sign.

a, c in $\mathbb{Z}[\gamma]$ relatively prime
(a, c) column of a matrix in Δ_{5}

Quadratic height bounds: $\mathrm{h}(\mathrm{a})+\mathrm{h}(\mathrm{c})=\mathrm{O}\left(1+\mathrm{h}(\mathrm{x})^{2}\right)$.

Complex geodesics

$$
\mathrm{V}=\mathbb{H} / \Delta_{5} \xrightarrow{\mathrm{X}_{\mathrm{v}}} \mathscr{M}_{2} \longrightarrow \mathscr{A}_{2}
$$

has real multiplication

$$
X_{K}=(\mathbb{H} \times \mathbb{H}) / \mathrm{SL}_{2}\left(\mathcal{O}_{K}\right)
$$

Hilbert modular surface
$V=$ Kobayashi geodesic curve

Curves on a Hilbert modular surface

Assuming K is real quadratic:

Theorem

The cusps of `every' geodesic curve $\mathrm{V}=\mathrm{H} / \Delta$ on X_{K} coincide with $\mathbb{P}^{1}(K)$, and satisfy quadratic height bounds.

Corollary

Results on billiards and Δ_{n} follow.

Heights

Heights and descent

Classical: To show the `continued fraction’ for x in $\mathrm{P}^{1}(\mathrm{~K})$ terminates, show a suitable height $\mathrm{H}(\mathrm{x})$ decreases at each step.
discrete, clever H

Modern : To show a geodesic γ in $\mathrm{V} \subset \mathrm{X}_{\mathrm{K}}$ heads towards a cusp at x in $\mathbb{P}^{1}(K)$, show $H_{A}(x) \rightarrow 0$ as $A \in X_{k}$ moves along γ.
continuous, natural H

Classical height on $\mathrm{P}^{n}(\mathrm{~K})$

$$
H(x)=H\left(x_{0}: x_{1}: \cdots: x_{n}\right)=\prod_{v} \max _{i}\left|x_{i}\right|_{v} \geq 1
$$ comparable to

$$
\widetilde{H}(x)=\inf _{a} \prod_{v \mid \infty} \max _{i}\left|a_{i}\right|_{v}, \quad\left[a_{0}: \cdots: a_{n}\right]=[x] .
$$

only requires knowledge of integers \mathcal{O}_{K} and infinite places of K

Real multiplication

A = a polarized abelian variety
$K=$ totally real number field, $\operatorname{deg}(K)=\operatorname{dim}(A)$

A has real multiplication by K if we are given a map

$$
T: K \longrightarrow \operatorname{End}(A) \otimes \mathbb{Q}
$$

and T_{k} is self-adjoint for all k in K.

The projective line $\mathbb{P}_{A}^{1}(K)$

$A=$ abelian variety with real multiplication by K $H_{1}(A, \mathbb{Q}) \cong K^{2}$
$\mathbb{P}_{A}^{1}(K)=$ space of K -lines in $H_{1}(X, \mathbb{Q})$

Also get an orthonormal basis of eigenforms

$$
\left\{\omega_{v}: v \mid \infty\right\} \subset \Omega(A)
$$

Hodge height on $\mathbb{P}_{A}^{1}(K)$

$$
\begin{aligned}
& H_{A}(x)=\inf \left\{\prod_{v \mid \infty}\left|\int_{C} \omega_{v}\right|^{1 / g}: C \in H_{1}(A, \mathbb{Z}),[C]=x\right\} \\
&=\inf _{[C]=x} \prod_{v \mid \infty}|C|_{v} \\
& \quad \begin{array}{l}
\text { product of Hodge valuations } \\
\text { with } C \text { integral }
\end{array}
\end{aligned}
$$

\Rightarrow The classical height and Hodge height are comparable \Rightarrow The Hodge height is $>c(A)>0$.

For Hilbert modular surfaces

$$
H_{A}(x)^{2} \leq\left|\int_{C} \omega\right| \cdot\left|\int_{C} \omega^{\prime}\right| \quad \text { K quadratic }
$$

Can drive first term to zero like $\exp (-t)$ along a geodesic $\gamma \subset \mathrm{V} \subset \mathrm{X}_{\mathrm{k}}$.

Second term grows slower than $\exp (\mathrm{t})$
$\Longrightarrow H_{A}(x) \rightarrow 0$ along γ
$\Longrightarrow \gamma \rightarrow \infty$ in \vee and X_{K}
Conclusion: any x in $\mathbb{P}^{1}(\mathrm{~K})$ is a cusp of V (with quadratic height bounds). QED

beyond quadratic fields... Undecidability?

$\operatorname{CUSP}(\mathrm{n})=$ Given $\mathrm{s}=\mathrm{a} / \mathrm{b}$ in K , decide if s is a cusp of Δ_{n}.

Question

Is there an $n=7,9,11, \ldots$ such that $\operatorname{CUSP}(\mathrm{n})$ is undecidable?

Open already for $\mathrm{n}=7$ $K=$ a cubic number field

$\mathrm{L}(1)=7$,

$$
L\left(1+14 \zeta_{7}\right) \approx 10^{40} .
$$

No known way to test for periodicity of billiards.
How long must we wait for continued fraction to terminate?

Billiards II

modular symbols and equidistribution

Distribution

Theorem (Veech)
Every infinite trajectory is uniformly distributed.

Do long periodic trajectories equidistribute?
Davis-Lelievre: Not always!

Distribution

Theorem (Veech)
Every infinite trajectory is uniformly distributed.

Do long periodic trajectories equidistribute?
Davis-Lelievre: Not always!
Cantor set?

Countability

Theorem
The limit measures M_{s} form a countable set, homeomorphic to

$$
\omega^{\omega}+1
$$

(s periodic slope)
describes scarring
\& closure of ergodic measures

Limit Measures Mo for the pentagon

form a semigroup!

uniform measure

Hidden structure

Let $R=\left\{x^{\prime} / x: x\right.$ occurs as a matrix entry in $\left.\Delta_{5}\right\}$.

Theorem
The closure of R, rescaled, is a semigroup in $[-1,1]$, homeomorphic to $\omega^{\omega}+1$.

Modular symbols

$\mathrm{V}=\mathbb{H} / \Delta_{\mathrm{n}}$ hyperbolic surface

modular symbol =
chain of geodesics between cusps of V

$S(\mathrm{~V})=\{$ symbols $\} \simeq \omega^{\omega} \rightarrow\left(\right.$ limit measures $\left.\mathrm{M}_{\mathrm{s}}\right)$

Source of structure

Billiards III

combinatorics, congruence and chaos

Combinatorics

Given s, which midpoint m_{k} gives a vertex connection?

Combinatorics

Theorem

The midpoint m_{k} gives a vertex connection at slope s

$$
\Longleftrightarrow[s]_{2}=\left[\zeta_{5}^{k}\right]_{2} \in \mathbb{P}^{1}\left(\mathcal{O}_{K} / 2\right)
$$

- Location of vertex connection is a congruence invariant.

Chaos for $\mathrm{n}=12$

$W(t+1)=W(t)+(-1)^{\mathrm{k}}=$ vertex connection at slope t

Representations

$\pi_{1}(\mathrm{~V})$ acts on
(edge midpoints of P) ~ (Weierstrass points of X$) \rightarrow$

$$
H^{1}(X, \mathbb{Z} / 2) \cong\left(\mathcal{O}_{K} / 2\right)^{2} . \text { Instance of: }
$$

$\Pi_{1}(\mathrm{~V})=\Delta_{\mathrm{n}} \rightarrow \mathrm{SL}_{2}\left(\mathcal{O}_{K} / \ell^{i}\right)$ monodromy rep
$\mathrm{Gal}(\overline{\mathrm{Q}} / \mathrm{Q}) \rightarrow \mathrm{GL}_{2}\left(\mathbb{Z} / \ell^{i}\right)$

Galois rep associated to E/Q

Adelic perspective

$$
\left[\mathrm{SL}_{2}\left(\mathcal{O}_{K}\right): \Delta_{n}\right]=\infty
$$

$$
\left[\mathrm{SL}_{2}\left(\widehat{\mathcal{O}_{K}}\right): \bar{\Delta}_{n}\right] \text { is finite }
$$

Q. What is the adelic closure of Δ_{n} ?
A. F. Calegari, The congruence completions of triangle groups

Corollary

The location of the vertex connections is a congruence invariant unless $n=0 \bmod 4$ and $n \neq 2^{\text {a }}$.

Complément

A spectral gap for triangles

Triangle groups

$\Delta(2,3,7) \subset \operatorname{SL}_{2}(\mathbb{R})$

Moduli space of all triangles

$$
\begin{gathered}
\mathrm{A}=(\mathbb{R} / 2 \mathbb{Z})^{3} \simeq\left(\mathrm{~S}^{1}\right)^{3} \\
\mathrm{a}=\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}\right) \text { gives angles }\left(\pi \mathrm{a}_{\mathrm{i}}\right)
\end{gathered}
$$

Triangle T(a) may be spherical, Euclidean or hyperbolic

Galois orbit: When a in A is torsion of order n,

$$
\operatorname{Gal}(a)=(\mathbb{Z} / n)^{*} \cdot a .
$$

a_{i} roots of I

Spectral gap

Ramification density:

$$
\rho(a)=\frac{\#(\mathrm{~b} \text { in Gal(a) : T(b) is spherical) }}{\# \mathrm{Gal}(\mathrm{a})}
$$

Theorem

There exist constants $0<\rho_{H}<\rho_{S}<1$, such that

$$
\rho(a) \in\{0,1\} \cup[\rho н, \rho s] .
$$

—Probably $[\rho н, \rho s]=[1 / 12,4 / 5]$.

- Usually $\rho(\mathrm{a}) \approx 1 / 3$.
- Cases $\rho(a)=0$ or 1 understood, modulo finite set

Proof of spectral gap

- Equidistribution:
$m(a)=$ uniform measure on Gal(a)
$m\left(a_{n}\right) \rightarrow m(B)=$ uniform measure on torus translate critical: a_{n} is in B for all $n \gg 0$.
- Geometry:

Find possibilities for B
Moving tablecloth game

Spectral gap - encore

Theorem
For all but finitely many $\Delta(p, q, r)$,
\# spherical and \# hyperbolic places are about the same.

Cor (Takeuchi)

There are only finitely many arithmetic triangle groups.

Cor (Waterman—Maclachlan)
There are only finitely many totally hyperbolic triangle groups.

Example

$$
\begin{gathered}
\mathrm{a}=\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{7}\right) \sim\left(\frac{1}{2}, \frac{1}{3}, \frac{2}{7}\right) \sim\left(\frac{1}{2}, \frac{1}{3}, \frac{3}{7}\right) \\
\text { hyperbolic spherical spherical }
\end{gathered}
$$

Only 1 hyperbolic

$\Delta(2,3,7)$ is arithmetic

$$
\rho(a)=2 / 3 .
$$

Example

$$
\begin{aligned}
a=\left(\frac{1}{14}, \frac{1}{21}, \frac{1}{42}\right) \sim\left(\frac{1}{14}, \frac{8}{21}, \frac{13}{42}\right) & \sim\left(\frac{3}{14}, \frac{4}{21}, \frac{17}{42}\right) \sim \\
\left(\frac{3}{14}, \frac{10}{21}, \frac{11}{42}\right) \sim\left(\frac{5}{14}, \frac{2}{21}, \frac{19}{42}\right) & \sim\left(\frac{5}{14}, \frac{5}{21}, \frac{5}{42}\right) \\
& \text { all hyperbolic }
\end{aligned}
$$

$\Delta(14,21,42)$ is totally hyperbolic

$$
\rho(a)=0 .
$$

76 cocompact arithmetic triangle groups

	$\left(e_{1}, e_{2}, e_{3}\right)$	Field	Ram
1	$\begin{aligned} & (2,3, \infty),(2,4, \infty),(2,6, \infty),(2, \infty, \infty), \\ & (3,3, \infty),(3, \infty, \infty),(4,4, \infty) \\ & (6,6, \infty),(\infty, \infty, \infty) \end{aligned}$	Q	\emptyset
2	$(2,4,6),(2,6,6),(3,4,4),(3,6,6)$	Q	2, 3
3	$\begin{aligned} & (2,3,8),(2,4,8),(2,6,8),(2,8,8),(3,3,4), \\ & (3,8,8),(4,4,4),(4,6,6),(4,8,8) \end{aligned}$	$\mathbb{Q}(\sqrt{2})$	\mathcal{P}_{2}
4	$\begin{aligned} & (2,3,12),(2,6,12),(3,3,6),(3,4,12), \\ & (3,12,12),(6,6,6) \end{aligned}$	$\mathbb{Q}(\sqrt{3})$	\mathcal{P}_{2}
5	(2, 4, 12), (2, 12, 12), (4, 4, 6), (6, 12, 12)	$\mathbb{Q}(\sqrt{3})$	\mathcal{P}_{3}
6	$\begin{aligned} & (2,4,5),(2,4,10),(2,5,5),(2,10,10), \\ & (4,4,5),(5,10,10) \end{aligned}$	$\mathbb{Q}(\sqrt{5})$	\mathcal{P}_{2}
7	$(2,5,6),(3,5,5)$	$\mathbb{Q}(\sqrt{5})$	\mathcal{P}_{3}
8	$(2,3,10),(2,5,10),(3,3,5),(5,5,5)$	$\mathbb{Q}(\sqrt{5})$	\mathcal{P}_{5}
9	$(3,4,6)$	$\mathbb{Q}(\sqrt{6})$	\mathcal{P}_{2}
10	$\begin{aligned} & (2,3,7),(2,3,14),(2,4,7),(2,7,7), \\ & (2,7,14),(3,3,7),(7,7,7) \end{aligned}$	$\mathbb{Q}(\cos \pi / 7)$	\emptyset
11	$\begin{aligned} & (2,3,9),(2,3,18),(2,9,18),(3,3,9), \\ & (3,6,18),(9,9,9) \end{aligned}$	$\mathbb{Q}(\cos \pi / 9)$	\emptyset
12	(2,4,18), (2, 18, 18), (4, 4, 9), (9, 18, 18)	$\mathbb{Q}(\cos \pi / 9)$	$\mathcal{P}_{2}, \mathcal{P}_{3}$
13	$\begin{aligned} & (2,3,16),(2,8,16),(3,3,8), \\ & (4,16,16),(8,8,8) \end{aligned}$	$\mathbb{Q}(\cos \pi / 8)$	\mathcal{P}_{2}
14	(2,5, 20), $(5,5,10)$	$\mathbb{Q}(\cos \pi / 10)$	\mathcal{P}_{2}
15	$\begin{aligned} & (2,3,24),(2,12,24),(3,3,12),(3,8,24), \\ & (6,24,24),(12,12,12) \end{aligned}$	$\mathbb{Q}(\cos \pi / 12)$	\mathcal{P}_{2}
16	($2,5,30$), ($5,5,15$)	$\mathbb{Q}(\cos \pi / 15)$	\mathcal{P}_{3}
17	$\begin{aligned} & (2,3,30),(2,15,30),(3,3,15), \\ & (3,10,30),(15,15,15) \end{aligned}$	$\mathbb{Q}(\cos \pi / 15)$	\mathcal{P}_{5}
18	$(2,5,8),(4,5,5)$	$\mathbb{Q}(\sqrt{2}, \sqrt{5})$	\mathcal{P}_{2}
19	(2,3,11)	$\mathbb{Q}(\cos \pi / 11)$	\emptyset

Takeuchi
Maclachlan-Reid

11 known totally hyperbolic triangle groups

Problem

Are there more examples of totally hyperbolic triangle groups?

Experimental Evidence

There are no other purely hyperbolic triangle groups with $(p, q, r)<5000$.

Recently verified using 5,000 cores running in parallel from 1-30 mins.

Randomized

Total execution time 587 hours

The importance of being
 $$
(14,21,42)
$$

Motivation

Theorem (Veech)
Every geodesic curve $V \rightarrow M_{g}$ has a cusp.

most cases

Theorem
`Every' geodesic curve $V \rightarrow X_{K}$ has a cusp, provided $\operatorname{dim}\left(X_{K}\right)=2$

What happens when $\operatorname{dim}\left(X_{K}\right)>2$?

What happens if $\operatorname{dim} X_{K}>2$?

Theorem
There exists a compact geodesic curve V on a 6D Hilbert modular variety,

$$
V=\mathbb{H} / \Delta^{\prime} \rightarrow X_{K},
$$

such that there is no compact Shimura variety with

$$
V \subset S \subset X_{K}
$$

(Δ^{\prime} is Zariski dense in $\mathrm{SL}_{2}\left(\mathcal{O}_{K}\right)$)

Matrix models

$\Delta=\Delta(\mathrm{p}, \mathrm{q}, \mathrm{r}) \subset \mathrm{SL}_{2}(\mathbb{R})$
$K=Q$ (traces of elements in Δ)
Δ can be realized as a subgroup of $\mathrm{SL}_{2}(\mathrm{~K})$

Fallacy
 Correction

\Leftrightarrow quaternion algebra $B=Q(\Delta)$ splits over K
$\Rightarrow \Delta$ is totally hyperbolic (B splits at all $\mathrm{v} \mid \infty$)

Theorem

Among the 11 known totally hyperbolic cocompact triangle groups, only

$$
\Delta(14,21,42)
$$

is also split at all finite places.

Corollary
 $\Delta(14,21,42)$ embeds in $S_{2}(K)$.

$$
K=Q(\cos \pi / 21)
$$

Theorem (Cohen-Wolfart)

From the group theory:

$$
\Delta(14,21,42) \subset \mathrm{SL}_{2}\left(\mathcal{O}_{K}\right)
$$

we obtain a geodesic curve

$$
V=\mathbb{H} / \Delta^{\prime} \rightarrow X_{K} .
$$

Special to triangles!

Start with $\Delta(14,21,42)$

Pass to Δ^{\prime} of index 2

$$
V=\mathbb{H} / \Delta^{\prime}
$$

Construct 6 maps \mathbb{H} to \mathbb{H} from 6 real places of K

$\Delta^{\prime} \Omega$
(uses Riemann mapping theorem)

Resulting map $\mathbb{H} \rightarrow \mathbb{H}^{6}$ covers exotic $V \rightarrow X_{K}$
Ω

Conclusion

V gives an exotic compact geodesic curve on X_{K}, dim=6.
(exotic because $\Delta^{\prime} \subset \mathrm{SL}_{2}\left(\mathcal{O}_{K}\right)$ is Zariski dense, so V is contained in no Shimura subvariety)

Conjecture

$\Delta(14,21,42)$ is the only triangle group whose invariant quaternion algebra splits.

Problem

Are there more examples of exotic curves? For example, with dim $X_{k}=3$?

How to construct more geodesic curves?

References

Teichmüller dynamics and unique ergodicity ...
Modular symbols for Teichmüller curves
Billiards and the arithmetic of non-arithmetic groups

Galois orbits in the moduli space of all triangles
Triangle groups and Hilbert modular varieties
Triangle groups: Cusps, congruence and chaos

Billiards in regular polygons

