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An overconvergence
Notation: MQ will denote the set of places (= equivalence classes
of absolute values) of the global field Q.

Normalization of the p-adic absolute values: |p|p = 1/p. Then we
have the product formula: ∀α ∈ Qr {0},

∏
v∈MQ

|α|v = 1.

We will have two stages of extending arithmetic algebraization past
the Borel-Dwork criterion. The first was Pólya’s theorem, which
implies the following useful lemma exploited by Harbater in inverse
Galois theory (Galois covers of an arithmetic surface, 1988):

Lemma (Harbater)

Suppose f (x) ∈ Q[[x ]] ∩Q(x) is algebraic. If its v -adic
convergence radii Rv (f ) fulfill∏

v∈MQ

Rv (f ) ≥ 1,

then in fact f (x) ∈ Q[[x ]] ∩Q(x) is rational.



π1: Harbater, Ihara, and Bost

Harbater’s basic application (a result first discovered by Saito, by
different means):

π1
(
P1
Z r {0, 1,∞}, ∗

)
= {1}.

Concretely: no nonrational Bely̆ı function can be in Z[[x1/N ]].

E.g., p
√

1− x ∈ Z[1/p][[x ]] with Rp = p−p/(p−1).

Passage: Suppose there were a finite covering Y → P1
Z unramified

away from the three sections x = 0, 1,∞. If N is the order of the
x = 0 local monodromy in this branched covering (N is finite by
Puiseux’s theorem), we may view f (xN) ∈ Z[[x ]] as an algebraic
power series branched only along the multisection µN ∪ {∞} (but
unramified away from 0). Then Rv (f ) = 1 for all v ∈ MQ, and
Harbater’s lemma yields f ∈ Q(x).



Attachment: Saito’s argument

To address one of the questions asked: This is a snapshot of Ihara’s

appendix to Horizontal divisors on arithmetic surfaces associated with

Bely̆ı uniformizations, in the volume The Grothendieck theory of Dessins

d’Enfants (ed. Schneps, LNS 200). It describes how Saito’s used

Abhyankar’s lemma. The further references are in Ihara’s paper.



The passage 1→ 4→ 16
Let us now consider Bely̆ı functions f (x) ∈ Q[[x ]]: algebraic formal
power series with branching only over the three points x = 0, 1,∞.
As Frank explained:

I The Archimedean radius of convergence = 1, since that is the
distance to the nearest singularity.

I In fact f (x) is holomorphic on the larger domain
x ∈ Cr [1,∞), of conformal radius 4 > 1 at the origin. Its

Riemann map is ϕ(z) = 4z/(1 + z)2, so we are simply saying that

the pullback (ϕ∗f )(z) = f (ϕ(z)) = f (4z/(1 + z)2) is holomorphic

on the disc |z | < 1.

I 4 is the largest such radius for a univalent (injective)
precomposition map ϕ : D(0, 1)→ Cr {1} omitting the
singularities {1,∞}.

What is the largest conformal size |ϕ′(0)| of some universal
map ϕ : D(0, 1)→ Cr {1} for which f (ϕ(z)) is guaranteed
to converge for every Bely̆ı function f (x) as above?



The passage 1→ 4→ 16

g : z 7→ 4z

(1 + z)2
: D(0, 1)→ Cr {1}.

I We have 1− g(z) =
(
z−1
z+1

)2
, so g extends as a holomorphic

map Cr {±1} → Cr {1}.
I Precompose g by the Riemann map

h : D(0, 1)→ Cr
(
(−∞,−1] ∪ [1,∞)

)
. This is the

conformally largest univalent map omitting the values {±1},
and it is given by

h(z) =
√
g(z2) =

2z

1 + z2
: D(0, 1)→ Cr

(
(−∞,−1]∪[1,∞)

)
.

ϕ(z) = g(h(z)) = g
(√

g(z2)
)

=
8(z + z3)

(1 + z)4
: D(0, 1)→ Cr{1}.



The passage 1→ 4→ 16

ϕ(z) = g(h(z)) = g
(√

g(z2)
)

=
8(z + z3)

(1 + z)4
: D(0, 1)→ Cr {1}.

This is now a generically bivalent map:

I 2 : 1 over the complement of {0} ∪ (Rr [−1, 1])

I 1 : 1 over {0} and (−∞,−1] ∪ (1,∞).

Yet, thanks to the singleton preimage property ϕ−1(0) = {0} over
the only branch point x = 0 of f (x) covered by the image of the
multivalent ϕ, it still has

f (ϕ(z)) convergent on |z | < 1.



The passage 1→ 4→ 16
Next stage after

g
(√

g(z2)
)

=
8(z + z3)

(1 + z)4
= 1−

(z − 1

z + 1

)4
?

If we want to keep the ϕ−1(0) = {0} property, the next
precomposition map will have to avoid not only the preimages {1}
and {−1} of the branch points x = 1 and x =∞, but also the
“other” zeros {i ,−i} of the above (preceding) map. Again, the
conformally maximal map with these requisite properties is
essentially a Koebe map, renormalized:

4

√
g(z4) =

√
2 z√

1 + z4
: D(0, 1)→ Cr µ4.

Continue by the tower (with k square root signs)

g(q) =
4q

(1 + q)2
, g

(√
g
(√
· · ·
√
g(q2k )

))



The passage 1→ 4→ 16

g(q) =
4q

(1 + q)2
, gk(q) := g

(√
g
(√
· · ·
√
g(q2k )

))
Derivatives at the origin converging to 41+1/2+1/4+1/8+··· = 16.

ϕ(q) := g1(q) =
8(q + q3)

(1 + q)4
,

ϕ(2q) = 16q − 128q2 + 704q3 − 3072q4

+11520q5 − 38912q6 + 121856q7 − 360448q8 + · · ·
λ(q) = 16q − 128q2 + 704q3 − 3072q4

+11488q5 − 38400q6 + 117632q7 − 335872q8 + · · ·.



The modular lambda map

gk(q)→ λ(q) :=

(∑
n∈Z q

(n+1/2)2
)4

(∑
n∈Z q

n2
)4 = 16q

∞∏
n=1

( 1 + q2n

1 + q2n−1

)8
.

Indeed,

L(q) := 4

√
λ(q4) =

∑
n odd q

n2∑
n even q

n2

clearly fulfills the defining equation (Landen’s transform)

L(q1/4)4 = λ(q) =
8L(q)(1 + L(q)2)

(1 + L(q))4

of the limiting map L(q).



André’s algebraicity criterion

Theorem (André)

Let f (x) ∈ Z[[x ]], and consider a holomorphic mapping
ϕ : D(0, 1)→ C taking ϕ(0) = 0 with derivative |ϕ′(0)| > 1, and
such that the germ f (ϕ(z)) ∈ C[[z ]] is analytic on |z | < 1.
Then f (x) is algebraic.
(If furthermore ϕ : D(0, 1) ↪→ C is injective, then in fact f (x) is
rational: this was Pólya’s theorem.)

A basic example: 4
√

1− 8x ∈ Z[[x ]] and it meets the criterion with
ϕ(z) := λ(z)/8, of conformal size |ϕ′(0)| = 2 > 1.



An interesting boundary case

Since λ(q) has conformal size λ′(0) = 16, we shall scale our
branch values by that factor to keep up with Z[[x ]] expansions:
{0, 1,∞} 7→ {0, 1/16,∞}.
Let x := λ(q)/16 = q − 8q2 + · · · ∈ q + q2Z[[q]]. We may
formally invert that expansion, using the equality of completed
rings Z[[q]] = Z[[x ]], and write

q = x + 8x2 + 91x3 + · · · ∈ x + Z[[x ]].

There are infinitely many Q(x)-linearly independent algebraic
functions f (x) ∈ Z[[x ]] such that f

(
λ(q)/16

)
∈ Z[[q]] is

convergent on the open unit q-disc |q| < 1.

They come from congruence modular functions! For each
N = 1, 2, 3, . . ., take λ(qN) ∈ Z[[q]] = Z[[x ]] written out in terms
of x = λ(q)/16.



A holonomy rank bound
The following will be applied with t = q1/N , p(x) := xN ,

x = x(t) := N
√
λ(tN)/16 : D(0, 1)→ U := Cr 16−1/NµN , and

ϕ : D(0, 1)→ Cr (16)−1/NµN the universal covering map restricted

disc.

Theorem
Let p(x) ∈ Q[x ] rQ and x(t) = t + · · · ∈ Q[[t]] be such that
p(x(t)) ∈ Z[[t]]. Fix the holomorphic mapping ϕ : D(0, 1)→ U
with ϕ(0) = 0 and |ϕ′(0)| > 1. Then, the totality of formal
functions f (x) ∈ Q[[x ]] that

I fulfill a linear ODE over Q(x) without singularities on U, and

I have a t-expansion f (x(t)) ∈ Z[[t]],

span over Q(p(x)) a finite-dimensional vector space of dimension
at most

e ·

∫
|z|=1 log+ |p ◦ ϕ|µHaar

log |ϕ′(0)|
.

(e = 2.71 . . . is Euler’s constant)



The proof of the holonomy theorem

It follows a method of André, itself going back to D. & G.
Chudnovsky in their Diophantine approximations proof of the
Faltings isogeny theorem for elliptic curves over Q. A crucial new
twist (obviously inspired by Thue–Siegel–Schneider–Roth) is to let
the number of auxiliary variables x := (x1, . . . , xd) to d →∞.

Lemma (Siegel’s lemma)

Let A be an L×M-matrix whose entries are rational integers
bounded in absolute value by B. Then, if L > M, the linear system
A · x = 0 of M equations in L variables x1, . . . , xL has a nontrivial
integral solution x ∈ ZL r {0} with

max
1≤i≤L

|xi | ≤ (LB)
M

L−M .

A Minkowski argument: pigeonholing a solution.



The proof of the holonomy theorem

Suppose there are m such functions f1(x), . . . , fm(x) ∈ Q[[x ]]
linearly independent over Q(p(x)). We use the md split variables
univariate products

∏d
s=1 fis (xs) and Siegel’s lemma to create an

auxiliary function of the form:

F (x) =
∑

i∈{1,...,m}d
k∈{0,...,D−1}d

ai,k p(x)k
d∏

s=1

fis (xs) ∈ (x)αQ[[x]] r {0},

with sub-exponentially small coefficients ai,k = exp(o(α)) as firstly
α→∞ and secondly d →∞. With a degree D as low as possible.



Siegel’s lemma: the parameter count

F (x) =
∑

i∈{1,...,m}d
k∈{0,...,D−1}d

ai,k p(x)k
d∏

s=1

fis (xs) ∈ (x)αQ[[x]] r {0},

I (mD)d free parameters ai,k

I
(
α+d
d

)
∼ αd/d! ≈ (eα/d)d equations to solve

I #parameters > #equations if dD > e(1 + o(1)) αm
asymptotically

I by letting also d →∞, we can also make sure the Dirichlet
exponent → 0, and the coefficients a are exp(o(α))

I then we can asymptotically take the degree parameter
dD ∼ e α

m .



The extrapolation
The idea is that the function G (z) := F (ϕ(z)) ∈ C[[z]] is analytic
on D(0, 1) (by Cauchy’s theorem), and yet since
ϕ(z) = ϕ′(0)z + · · · and x(t) = t + · · · , it also inherits from
F (x(t)) ∈ Z[[t]] an integrality property of its lexicographically
lowest term c zβ:
I c ∈ ϕ′(0)|β| Z r {0}, with total degree |β| ≥ α
I hence the Liouville lower bound for that coefficient:

log |c | ≥ α log |ϕ′(0)|
I (A simplification step pointed out to us by André) We can use

the plurisubharmonic property of log |holomorphic function|
together with an easy induction scheme on d to prove that,
for our lexicographically lowest monomial c zβ, we have a
bound in the other direction:

log |c | ≤
∫
Td

log |G |µHaar.

The base case d = 1 is simply the subharmonic property of
log |z−βG (z)|.



The holonomy rank bound: proof completion

I α log |ϕ′(0)| ≤
∫
Td log |F |µHaar

I the RHS is upper estimated by our arithmetic information
from the shape of F and the asymptotically subexponential
coefficients bound in Siegel’s lemma:

α log |ϕ′(0)| ≤
∫
Td

log |G |µHaar ≤ dD

∫
T

log+ |p ◦ ϕ|µHaar+o(α)

I With the degree parameter asymptotic estimate dD ∼ eα/m,
the last inequality amounts in the α→∞, d →∞ limit to

m ≤ e

∫
T log+ |p ◦ ϕ|µHaar

log |ϕ′(0)|
,

that is precisely what we aimed to prove.



What have we got so far

In Lecture 2, we will be using the preceding with the choices

t := q1/N = eπiτ/N , p(x) = xN ,

x(t) := N

√
λ(tN)/16, U := Cr 16−1/NµN ,

ϕ(z) := 16−1/NFN(rz) : D(0, 1)→ U

for r := 1− 1/(2N3).

e ·

∫
|z|=1 log+ |p ◦ ϕ|µHaar

log |ϕ′(0)|
.

We will see in Lecture 2 that this dimension bound is an
O(N3 logN) in the above situation, and derive from this the
Unbounde Denominators conjecture.


