
Polynomial-time algorithms in
algebraic number theory

Written by
D.M.H. van Gent

Based on lectures of
H.W. Lenstra

Mathematisch Instituut
Universiteit Leiden

Netherlands
July 19, 2021

1 Introduction

In these notes we study methods for solving algebraic computational problems, mainly those
involving number rings, which are fast in a mathematically precise sense. Our motivating problem
is to decide for a number field K, elements a1, . . . , at ∈ K∗ and n1, . . . , nt ∈ Z whether

∏
i a
ni
i = 1,

which turns out to be non-trivial. From basic operations such as addition and multiplication of
integers we work up to computation in finitely generated abelian groups and algebras of finite
type. Here we encounter lattices and Jacobi symbols. Some difficult problems in computational
number theory are known, for example computing a prime factorization or a maximal order in
a number field. We will however focus mainly on the positive results, namely the problems for
which fast computational methods are known.

1.1 Algorithms

To be able to talk about polynomial-time algorithms, we should first define what an algorithm is.
We equip the natural numbers N = Z≥0 with a length function l : N → N that sends n to the
number of digits of n in base 2, with l(0) = 1.

Definition 1.1. A problem is a function f : I → N for some set of inputs I ⊆ N and we call
f a decision problem if f(I) ⊆ {0, 1}. An algorithm for a problem f : I → N is a ‘method’ to
compute f(x) for all x ∈ I. An algorithm for f is said to run in polynomial time if there exist
c0, c1, c1 ∈ R>0 such that for all x ∈ I the time required to compute f(x), called the run-time, is
at most (c0 + c1l(x))c2 . We say a problem f is computable if there exists an algorithm for f .

This definition is rather empty: we have not specified what a ‘method’ is, nor have we explained
how to measure run-time. We will briefly treat this more formally. The reader for which the above
definition is sufficient can freely skip the following paragraph. The main conclusion is that we will
not heavily rely on the formal definition of run-time in these notes.

In these notes, the word algorithm will be synonymous with the word Turing machine. For
an extensive treatment of Turing machines, see [3]. A Turing machine is a model of computation
described by Alan Turing in 1936 that defines an abstract machine which we these days think of
as a computer. The main differences between a Turing machine and a modern day computer is
that the memory of a Turing machine is a tape as opposed to random-access memory, and that a
Turing machine has infinite memory. The run-time of a Turing machine is then measured as the
number of elementary tape operations: reading a symbol on the tape, writing a symbol on the
tape and moving the tape one symbol forward or backward. It is then immediately clear that it is
expensive for a Turing machine to move the tape around much to look up data, as opposed to the
random-access memory model where the cost of a memory lookup is constant, regardless of where
the data is stored in memory. This also poses a problem for our formal treatment of run-time, as
it may depend on our model of computation. However, both models of computation are able to
emulate each other in such a way that it preserves the property of computability in polynomial
time, even though the constants c0, c1 and c2 as in Definition 1.1 may increase drastically. We use
this as an excuse to be informal in these notes about determining the run-time of an algorithm.

1.2 Basic computations

In these notes we build up our algorithms from basic building blocks. First and foremost, we
remark that the basic operations in Z and Q are fast. Addition, subtraction, multiplication and
division (with remainder in the case of Z) can be done in polynomial time, as well as checking
the sign of a number and whether numbers are equal. We assume here that we represent a
rational number by a pair of integers, a numerator and a denominator. We may even assume the
numerator and denominator are coprime: Given a, b ∈ Z we can compute their greatest common
divisor gcd(a, b) and solve the Bézout equation ax + by = gcd(a, b) for some x, y ∈ Z using the
(extended) Euclidean algorithm in polynomial time. Applying these techniques in bulk we can
also do addition, subtraction and multiplication of integer and rational matrices in polynomial
time. Least trivially of our building blocks, using the theory of lattices we can compute bases for
the kernel and the image of an integer matrix in polynomial time, which is the topic of Section 3.

1

1.3 Commutative algebra and number theory

Definition 1.2. Let R be a commutative ring. We write specR for the set of prime ideals of R.
We say R is local if R has a unique maximal ideal. For an ideal I ⊆ R we define the radical

√
I

of I to be the ideal {x ∈ R | (∃n ∈ Z>0)xn ∈ I}. We call nil(R) =
√

0R the nilradical of R and
we call the elements of nil(R) the nilpotents of R. We say R is reduced when nil(R) = 0. We say
ideals I, J ⊆ R are coprime when I + J = R.

Definition 1.3. A number field is a field K containing the field of rational numbers Q such that
the dimension of K over Q as vector space is finite. A number ring is a subring of a number field.

For a number ring R, write Rp for the localization at the prime ideal p of R.

Definition 1.4. Let R be a number ring and let K = R0R be its field of fractions. A fractional
ideal of R is a finitely generated non-zero R-submodule of K. A fractional ideal of R is integral if
it is contained in R. A fractional ideal of R is principal if it is of the form xR for some x ∈ K.
We write I + J and I · J for the R-modules generated by {i + j | i ∈ I, j ∈ J} respectively
{i · j | i ∈ I, j ∈ J}. A fractional ideal I of R is invertible if there exists some fractional ideal J
of R such that I · J is principal. A non-invertible fractional ideal is called singular. For fractional
ideals I and J of R write I : J = {x ∈ K |xJ ⊆ I}.

Definition 1.5. An order is a commutative ring whose additive group is isomorphic to Zn for
some n ∈ Z≥0. We say R is an order of a number field K if R ⊆ K and R0R = K.

Any reduced order is contained in some finite product of number fields. In our algorithms we
encode an order by first specifying its rank n, and then writing down its n × n multiplication
table for the standard basis vectors. By distributivity this completely and uniquely defines a
multiplication on the order. We encode a number field K simply by an order R such that R0R = K.

1.4 Exercises

Exercise 1.1. Let Qalg be some algebraic closure of Q.
a. Show that there are precisely #N number fields contained in Qalg up to isomorphism.
b. Show that there are precisely #R subfields of Qalg up to isomorphism.
c. Do there exist #R subfields of Qalg that are pairwise isomorphic?
d. Let K 6= Q be a number field. Show that there are precisely #N orders and #R subrings in

K with field of fractions K.
e. Argue why it is natural to restrict the input of our algorithms to orders and number fields

as opposed to general number rings.

Exercise 1.2. Show that there exists a polynomial-time algorithm that, given a square integer
matrix, determines whether it encodes an order.

Exercise 1.3. Let R be a commutative ring. Show that R is a local ring if and only if R \R∗ is
an additive subgroup of R.

Exercise 1.4. Let R be an order of a number field K. Prove that R = OK if and only if the sum
of every two invertible ideals is again invertible.

Exercise 1.5. Let R be a commutative ring. Show that nil(R) is equal to the intersection of all
prime ideals of R. Moreover, show that if nil(R) is finitely generated, then nil(R) is nilpotent.

Exercise 1.6. Show that any finite commutative domain is a field. Conclude that in a general
commutative ring prime ideals of finite index are maximal.

Exercise 1.7. Let R be a commutative ring and let I1, . . . , Im, J1, . . . , Jn ⊆ R be ideals such that
for all i, j we have Ii + Jj = R. Show that I1 · · · Im + J1 · · · Jn = R. Conclude that for any two
distinct maximal ideals m, n ⊆ R and any m,n ∈ Z≥0 we have mm + nn = R.

2

Exercise 1.8 (Chinese remainder theorem for ideals). Let R be a commutative ring and let
I1, . . . , In ⊆ R be pair-wise coprime ideals. Show that

⋂n
i=1 Ii =

∏n
i=1 Ii and prove that the

natural homomorphism

R/
(n⋂
i=1

Ii

)
→

n∏
i=1

(R/Ii)

is an isomorphism.

Exercise 1.9. Let I, J be fractional ideals in a number ring R.
a. Show that if IJ = R, then J = R : I.
b. Show that if I is invertible, then I : I = R.
c. Show that IJ is invertible if and only if I and J are invertible.

Exercise 1.10. Let I be an ideal in a number ring R.
a. Show that there exist prime ideals p1, . . . , pn ⊆ R that contain I and satisfy p1 · · · pn ⊆ I.
b. Suppose I is a product of prime ideals. Show that I : I = R if and only if I is invertible.

Hint: First suppose I is prime. If I is singular and a ∈ p is non-zero, then p1 · · · pt ⊆ aR ⊆ I and
without loss of generality p1 = I. Any b ∈ p2 · · · pn \ aR satisfies bI ⊆ aR.

Exercise 1.11. Let α be an algebraic integer of degree at least 3 and let p be a prime number.
Show that R = Z + pZ[α] is a domain, and that I = αZ + R is a fractional R-ideal. Moreover,
prove that I : I = R and that I is not invertible.
Note: This provides a counter-example to the converse of Exercise 1.9.b.

3

2 Coprime base factorization

In this section we treat the following problem, which will be the motivation for the coprime base
algorithm.

Theorem 2.1. There is a polynomial time algorithm that on input t ∈ N, q1, . . . , qt ∈ Q∗ and
n1, . . . , nt ∈ Z decides whether

t∏
i=1

qni
i = 1. (2.1)

It is clear we can determine whether such a product has the correct sign: Simply take the sum
of all ni for which qi < 0 and check whether the result is even. It is then sufficient to prove the
following theorem instead.

Theorem 2.2. There is a polynomial time algorithm that on input t ∈ N, a1, . . . , at, b1, . . . , bt ∈
Z>0 and n1, . . . , nt,m1, . . . ,mt ∈ Z decides whether

t∏
i=1

ani
i =

t∏
i=1

bmi
i . (2.2)

In this form, the problem looks deceptively easy. Consider for example the most straightforward
method to decide (2.2).

Method 2.3. Compute
∏t
i=1 a

ni
i and

∏t
i=1 b

mi
i explicitly and compare the results.

This method is certainly correct in that it is able to decide (2.2). However, it fails to run in
polynomial time even when t = 1. For n ∈ Z>0 we have that l(2n) = n + 1 ≈ 2l(n). Hence the
length of 2n is not bounded by any polynomial in l(n). We wouldn’t even have enough time to
write down the number regardless of our proficiency in multiplication because the number is too
long.

Another method uses the fundamental theorem of arithmetic, also known as unique prime
factorization in Z.

Method 2.4. Factor a1, . . . , at, b1, . . . , bt into primes and for each prime that occurs compute the
number of times it occurs in the products

∏t
i=1 a

ni
i and

∏t
i=1 b

mi
i and compare the results.

It is true that once we have factored all integers into primes only a polynomial number of steps
remains. If we write xip for the exponent of the prime p in ai, then we may compute

∑t
i=1 nixip,

the exponent of p in
∏t
i=1 a

ni
i , in polynomial time. Moreover, the number of prime factors of

n ∈ Z>0 is at most l(n), so the number of primes occurring is at most
∑t
i=0(l(ai)+ l(bi)), which is

less than the length of the combined input. The problem lies in the fact that we have not specified
how to factor integers into primes. As of January 2020, nobody has been able to show that we
can factor integers in polynomial time. Until this great open problem is solved, Method 2.4 is out
the window.

An interesting observation is that the main obstruction in Method 2.3 lies in the exponents
being large, while for Method 2.4 the obstruction is in the bases. Our proof for Theorem 2.2
will be to slightly tweak Method 2.4. Namely, observe that we do not need to factor into prime
elements but that it suffices to factor into pairwise coprime elements. The following lemma follows
readily from unique prime factorization.

Lemma 2.5 (Unique coprime factorization). Let s ∈ N and let c1, . . . , cs ∈ Z>1 be pairwise
coprime. If for n1, . . . , ns,m1, . . . ,ms ∈ Z≥0 we have

s∏
i=1

cni
i =

s∏
i=1

cmi
i , (2.3)

then ni = mi for all i.

We now propose the following algorithm for deciding (2.2).

4

Method 2.6. Factor a1, . . . , at, b1, . . . , bt into pairwise coprime c1, . . . , cs ∈ Z>0. For each ci
compute the number of times it occurs in

∏t
i=1 a

ni
i and

∏t
i=1 b

mi
i and compare the results.

Now to prove Theorem 2.2 and in turn Theorem 2.1 it suffices to prove the following.

Theorem 2.7 (Coprime base factorization). There is a polynomial time algorithm that on input
t ∈ N and a1, . . . , at ∈ Z>0 computes s ∈ N, c1, . . . , cs ∈ Z>1 and (nij) ∈ Zt×s≥0 such that c1, . . . , cs
are pairwise coprime and ai =

∏s
j=1 c

nij

j for all i.

We state the algorithm first and prove the theorem later.

Method 2.8. Construct a complete simple graph G and label the vertices with a1, . . . , as. We
call it a labeling because the map sending a vertex to its label need not be injective. While there
are edges in G, repeat the following 5 steps:

1. Choose an edge {U, V } of G and let u and v be the labels of U respectively V .
2. Compute w = gcd(u, v) using the Euclidean algorithm.
3. Add a vertex W labeled w to G and connect it to U , V and those vertices which are

neighbours of both U and V .
4. Update the labels of U and V to u/w and v/w respectively.
5. For each S ∈ {U, V,W}, if the label of S is 1, then delete S and its incident edges from G.

Now V = {c1, . . . , cs} consists of the required pairwise coprime elements. The remaining output
can now be computed in polynomial time.

In the graph we construct and update the edges represent the pairs of numbers of which we
do not yet know whether they are coprime, while a missing edge denotes that we know the pair
to be coprime.

Example 2.9. We apply Method 2.8 to (a1, a2) = (4500, 5400). Since there are only two vertices
our graphs will fit on a single line. We denote the edge we choose in each iteration with a bullet
and edges we have to erase are dotted. On the right we show how to keep track of the factorization
of 4500 with minimal bookkeeping by writing it as a product of vertices in the graph.

Iteration 1: 4500 • 5400 4500

Iteration 2: 5 • 900 6 5 · 900

Iteration 3: 1 5 • 180 6 52 · 180

Iteration 4: 1 5 • 36 6 53 · 36

Iteration 5: 5 1 36 • 6 53 · 36

Iteration 6: 5 6 • 6 1 53 · 6 · 6
Iteration 7: 5 1 6 1 53 · 62

Iteration 8: 5 6 53 · 62

We obtain (c1, c2) = (5, 6) and 4500 = 53 · 62. By trial division we obtain 5400 = 52 · 63.

Example 2.10. We apply Method 2.8 to (a1, a2, a3) = (15, 21, 35).

35

•

15 21

7

5 •

3 21

1

5 • 7

3 3

5 1 7

3 • 3

5 7

•

1 3 1

5 7

1

3

5

The resulting coprime base is (c1, c2, c3) = (3, 5, 7). In the fifth graph something interesting
happens. Vertex 7 suddenly becomes disconnected from the graph because we know it is coprime
to one of the 3’s.

Proof of Theorem 2.7. We claim Method 2.8 is correct and runs in polynomial time. One can
show inductively that throughout the algorithm two vertices in the graph G are coprime when
there is no edge between them. When the algorithm terminates because there are no edges in the
graph, we may conclude that c1, . . . , cs are coprime. Additionally, one shows inductively that the
numbers a1, . . . , at can be written as some product of the vertices of G. Hence c1, . . . , cs forms a
coprime base for a1, . . . , at, so Method 2.8 is correct. It remains to show that it is fast.

Write Pn for the product of all vertices in the graph at step n. Note that P0 = a1 · · · as and
that Pn+1 | Pn for all n ∈ N. Since P0 has at most B = l(P0) prime factors counting multiplicities,
there are at most B steps n for which Pn+1 < Pn and at most B vertices in G. The steps for which
Pn = Pn+1 are those where the edge we chose is between coprime integers, meaning no vertices
or edges are added to the graph and one edge is deleted. As the number of edges is at most B2,
then so is the number of consecutive steps for which Pn = Pn+1. Hence the total number of steps
is at most B3, which is polynomial in the length of the input. Lastly, note that each step takes
only polynomial time because the values of the vertices are bounded from above by B and the
Euclidean algorithm runs in polynomial time. Hence Method 2.8 runs in polynomial time.

The speed of this algorithm heavily depends on how fast the product of all vertices decreases.
In each step we want to choose our edge {u, v} such that gcd(u, v)� 1. A heuristic for this could
be to choose edges between large numbers. For those interested in the efficiency of coprime base
factorization we refer to [1] for a provably faster algorithm.

Exercise 2.1. Show that there exists a polynomial-time algorithm that, given a, b, c, d ∈ Z>0

such that ab = cd, computes w, x, y, z ∈ Z>0 such that (a, b, c, d) = (wx, yz, wz, xy).

Exercise 2.2 (Modified Euclidean algorithm). For the sake of convention say gcd(0, 0) = 0.
a. Show that for all a, b ∈ Z with b 6= 0 there exist r, q ∈ Z with a = qb+ r and |r| ≤ |b|/2.
b. Show that for all q, b, r ∈ Z with a = qb+ r we have gcd(a, b) = gcd(b, r) and gcd(a, 0) = |a|.
c. Prove that there exists a polynomial-time algorithm that, given a, b ∈ Z, computes gcd(a, b)

as well as x, y ∈ Z such that ax+ by = gcd(a, b).
d. Conclude that there exists a polynomial-time algorithm that, given a, n ∈ Z with n > 1,

decides whether a ∈ (Z/nZ)∗ and if so computes some a′ ∈ Z such that aa′ ≡ 1 mod n.
e. Prove that there exists a polynomial-time algorithm that, given a, b,m, n ∈ Z with n,m > 1,

decides whether there exists some c ∈ Z such that c ≡ a mod m and c ≡ b mod n and if so
computes it.

Exercise 2.3. Show that there exists a polynomial-time algorithm that, given k, a1, . . . , ak, n ∈ Z
satisfying n ≥ 1 and a2

i ≡ 1 mod n for all i, decides whether there exists some non-empty subset
I ⊆ {1, . . . , k} such that

∏
i∈I ai ≡ 1 mod n and if so computes one such I. Hint: Factor n.

Exercise 2.4. We equip Q2\{(0, 0)} with an equivalence relation∼ where (x1, y1) ∼ (x2, y2) if and
only if there exists some λ ∈ Q∗ such that (λx1, λy1) = (x2, y2). Write P1(Q) = (Q2 \ {(0, 0)})/ ∼
for the projective line and write (x : y) for the image of (x, y) in P1(Q). Let a, b ∈ Z>0 and let
c1, . . . , cn be the coprime base for a and b produced by Method 2.8.

a. For p | ab prime write f(p) = (ordp(a) : ordp(b)) ∈ P1(Q). Show that every ci naturaly
corresponds to a fibre of f and give the prime factorization of ci.

b. Suppose n = 7. Show that ab ≥ 1485890406000 and equality holds for 8 pairs (a, b).
c. (difficult) Give an assymtotic formula for the minimum of ab in terms of n.

Exercise 2.5. Let n ∈ Z>0. We encode matrices M = (mij)i,j over Z/nZ as a matrix M =
(mij)i,j over Z such that 0 ≤ mij < n and mij ≡ mij mod n for all i, j. Show that there exist
polynomial-time algorithms for the following problems:

a. given n ∈ Z≥0 and matrices M and N over Z/nZ, compute M +N and M ·N ;
b. given n, k ∈ Z>0 and a matrix M over Z/nZ, compute Mk;

Note: An algorithm that takes k steps is not polynomial-time!

6

c. given n ∈ Z>0 and a matrix M over Z/nZ, compute a row-echelon form of M ;
d. given n ∈ Z>0 and a square matrix M over Z/nZ, compute det(M) and Tr(M);
e. given n ∈ Z>0 and a matrix M over Z/nZ, decide whether M−1 exists and if so compute it.

You may use the following fact: For every n,B ∈ Z>0 and matrix M = (mij)i,j ∈ Zn×n with
|mij | ≤ B for all i, j it holds that |det(M)| ≤ Bn ·nn/2 (see Hadamard’s inequality, Exercise 3.5).

f. Show that there exists a polynomial-time algorithm that, given an integer matrix M , com-
putes det(M) and Tr(M).

Exercise 2.6. Show that there exists a polynomial-time algorithm that, given a, b, k, n ∈ Z with
k, n > 0 and ak ≡ 1 mod n and bk ≡ −1 mod n, computes some c ∈ Z such that a ≡ c2 mod n.
Hint: First consider n odd and k a power of 2.

Exercise 2.7. Show that there exist polynomial-time algorithms for the following problems:
a. given a, p, q ∈ Z with p and q prime and gcd(a, p) = 1, compute u, e ∈ Z such that gcd(u, q) =

1 and such that the order of a in (Z/pZ)∗ equals uqe;
b. given a, p ∈ Z with p prime, decide whether a is a square modulo p;
c. given a, b, p ∈ Z with p prime, a a square modulo p and b not a square modulo p, compute

c ∈ Z such that c2 ≡ a mod p;
d. given a, b, p ∈ Z with p prime, compute c ∈ Z such that c2 equals a, b or ab modulo p.

2.1 Coprime base factorization in number fields

We would like to generalize Theorem 2.1 to arbitrary number fields, by which we mean that there
is an additional input K, a number field, and that we take q1, . . . , qt ∈ K∗. The theorem we will
prove in the final sections is the following.

Theorem 2.11. There exists a polynomial-time algorithm that, given a number field K, an
n ∈ Z≥0 and a1, . . . , an ∈ K∗, computes the kernel of the map Zn → 〈a1, . . . , an〉 given by

(k1, . . . , kn) 7→
∏
i a
ki
i .

In Section 3 we will actualy define what it means to compute the kernel of a linear map. When
we try to prove this theorem by generalizing the theorems from the previous section, we run into
some classic problems in (computational) number theory.

Theorem 2.2, to which we reduce, is a statement about integers. Hence we replace Z by an
order R in K. One problem is that R∗ will generaly contain more than just {±1}, and it is not
obvious how to pick a set R>0 ⊆ R \ {0} of representatives of (R \ {0})/R∗ like the positive
integers for Z. Another problem is that we would like to at least compute the set R∗, which is a
finitely generated abelian group by Dirichlet’s unit theorem, but it is not known how to do this in
polynomial time. Even if we disregard run-time issues, we want a Lemma 2.5 for orders. However,
generally R will not be a UFD like Z, making Theorem 2.7 hard to generalize.

The ‘correct’ way to generalize the theory is to translate it into a theorem about ideals, since
the maximal order OK of K has unique ideal factorization. Moreover, as opposed to the elements
of OK \{0} themselves, the ideals are invariant under multiplication by units. However, computing
OK is also difficult. Luckily this is something we can work around. First we generalize Lemma 2.5.

Lemma 2.12 (Unique coprime factorization for ideals). Let s ∈ N, let R be an order and let
c1, . . . , cs (R be pairwise coprime invertible integral ideals. If for n1, . . . , ns,m1, . . . ,ms ∈ Z≥0

we have
s∏
i=1

cni
i =

s∏
i=1

cmi
i , (2.4)

then ni = mi for all i.

Proof. Since the ideals are invertible we may divide out c
min{ni,mi}
i and thus assume without loss

of generality that ni = 0 or mi = 0 for all i. But then the product on the left hand side of (2.4)
and the product on the right hand side of (2.4) are coprime, so the products equal R. By the
Chinese remainder theorem for ideals we get 0 = R/(

∏s
i=1 c

ni
i) =

∏s
i=1(R/cni

i), so cni
i = R for all

i. If ni > 0 we have ci ⊇ cni
i = R, so ci = R, a contradiction. Thus ni = mi = 0 for all i.

7

We would now like to prove the following theorem.

Theorem 2.13. There exists a polynomial-time algorithm that, given an order R, an n ∈ Z≥0 and
non-zero ideals a1, . . . , an ⊆ R, computes either an order S) R or a coprime base c1, . . . , cm (R
of invertible ideals for a1, . . . , an.

To prove this theorem we we are required to do some more work. First of all we require some
definitions on how to encode orders and ideals. Then, we should construct algorithms to do
arithmetic on ideals in polynomial time. More generally, we will study algorithms for finitely
generated abelian groups in the next section.

Exercise 2.8. Suppose we can compute a basis of the image and kernel of a morphism Zn → Zm
encoded by an integer matrix in polynomial time (we can, but this is non-trivial). Show that for
an order R and fractional ideals a and b of R, encoded as a Z-basis, we may compute a + b, a · b
and a : b and decide whether a = b in polynomial time.

Exercise 2.9. Suppose that we may compute for ideals a and b the ideals a+b, a ·b and a : b and
decide whether a = b. Show that there exists an algorithm that, given an order R, n ∈ Z≥0 and
non-zero ideals a1, . . . , an ⊆ R, computes either an order S) R or a coprime base c1, . . . , cm (R
of invertible ideals for a1, . . . , an. Show that your algorithm runs in polynomial time when the
input is restricted to ideals of the form aR with a ∈ Z>0. Hint: You can assume every ideal you
encounter is invertible.

8

3 Finitely generated abelian groups

In this section we treat algorithms on finitely generated abelian groups. Many important objects
in algebraic number theory are finitely generated abelian groups. For example, the additive group
of orders R in number fields, as well as finitely generated modules over R, notably its ideals I
and quotients R/I. In this section we will use additive notation for our abelian groups and we
will use [2] as our reference. Other finitely generated abelian groups of interest are unit groups of
finite commutative rings like Z/nZ or Fq, or an elliptic curve. However, as we will soon see, there
is an obstruction in working these groups.

We begin by specifying a representation for our finitely generated groups. Recall that every
finitely generated abelian group A fits in some exact sequence

Zm Zn A 0.α f

Namely, we obtain n and f by writing down some generators a1, . . . , an ∈ A for A and let f map the
i-th standard basis vector to ai. For m and α we repeat the procedure with A replaced by ker(f).
Note that α, being a morphism between free Z-modules, has a natural representation as a matrix
with integer coefficients. By the isomorphism theorem A ∼= Zn/ ker(f) = Zn/ im(α) = coker(α),
so A is completely defined by α. Thus we choose to encode A as the matrix corresponding to α.
A morphism f : A → B of finitely generated abelian groups in terms of this representation gives
a commutative diagram of exact sequences

Zk Zl A 0

Zm Zn B 0.

α

ϕ f

β

(3.1)

Here ϕ is any morphism that makes the diagram commute. We encode f by the matrix repre-
senting ϕ. Important to note is that not every ϕ defines a morphism f : A → B. It defines
a morphism precisely when im(ϕ ◦ α) ⊆ im(β), however it is not immediately obvious how to
test this. Computing the composition of morphisms and evaluating morphisms in this form is
straightforward, as it is just matrix multiplication.

To work with abelian groups in our algorithms it takes more than just to specify an encoding.
The following is a list in no particular order of operations we would like to be able to perform in
polynomial time.

1. decide whether a matrix encodes a morphism of given groups;
2. compute kernels, images and cokernels of group homomorphisms;
3. test if a group homomorphism is injective/surjective and if bijective compute an inverse;
4. decide if two group homomorphisms are equal;
5. compute an element in the preimage of a given group element under a group homomorphism;
6. compute direct sums, tensor products and homomorphism groups of pairs of groups;
7. compute the order of a given group element;
8. compute the order/exponent of a finite group;
9. split exact sequences;

10. compute the torsion subgroup of a group;
11. write a group as a direct sum of cyclic groups.

We will spend this section working up to the last element of this list: An algorithmic version of
the fundamental theorem of finitely generated abelian groups.

Finally, we addres an important subtlety that arises from our choice of encoding.

Lemma 3.1. Assuming the above problems have polynomial time algorithms, we may solve the
discrete logarithm problem in polynomial time. That is, given an abelian group A and elements
a, b ∈ A, decide whether there exists some positive integer n such that na = b and if so compute
such n.

9

It is well known that the discrete logarithm problem for F∗q or elliptic curves over finite fields is
difficult, i.e. not known to be solvable in polynomial time, even though both are finitely generated
abelian groups. The difficulty is representing F∗q and its elements in our encoding. For starters,
we need to write down generators for F∗q and subsequently write the input to our algorithms in
terms of these generators. Doing so is almost equivalent to the discrete logarithm problem.

Exercise 3.1. Prove Lemma 3.1.

Exercise 3.2. Show that there exists a polynomial-time algorithm that, given finitely gener-
ated abelian groups A and B, computes the group A × B and the corresponding inclusions and
projections.

3.1 Lattices and short bases

To understand general finitely generated abelian groups, we first need to understand the simplest
instances, the free abelian groups. It will turn out to be fruitful to consider free abelian groups
together with an inner product. This will allow us later to compute images and kernels of linear
maps.

Definition 3.2. A Euclidean (vector) space is a finite-dimensional real inner product space. For
an element x in an inner product space we will write q(x) = 〈x, x〉. A lattice is a discrete subgroup
of a Euclidean space.

A Euclidean space we naturally encounter for any number field K is K ⊗Z R, which we equip
with the inner product

〈x, y〉 =
1

[K : Q]

∑
σ:K⊗ZR→C

σ(x) · σ(y)

where the sum ranges over all R-algebra homomorphisms. In this Euclidean space every order of
K is a lattice.

Proposition 3.3. A lattice Λ in a Euclidean space V is a free Z-module with rk Λ ≤ dimV
and the restriction of the inner product to Λ is Z-bilinear, real-valued, symmetric and satisfies
inf{〈x, x〉 |x ∈ Λ \ {0}} > 0. Conversely, every free Z-module Λ of finite rank equipped with a
Z-bilinear, real-valued, symmetric form ϕ for which inf{ϕ(x, x) | x ∈ Λ\{0}} > 0 can be embedded
in a Euclidean vector space such that the inner product restricted to Λ equals ϕ.

This proposition shows that we have an equivalent definition of a lattice that does not require
an ambient vector space. The bilinear form ϕ in the proposition is again naturally given by a
matrix F = (ϕ(bi, bj))1≤i,j≤n where (b1, . . . , bn) is the basis encoding Λ. For our computational
purposes it is practical to restrict to matrices with rational entries. This will be our encoding for
lattices.

An algorithmic problem we will encounter is computing a ‘short basis’ for a lattice Λ ⊆ Zn.

Definition 3.4. Let Λ be a lattice and let (b1, . . . , bn) be a basis of Λ. Consider the matrix
B = (〈bi, bj〉)1≤i,j≤n. We define the determinant of Λ to be det(Λ) = |det(B)|1/2.

Exercise 3.3. Show that the determinant of a lattice does not depend on the choice of basis.

The determinant det(Λ) also equals the volume of the parallelepiped span by a basis of Λ. Since
the determinant is an invariant, finding a ‘shorter’ basis is equivalent to finding a ‘more orthogonal’
basis.

b2

b1

b2 − 2b1

c2

c1
⇒

For a Euclidean space the Gram–Schmidt algorithm transforms a basis into an orthogonal one as
follows.

10

Definition 3.5. Let V be a Euclidean space with basis B = (b1, . . . , bn). We iteratively define

µij =
〈bi, b∗j 〉
〈b∗j , b∗j 〉

for 1 ≤ j < i and b∗i = bi −
∑
j<i

µijb
∗
j for 1 ≤ i ≤ n.

We call B∗ = (b∗1, . . . , b
∗
n) and (µij)j<i the Gram–Schmidt basis respectively Gram–Schmidt coef-

ficients corresponding to B.

When interpretingM = (µij)j<i as an upper-triangular matrix, we note that that (id +M)B∗ =
B. In particular det(B) = det(B∗). Since b∗1, . . . , b

∗
n are indeed pairwise orthogonal, they form

an orthogonal basis of V . Sadly the Gramm–Schmidt coefficients will generally not be integers,
meaning that if B is a basis for a lattice Λ, then generally B∗ will not be. This is quite unsur-
prising, as not every lattice even has an orthogonal basis. A possible solution is to round the
Gram-Schmidt coefficients to integers in every step, so that we are guaranteed to obtain a basis
for Λ. However, this does not yield the necessary bounds on our basis.

Exercise 3.4. We say a basis B = (b1, . . . , bn) is Gram–Schmidt reduced if |µij | ≤ 1
2 holds for all

Gram–Schmidt coefficients µij of B. Show that the following algorithm is guaranteed to terminate,
and hence computes a Gram–Schmidt reduced basis: Let (b1, . . . , bn) be a basis.

1. Compute the Gram–Schmidt coefficients (µij)j<i of (b1, . . . , bn).
2. If |µij | ≤ 1

2 for all i, j, then return (b1, . . . , bn) and terminate.
3. Choose any i, j such that |µij | > 1

2 and replace bi by bi − dµijcbj .
4. Go to step 1.

The algorithm of Exercise 3.4 will not run in polynomial time. In the next section we will
state the existence of a better algorithm.

Exercise 3.5. Let (b1, . . . , bn) be a basis of a lattice Λ in a Euclidean space V . Write Λk =∑
j≤k Zbi for all 0 ≤ k ≤ n.
a. Show that

q(bi) ≥ q(b∗i) =
(det(Λi)

det(Λi−1)

)2

.

b. Conclude Hadamard’s inequality: For B the matrix with columns b1, . . . , bn we have

|det(B)| ≤
n∏
i=1

‖bi‖

with equality if and only if the bi are pairwise orthogonal.
c. Show that

det(Λ)2 ≤
n∏
i=1

q(bi) ≤ 2(n
2) det(Λ)2.

Exercise 3.6. Let V be a Euclidean space. For a subspace W ⊆ V we write W⊥ = {v ∈ V |
〈v,W 〉 = 0}.

a. Show that for all W ⊆ V the natural map W⊥ → V/W is an isomorphism of vector spaces.
We equip V/W with the natural Euclidean vector space structure induced by W⊥. Suppose Λ ⊆ V
is a lattice with a sublattice Λ′ such that Λ/Λ′ is a torsion free group.

b. Show that the natural map Λ/Λ′ → V/RΛ′ is injective and that its image is a lattice.
c. Show that det(Λ) = det(Λ/Λ′) · det(Λ′).

Exercise 3.7. Let Λ be a lattice and define the Λ† to be the group Hom(Λ,Z) together with the
map 〈·, ·〉 : Λ† × Λ† → R given by

〈f, g〉 = sup
x∈Λ\{0}

f(x)g(x)

〈x, x〉
.

a. Show that Λ† is a lattice. We will call Λ† the dual lattice of Λ.
b. Suppose Λ ⊆ Rn is full rank and let Λ′ = {x ∈ Rn | 〈x,Λ〉 ⊆ Z}. Show that Λ′ is a lattice.

11

c. Show that Λ† ∼= Λ′ and (Λ†)† ∼= Λ.
d. Show that det(Λ†) = det(Λ)−1.

e. For a homomorpism ϕ : Λ1 → Λ2 of lattices write ϕ† : Λ†2 → Λ†1 for the map f 7→ f ◦ ϕ.
Show that

det(ker(f)) · det(im(f)) · det(Λ†1) = det(ker(f†)) · det(im(f†)) · det(Λ2).

3.2 The LLL-algorithm

In this section we state the existence the LLL-algorithm, which produces a ‘small’ basis for a
given lattice. We will not prove the correctness of the algorithm, nor will we actually describe
the algorithm. What we will do is define what we mean by ‘small’ bases the context of the LLL-
algorithm and derive some of their properties. In this section we will use [5] as our reference. A
reference on the LLL-algorithm we do not draw upon which may be of interest to a reader is [6].

Definition 3.6. Let Λ be a lattice with basis B = (b1, . . . , bn) and let (b∗1, . . . , b
∗
n) and (µij)j<i

be its corresponding Gram–Schmidt basis and coefficients as defined in Definition 3.5. Let 4
3 ≥ c.

We say B is c-reduced if
(1) For all 1 ≤ j < i ≤ n we have |µij | ≤ 1

2 .
(2) For all 1 ≤ k < n we have cq(b∗k+1) ≥ q(b∗k).

Note that the first condition states thatB is Gram–Schmidt reduced in the sense of Exercise 3.4.
We may compute a c-reduced basis, and in particular it always exists, by Exercise 3.10. That we
may in fact compute it in polynomial time is non-trivial.

Theorem 3.7 (LLL-algorithm). Let c > 4
3 . There exists a polynomial-time algorithm that, given

a lattice Λ, produces a c-reduced basis of Λ.

Although the algorithm does not fundamentally differ when we modify c, it cannot be part of
the input because then the algorithm would no longer run in polynomial time. We should warn
the reader that the literature contains various definitions of a ‘reduced basis’, and even in the
context of the LLL-algorithm there are at least two.

Definition 3.8. Let Λ be a lattice of rank n. For 0 < i ≤ n we define the i-th successive minimum
to be the value

λi(Λ) = min{r ∈ R≥0 | rk〈x ∈ Λ | q(x) ≤ r〉 ≥ i}.

A basis of vectors attaining the successive minima is the gold standard of ‘small’ bases, although
it does not always exist. The following proposition gives bounds on how far away a reduced basis
can be from these minima.

Proposition 3.9. Let c ≥ 4
3 and suppose (b1, . . . , bn) is a c-reduced basis for a lattice Λ. Then

for all 0 < i ≤ n we have c1−n · q(bi) ≤ λi(Λ) ≤ ci−1 · q(bi).

Proof. See Exercise 3.9.

Exercise 3.8. Show that there exists a lattice Λ for which no basis b1, . . . , bn attains the successive
minima, i.e. satisfies q(bi) = λi(Λ) for all i. Hint: Consider 2Zn ⊆ Λ ⊆ Zn.

Exercise 3.9. Let c ≥ 4
3 and 0 < i ≤ n and suppose (b1, . . . , bn) is a c-reduced basis of Λ.

a. Show that q(b∗j) ≤ ci−jq(b∗i) for all j ≤ i.
b. Recall that bi = b∗i +

∑
j<i µijb

∗
j . Show that q(bi) ≤ ci−1q(b∗i).

c. Show that q(bj) ≤ ci−1q(b∗i) ≤ ci−1q(bi) for all j ≤ k.
d. Conclude that λi(Λ) ≤ max{q(bj) | j ≤ i} ≤ ci−1q(bi).

Write Λk =
∑
j≤k Zbj for all 0 ≤ k ≤ n.

e. Prove that for all 0 < k ≤ n and x ∈ Λk \ Λk−1 we have q(x) ≥ q(b∗k).
Write S = {x ∈ Λ | q(x) ≤ λi(Λ)} and let k be minimal such that S ⊆ Λk.

f. Show that k ≥ rk〈S〉 ≥ i.
g. Conclude that λi(Λ) ≥ q(b∗k) ≥ c1−nq(bi).

12

Exercise 3.10. Let c ≥ 4
3 . Show that the following algorithm is guaranteed to terminate, and

hence computes a c-reduced basis: Let (b1, . . . , bn) be a basis.
1. Compute the Gram–Schmidt basis (b∗1, . . . , b

∗
n) and coefficients (µij)j<i of (b1, . . . , bn).

2. If there exists some 1 ≤ k < n such that cq(b∗k+1) < q(b∗k), choose any such k, swap bk+1

and bk and go to step 1.
3. If there exist some 1 ≤ j < i ≤ n such that |µij | > 1

2 , choose any such i, j, replace bi by
bi − dµijcbj and go to step 1.

4. Return (b1, . . . , bn) and terminate.

Hint: Let Λk =
∑k
i=1 Zbi. What can you say about

∏n
k=1 det(Λk) in step 2?

3.3 The kernel-image algorithm

The LLL-algorithm allows us to prove the kernel-image algorithm, from which most of the al-
gorithms for finitely generated abelian groups from the beginning of this section follow without
much effort. We first need a theorems from linear algebra.

Theorem 3.10 (Cramer’s rule). Suppose A ∈ Rn×n is an invertible matrix and let b ∈ Rn. Write
Ai for the matrix obtained from A by replacing the i-th column with b. Then there exists a unique
x ∈ Rn such that Ax = b, and it is given by x = det(A)−1 · (det(A1), . . . ,det(An)).

Exercise 3.11. Let n ≥ 0. Suppose N ⊆M ⊆ Zn are subgroups such that N ⊕P = Zn for some
P ⊆ Zn. Show that rk(M) = rk(N) if and only if M = N .

Theorem 3.11 (Kernel-image algorithm). There exists a polynomial-time algorithm that, given
a linear map ϕ : Zn → Zm, computes the rank r of ϕ and injective linear maps ι : Zr → Zn and
κ : Zn−r → Zn such that im(ϕ ◦ ι) = im(ϕ) and im(κ) = ker(ϕ).

Proof. Write B for the largest absolute value of a coefficient of the matrix defining ϕ. Compute

ω = 2n−1 · nn+1 ·B2n + 1

and note that its length is polynomially bounded by the size of the input. Hence we can consider
the lattice L = Zn together with the bilinear form given by q(x) = ‖x‖2 + ω‖ϕ(x)‖2. Using the
LLL-algorithm, compute a 2-reduced basis (b1, . . . , bn) of L. We will show that this basis has the
following properties:

(a) q(bi) < ω for 0 < i ≤ n− r;
(b) (b1, . . . , bn−r) is a basis for ker(ϕ);
(c) q(bi) ≥ ω for n− r < i ≤ n;
(d) (ϕ(bn−r+1), . . . , ϕ(bn)) is a basis for im(ϕ).

Once we have shown this, it is clear how to compute r and the maps ι and κ in polynomial time.
Claim: For all 0 < i < n− r we have λi(Λ) ≤ nn+1B2n.

Proof. By Cramer’s rule, we may find linearly independent vectors a1, . . . , an−r ∈ ker(ϕ) for
which the coefficients are determinants of r× r submatrices of F . Then by Hadamard’s inequality
(Exercise 3.5), each coefficient is bounded in absolute value by rr/2Br ≤ nn/2Bn. Hence q(ai) =
‖ai‖2 ≤ nn+1B2n for all 0 < i ≤ n− r. The claim now follows from the independence of the ai. �

From Proposition 3.9 and the claim it follows that

q(bi) ≤ 2n−1 · λi(Λ) ≤ 2n−1 · nn+1 ·B2n < ω

for all 0 < i ≤ n− r, proving (a). Clearly for all x ∈ Λ such that ω > q(x) = ‖x‖2 + ω‖ϕ(x)‖2 we
have ‖ϕ(x)‖2 = 0 and thus x ∈ ker(ϕ). In particular, we have linearly independent b1, . . . , bn−r ∈
ker(ϕ). From Exercise 3.11 we may conclude it is in fact a basis for ker(ϕ), proving (b). It follows
from (b) that bi 6∈ ker(ϕ) and thus q(bi) ≥ ω for all n− r < i ≤ n, proving (c). Lastly, (d) follows
from (b) and the homomorphism theorem.

Note that in the proof of Theorem 3.11 we could have constructed a c-reduced basis for values
of c other than 2. Moreover, the exact value of ω is not important, as long as it is sufficiently
large. Exercise 3.14 will prove a version of the kernel image algorithm for general finitely generated
abelian groups.

13

3.4 Applications of the kernel-image algorithm

In this subsection we provide a polynomial-time algorithm for most problems in the beginning of
this section. An immediate consequence of the kernel-image algorithm is the following.

Corollary 3.12. There exists a polynomial-time algorithm that, given a linear map ϕ : A → B
of finitely generated free abelian groups, decides whether ϕ is injective/surjective.

Exercise 3.12. Show that for a matrix ϕ : Zn → Zn we have # coker(ϕ) = |det(ϕ)|. Conclude
that there exist a polynomial time algorithm that, given an abelian group A, decides whether A
is finite and if so computes #A. Note: The matrix representing A need not be injective.

Proposition 3.13. There exists a polynomial-time algorithm that, given linear maps ϕ : A→ C
and ψ : B → C of free abelian groups, decides whether im(ψ) ⊆ im(ϕ).

Proof. Using Theorem 3.11 compute the kernel κ : K → A×B of A×B → C as in the following
diagram.

A

K A×B C

B

ϕ

κ

πA

πB ψ

The image of πB ◦ κ is precisely the set of elements b ∈ B for which there exists an a ∈ A such
that ϕ(a) = ψ(b). Hence it suffices to decide using Corollary 3.12 whether πB ◦κ is surjective.

Corollary 3.14. There exists a polynomial time algorithm that, given finitely generated abelian
groups A and B, represented by linear maps α : A0 → A1 respectively β : B0 → B1, and a linear
map ϕ : A1 → B1, decides whether ϕ represents a morphism f : A→ B.

Proof. Recall ϕ represents a morphism precisely when im(ϕ ◦ α) ⊆ im(β).

Corollary 3.15. There exists a polynomial-time algorithm that, given finitely generated abelian
groups A and B and morphisms f, g : A→ B, decides whether f = g.

Proof. Considering h = f − g it suffices to be able to decide whether a morphism is zero. With
η the matrix representing h and β the matrix representing B, we have h = 0 precisely when
im(η) ⊆ im(β).

Proposition 3.16. There exists a polynomial-time algorithm that, given a morphism f : A→ B
of finitely generated abelian groups, decides whether f is injective/surjective.

Proof. Write α : A0 → A1 and β : B0 → B1 for the representatives of A respectively B and ϕ
for the representative of f . Note that f is surjective if and only if B = im(f) = im(ϕ)/ im(β) if
and only if B1 = im(ϕ) + im(β). It suffices to decide whether the map A1 × B0 → B1 induced
by ϕ and β is surjective, for which we have Corollary 3.12. Note that f is injective if and only if
ker(ϕ) ⊆ im(α). Using Theorem 3.11 we compute a linear map κ : K → A1 with im(κ) = ker(ϕ),
and apply Proposition 3.13 to decide im(κ) ⊆ im(α).

Proposition 3.17. There exists a polynomial-time algorithm that, given a linear map ϕ : A→ B
of free abelian groups A and B and b ∈ B, decides whether an element a ∈ A exists such that
ϕ(a) = b, and if so computes one.

Proof. Consider the linear map ψ : A× Z→ B that sends (a, x) to ϕ(a) + xb.

I A

K A× Z B

Z

ι ϕ

κ

χ
πZ

ψ

b

14

Compute using Theorem 3.11 the kernel κ : K → A×Z of ψ and in turn ι : I → K a preimage of
χ = πZ ◦κ. Note that ϕ(a) = b has a solution precisely when −1 is in the image of χ. Moreover, if
we find k ∈ K such that χ(k) = −1, then its image under K → A×Z→ A gives an element a ∈ A
such that ϕ(a) = b. Note that I ⊆ Z. If I = 0 no solution to χ(k) = −1 exists, and otherwise
k ∈ ι({±1}) gives a solution if it exists.

Corollary 3.18. There exists a polynomial-time algorithm that, given a homomorphism f : A→
B of finitely generated abelian groups A and B and b ∈ B, decides whether an element a ∈ A
exists such that f(a) = b, and if so computes one.

Proof. Let ϕ : A1 → B1 be the representative of f . Simply apply Proposition 3.17 to ϕ and some
representative of b in B1.

Exercise 3.13. Give a direct proof of Proposition 3.13 or Proposition 3.17 by giving an algorithm
that applies the LLL-algorithm only once, similar to Theorem 3.11.

Exercise 3.14. Show that there exists a polynomial-time algorithm that, given a morphism
f : A → B of finitely generated abelian groups, computes morphisms k : K → A and i : I → A
such that im(k) = ker(f), im(f ◦ i) = im(f) and k and f ◦ i are injective.

3.5 Homomorphism groups of finitely generated abelian groups

Although we can algorithmically work with individual morphisms f : A→ B of finitely generated
abelian groups, we have yet to treat the group of homomorphisms Hom(A,B) as a whole. Cer-
tainly, we would like to compute Hom(A,B), but we have to decide what that means. Firstly, we
have to give an abelian group H represented by H0 → H1 such that H ∼= Hom(A,B). Secondly,
we want to evaluate elements of Hom(A,B) at elements of A. For this we give two possibilities:

• Note that morphisms are already encoded as matrices in Zn×m, so we simply give a map
H1 → Zn×m that maps H1 to matrices representing morphisms A→ B and H0 to the zero
morphisms.

• We give a bilinear map A ×H → B, i.e. a linear map A ⊗H → B, which corresponds to
the evaluation map A×Hom(A,B)→ B under the isomorphism H ∼= Hom(A,B).

Regardless of which representation we choose, when we talk about computing Hom(A,B) we mean
computing both a group isomorphic to Hom(A,B) as well as a way to evaluate its elements in A.

Exercise 3.15. Show that the above representations for Hom(A,B) are ‘polynomially equivalent’,
i.e. there exist polynomial-time algorithm that transforms one representation of Hom(A,B) into
the other.

The moral of Exercise 3.15 is that as long as it is easy to describe how elements from H correspond
to homomorphisms, it does not matter how we encode this.

Theorem 3.19. There exists a polynomial-time algorithm that, given finitely generated abelian
groups A and B, computes Hom(A,B).

Proof. Consider the case where A is a free abelian group and B is a finitely generated abelian
group represented by β : B0 → B1. We may compute the matrix β∗ : Hom(A,B0)→ Hom(A,B1)
given by f 7→ β ◦ f . Since A is free we get an exact functor Hom(A,) such that[

B0
β−→ B1 → B → 0

] Hom(A,)
======⇒

[
Hom(A,B0)

β∗−→ Hom(A,B1)→ Hom(A,B)→ 0
]
,

and thus Hom(A,B) ∼= coker(β∗). Evaluating an element of Hom(A,B) in A reduces to evaluating
an element of Hom(A,B1) in A, which is just matrix multiplication.

Now consider the general case where A and B are general finitely generated abelian groups
represented by α : A0 → A1 respectively β. We note that the functor Hom(, B) is left-exact and
contravariant. Applied to the exact sequence of A we get[

A0
α−→ A1 → A→ 0

] Hom(,B)
======⇒

[
0→ Hom(A,B)→ Hom(A1, B)

α∗

−−→ Hom(A0, B)
]
.

15

Hence Hom(A,B) ∼= ker(α∗). By the previous case we may compute Hom(A1, B) and Hom(A0, B)
since A1 and A0 are free. It is not difficult to show we may then compute α∗ and in turn its kernel
using Exercise 3.14. Evaluation in A of elements in Hom(A,B) reduces to evaluation in A1 of
elements in Hom(A1, B), which we may also do by the previous case.

Exercise 3.16 (Group exponent). Show that there exists a polynomial-time algorithm that, given
a finitely generated abelian group A

(a) and an element a ∈ A, decides whether a is torsion and if so computes ord(a);
(b) decides whether A is finite and if so computes its exponent and an a ∈ A with that order.

Exercise 3.17 (Splitting exact sequences). Show that there exists a polynomial-time algorithm
that, given morphisms f : A→ B and g : B → C of finitely generated abelian groups,

(a) decides whether the sequence 0→ A
f−→ B

g−→ C → 0 is exact;
(b) if so, decides whether the sequence is split;
(c) if so, produces a left-inverse of f and a right-inverse of g.

Hint: Consider the map g∗ : Hom(C,B)→ Hom(C,C).

Note that by taking C = 0 in Exercise 3.17 we may conclude that there exists a polynomial-
time algorithm that, given a morphism f : A → B of finitely generated abelian groups, decides
whether f is an isomorphism and if so computes its inverse.

3.6 Structure theorem for finitely generated abelian groups

The structure theorem for finitely generated abelian groups is the following.

Theorem 3.20. Suppose A is a finitely generated abelian group. Then there exists a unique
sequence (r,m, n1, n2, . . . , nm) of integers with r,m ≥ 0 and n1, . . . , nm > 1 such that nm | · · · |
n2 | n1, for which

A ∼= Zr ×
m∏
k=1

(Z/nmZ).

In this section we will prove its algorithmic counterpart.

Exercise 3.18. Let n > 0 and M ⊆ Qn. For subgroups H ⊆ M write H⊥ = {x ∈ M | 〈x,H〉 =
0}. Show that for all subgroups N ⊆M we have (N⊥)⊥ = (QN) ∩M .
Hint: First consider the case where M and N are Q-vector spaces.

Lemma 3.21. There exists a polynomial-time algorithm that, given a finitely generated abelian
group A, computes its torsion subgroup.

Proof. For a subgroup H of Zn write H⊥ = {x ∈ Zn | 〈x,H〉 = 0}, or equivalently for a
map h : H → Zn write h⊥ : H⊥ → Zn for the kernel of the map Zn → Hom(H,Z) given by
x 7→ (y 7→ 〈x, h(y)〉). Note that using Theorem 3.11 we may compute h⊥ in polynomial time. In
particular, we may compute (α⊥)⊥ : T → A1 for the representative α : A0 → A1 of A. It follows
from Exercise 3.18 that (α⊥)⊥ is the torsion subgroup of A: Its image is precisely the set of those
elements of A1 for which a positive integer multiple is in α(A0).

Theorem 3.22. There exists a polynomial-time algorithm that, given a finitely generated abelian
group A, computes integers (r,m, n1, . . . , nm) with r,m ≥ 0 and n1, . . . , nm > 1 such that nm |
· · · | n1 and computes for A an isomorphism

A ∼= Zr ×
m∏
k=1

(Z/nmZ),

i.e. projections to and inclusions from the individual factors on the right hand side.

16

Proof. We may compute using Lemma 3.21 the torsion subgroup T of A. Using the image algo-
rithm of Exercise 3.14 we may compute an isomorphism Zr → A/T . We have an exact sequence
0→ T → A→ A/T → 0 which splits, hence by Exercise 3.17 we may compute maps A→ T and
A/T → A such that A ∼= T × (A/T). Replacing A by T we may now assume A is torsion. If
A = 0 we are done. Using Exercise 3.16 we may compute an element a ∈ A with order equal to
the exponent e of A. Again we have an exact sequence 0→ Za→ A→ A/(Za)→ 0 which is split
to which we apply Exercise 3.17. We proceed recursively with A replaced by A/(Za). Note that
the exponent of A/(Za) is a divisor of the exponent of A, so indeed we will get nm | · · · | n1.

Corollary 3.23. There exists a polynomial-time algorithm that, given a finitely generated abelian
group A and a set S of integers, computes r,m ∈ Z≥0 and c1, . . . , cm ∈ Z>1 and n1, . . . , nm ∈ Z>0

such that any two ci are either coprime or a power of the same integer, and every ci either
divides some power of an element of S or is coprime to all elements of S, and computes for A an
isomorphism

A ∼= Zr ×
m∏
k=1

(Z/ckZ)nk .

Proof. Apply Theorem 3.22 and compute a coprime basis from S∪{n1, . . . , nm} using Theorem 2.7.
Write every ni in terms of this basis and proceed as in Theorem 3.22.

17

4 Computing symbols

In algebraic number theory we find lots of ‘symbols’. It is not well-defined what a symbol is, but
generally they are maps which encode algebraic properties of its parameters which also satisfies
some reciprocity law. In this section we will use [4] as reference. In this section we will define and
give algorithms for computing some of these symbols. The father of all symbols is the Legendre
symbol.

Definition 4.1. Let p be an odd prime and let a be an integer coprime to p. We define the
Legendre symbol (

a

p

)
=

{
+1 a is a square in Z/pZ
−1 otherwise

or equivalently
(
a
p

)
≡ a

p−1
2 mod p.

It is easy to see that we can compute the Legendre symbol directly from the (equivalent)
definition in polynomial time using a square-and-multiply algorithm modulo p.

Theorem 4.2 (Quadratic reciprocity). Suppose p and q are distinct odd primes. Then(
p

q

)(
q

p

)
= (−1)

p−1
2 ·

q−1
2 .

Definition 4.3. Let b be a positive odd integer and a an integer coprime to b. In terms of the
prime factorization b = pk11 · · · pknn of b we define the Jacobi symbol(

a

b

)
=

(
a

p1

)k1
· · ·

(
a

pn

)kn
,

where
(
a
pi

)
is the Legendre symbol defined previously.

Note that the Jacobi symbol extends the Legendre symbol, which justifies using the same
notation for both. To compute the Jacobi symbol directly from the definition we need to be able
to factor b, which is unfeasible. Quadratic reciprocity for the Jacobi symbol gives us a better
method.

Proposition 4.4 (Quadratic reciprocity). Suppose a and b are coprime positive odd integers.
Then (

a

b

)(
b

a

)
= (−1)

a−1
2 ·

b−1
2 .

Proof. Note that for fixed b the maps a 7→
(
a
b

)(
b
a

)
and a 7→ (−1)

a−1
2 ·

b−1
2 are multiplicative. Hence

it suffices to prove the proposition for a prime. Applying the same reasoning to b we have reduced
to Theorem 4.2.

Exercise 4.1. Let p be an odd prime. Show that 2 is a square in Fp if and only if p ≡ ±1 mod 8.

Conclude that
(

2
b

)
= (−1)(b2−1)/8 for all odd b > 0. Hint: Write

√
2 in terms of 8-th roots of unity.

Exercise 4.2. Let x0, x1, x2, x3 ∈ Z such that x1 is odd and xn+2 ≡ xn mod xn+1 for all n.
Show that when the expressions are well-defined we have the following equalities.

a.

(
x0

x1

)
= (−1)(x1−1)(x2−1)/4 ·

(
x1

x2

)
if x2 ≡ 1 mod 2, b.

(
x0

x1

)
=

(
x2

x3

)
if x2 ≡ 0 mod 4

and c.

(
x0

x1

)
= (−1)(x1x3−1)(x1x3+x2−1)/8 ·

(
x2

x3

)
if x2 ≡ 2 mod 4

Theorem 4.5. There exists a polynomial time algorithm that, given coprime positive odd integers
a and b, computes the Jacobi symbol

(
a
b

)
.

18

Proof. We define the gcd sequence of positive integers x0 and x1 to be the sequence (x0, . . . , xN)
where xn+2 is the unique integer such that 0 ≤ xn+2 < xn+1 and xn+2 ≡ xn mod xn+1 and with
xN = 0. The proof of the Euclidean algorithm shows that this sequence contains only linearly
many elements and can be computed in polynomial time. Moreover, xN−1 = gcd(x0, x1).

Compute the gcd sequence of a and b. As gcd(xn, xn+1) = gcd(a, b) = 1 for all n < N ,
the symbols

(
xn

xn+1

)
are defined. Using Exerise 4.2 we may express

(
a
b

)
= sn ·

(
xn

xn+1

)
for some

sn ∈ {±1} iteratively for n with xn+1 odd. Clearly we may compute these sn in polynomial time.
As
(xN−2

xN−1

)
=
(xN−2

1

)
= 1, we simply return sN−1.

Exercise 4.3. The Euclidean algorithm implied by Exercise 2.2 produces a different type of ‘gcd
sequence’ than those used in Theorem 4.5, namely those where |xn+2| ≤ |xn+1|/2 and xn+2 ≡ xn
mod xn+1 for all n. Give a proof of Theorem 4.5 using such gcd sequences.

The Jacobi symbol is defined on a subset of the integers. As is the theme in this document,
we will ‘extend’ the Jacobi symbol to number rings.

Remark 4.6. One is sometimes interested in a more general Jacobi symbol
(
a
b

)
where b is not

necessarily odd or positive, by defining(
a

2

)
= (−1)

a2−1
8 and

(
a

−1

)
=

a

|a|
=

{
+1 if a > 0

−1 if a < 0
.

This is called the Kronecker symbol. The Kronecker symbol can be computed in polynomial time
by writing b = uc2k where u = ±1 and c is odd and positive, and applying Theorem 4.5 to the
factor

(
a
c

)
in
(
a
b

)
=
(
a
u

)(
a
c

)(
a
2

)
k.

4.1 Jacobi symbols in number rings

First we define the Legendre symbol for a general number ring.

Definition 4.7. Let p be a prime ideal in a number ring R of odd index np = (R : p) and let
a ∈ R such that aR+ p = R. We define the Legendre symbol(

a

p

)
=

{
+1 if a is a square in R/p

−1 otherwise
,

or equivalently
(
a
p

)
= a

np−1

2 mod p.

Extending the definition to general ideals as for the Jacobi symbol cannot be done similarly,
unless R is a Dedekind domain, because it would require prime factorization of ideals. Instead,
we consider the following.

Definition 4.8. Suppose b is an ideal of a number ring R. For a prime p we define lp(b) such
that (Rp : bp) = (R : p)lp(b). For (R : b) odd and a ∈ R with aR + b = R we define the Jacobi
symbol by (

a

b

)
=

∏
p∈spec R

(
a

p

)lp(b)

.

Theorem 4.9. There exists a polynomial time algorithm that, given an order R, an ideal b of R
such that (R : b) is odd and a ∈ R such that aR+ b = R, computes the Jacobi symbol

(
a
b

)
.

We will prove this theorem by expressing the Jacobi symbol in terms of yet another symbol.

Exercise 4.4. Let p and b be ideals in a number ring R with p prime and take any composition
series 0 = M0 (M1 (· · · (Mn = R/b of R/b as R-module. Show that lp(b) equals the number
of quotients Mi+1/Mi that is isomorphic to R/p as an R-module.

19

4.2 Signs of permutations

In this section we will consider the following symbol.

Definition 4.10. Let B be a finite abelian group and let σ ∈ Aut(B). We define (σ,B) to be the
sign of σ as element of the permutation group on B.

Lemma 4.11. Suppose A and C are sets and α ∈ Aut(A) and γ ∈ Aut(C) are permutations.
Write αtγ respectively α×γ for the induced permutation on the disjoint union AtC and product
A× C. Then sgn(α t γ) = sgn(α) · sgn(γ) and sgn(α× γ) = sgn(α)#C · sgn(γ)#B.

Proof. That sgn(αt γ) = sgn(α) · sgn(γ) follows from the fact that αt γ = αγ when Aut(A) and
Aut(C) are naturally mapped to Aut(A t C).

For the second part write α′ = α × idC and γ′ = idA×γ and note that α × γ = α′ · γ′. Now
α′ acts as α on #C disjoint copies of A, hence by the previous sgn(α′) = sgn(α)#C . Mutatis
mutandis we obtain the same for γ′, and the lemma follows from multiplicativity of the sign.

Proposition 4.12. Suppose B is a finite abelian group and β ∈ Aut(B). Suppose we have an
exact sequence 0 → A → B → C → 0 such that β restricts to an automorphism α of A. Then β
induces an automorphism γ of C such that the following diagram commutes

0 A B C 0

0 A B C 0

f

α

g

β γ

f g

and if #C is odd we have (β,B) = (α,A) · (γ,C)#A.

Proof. The map γ exists by a diagram chasing argument. Since #C is odd we may write C =
{0} tD t (−D) for some subset D ⊆ C. Choosing any section D → B of g (which is not a group
homomorphism!), we may extend it to a section h : C → B in such a way that h(−c) = −h(c).
Now the maps f and h together give a bijection of sets A × C → B and let β′ be the induced
action of β on A×C. By Lemma 4.11 we have that (α× γ,A×C) = (α,A)#C · (γ,C)#A, hence
to prove the proposition it suffices to show that σ = (α× γ)−1 · β′ is an even permutation. For all
d ∈ D the action of σ restricts to A× {d}. Note that σ commutes with −1, hence the action of σ
on A× {−d} is isomorphic to the action on A× {d}. Hence the restriction of σ to A× (C \ {0})
is even. Finally, σ is the identity on A× {0}, so we conclude σ is even, as was to be shown.

The exact sequence 0→ 2Z/4Z→ Z/4Z→ Z/2Z→ 0 resists application of Proposition 4.12.
If we choose the non-trivial automorphism σ given by x 7→ −x on Z/4Z we see that its sign is
−1, while the induced maps on the other terms are trivial. Hence (σ,Z/4Z) is not an F2-linear
combination of (σ, 2Z/4Z) and (σ,Z/2Z).

Exercise 4.5. Show that for k ∈ Z≥2 and a ∈ (Z/2kZ)∗ we have (x 7→ ax,Z/2kZ) = (−1)
a−1
2 .

Hint: Write Z/2kZ = (Z/2kZ)∗ t (2Z/2kZ) and show (x 7→ ax, (Z/2kZ)∗) = −1 if and only if a
generates (Z/2kZ)∗.

Exercise 4.6. Suppose B is an abelian group. For b ∈ B write λb : B → B for the map x 7→ x+b.
a. Show that sgn(λb) = −1 if and only if (B : 〈b〉) is odd and 2 | #B.

Suppose B has order 2k for some k ≥ 1 and let β ∈ Aut(B).
b. Show that there exists a subgroup A ⊆ B such that β(A) = A and (B : A) = 2.
c. Let b ∈ B such that B = A ∪ (b+A). Show that (β,B) = −1 if and only if A = 〈β(b)− b〉.
d. Suppose (β,B) = −1. Show that B = Z/2kZ or B = (Z/2Z)2.
e. Show that there exists a polynomial time algorithm that, given a finite abelian group B and

β ∈ Aut(B) such that 2 | #B, computes (β,B).

20

4.3 Computing signs of group automorphisms

In this section we will prove we can compute the sign of group automorphisms in polynomial time.
We will need an elementary lemma about determinants that mirrors Proposition 4.12.

Lemma 4.13. Let F be a field and let 0 → A → B → C → 0 be an exact sequence of finite
dimensional F-vector spaces together with automorphism α, β and γ such that the diagram

0 A B C 0

0 A B C 0

α β γ

commutes. Then det(β) = det(α) · det(γ).

In terms of matrices, the above lemma simply states that for square matrices A and C and a
matrix P that fits, the block matrix B = (A P

0 C) satisfies det(B) = det(A) · det(C).

Theorem 4.14. Suppose b ∈ Z>0 is odd and B is a free (Z/bZ)-module of finite rank. Then for

all σ ∈ Aut(B) we have (σ,B) =
(det(σ)

b

)
.

Proof. For B = 0 the theorem clearly holds, so assume b 6= 1 and that B has rank at least 1.
First suppose b is prime and B has rank 1. Then σ is given by multiplication with a ∈ (Z/bZ)∗.

If a generates (Z/bZ)∗, then the corresponding permutation fixes 0 and acts transitively on the

b− 1 remaining elements of B, so that (σ,B) = −1 =
(
a
b

)
=
(det(σ)

b

)
. By multiplicativity of both

symbols in σ, this also proves the case where a is not a generator.
Now we prove using induction the case for general rank of B. Suppose σ is given by an upper

or lower triangular matrix. Then there exists a subspace 0 (A ⊆ B such that σ restricts to A.
Hence we have a split exact sequence 0 → A → B → C → 0 with C = B/A and let α and γ be
the induced maps on A respectively C. Then by Proposition 4.12, the induction hypothesis and
Lemma 4.13 we get

(σ,B) = (α,A) · (γ,C) =

(
det(α)

b

)
·
(

det(γ)

b

)
=

(
det(α) det(γ)

b

)
=

(
det(σ)

b

)
.

Since every matrix can be written as a product of upper and lower triangular matrices, the case
for general α follows.

Now we prove the theorem for general b with induction to the number of divisors of b. We have
just proven the induction base with b prime. For b not prime we may take a divisor 1 < d < b of
b. Let A = dB and C = B/A and note that they are free modules over Z/ bdZ respectively Z/dZ.
Moreover, σ induces maps α and γ on A respectively C that make the usual diagram commute. It
follows from the definition of the determinant that det(α) ≡ det(σ) mod b

d and det(γ) ≡ det(σ)
mod d. Then

(σ,B) = (α,A)(γ,C) =

(
det(α)

b/d

)(
det(γ)

d

)
=

(
det(σ)

b/d

)(
det(σ)

d

)
=

(
det(σ)

b

)
.

The theorem now follows by induction.

Theorem 4.15. There exists a polynomial-time algorithm that, given an finite abelian group B
and an automorphism σ of B, computes the symbol (σ,B).

Proof. If 2 | #B we have Exercise 4.6, so suppose B has odd order. Using Theorem 3.22, write
B as a product

∏m
k=1(Z/nkZ) of non-trivial cyclic groups such that nj | nk for all j > k. Note

that B fits in an exact sequence 0 → A → B → C → 0 with A = nmB and C = B/A, such that
σ restricts to A and C. Then

A =

m∏
k=1

(nmZ/nkZ) ∼=
m−1∏
k=1

(
Z
/
nk
nm

Z
)

and C ∼= (Z/nmZ)m.

Since C is a free (Z/nmZ)-module, we may compute (σ,C) using Theorem 4.14 in polynomial
time. Note that A is a product of strictly less cyclic groups than B, as well as having smaller
order. While A 6= 0 we compute (σ,A) recursively and apply Proposition 4.12 to compute (σ,B).
Since m is polynomially bounded in the length of the input, there is only polynomially many
recursive steps and the algorithm runs in polynomial time.

21

4.4 Computing Jacobi symbols in number rings

To compute Jacobi symbols in polynomial time it now suffices to reduce to Theorem 4.15.

Lemma 4.16. Suppose b is an ideal in a number ring R odd index (R : b), and suppose a ∈ R
satisfies aR+ b = R. Then

(
a
b

)
= (α,R/b) where the map α is multiplication by a.

Proof. First suppose b is a prime ideal and suppose a generates (R/b)∗. Then
(
a
b

)
= −1. As a

acts transitively on an even number of elements (R/b) \ {0}, we conclude that (x 7→ ax,R/b) =
−1 =

(
a
b

)
. The case for general a follows from multiplicativity of both symbols.

Now consider the case of general b. Choose some composition series 0 = M0 (M1 (· · · (
Mn = R/b of R/b as R-module. Consider the exact sequence 0 → Mi → Mi+1 → Mi+1/Mi →
0 and note that Mi+1/Mi

∼= R/p as R-modules for some prime ideal pi of R. By applying
Proposition 4.12 inductively we obtain (α,B) =

∏n
i=1(α,Mi+1/Mi) =

∏n
i=1

(
α
pi

)
. It follows from

Exercise 4.4 that the latter equals
(
α
b

)
.

Proof of Theorem 4.9. Compute R/b and the map α : R/b → R/b given by x 7→ ax. Using
Theorem 4.15 compute (α,R/b), which equals

(
a
b

)
by Lemma 4.16.

References

[1] Daniel J. Bernstein. Factoring into coprimes in essentially linear time. Journal of Algorithms,
54(1):1–30, 2005.

[2] I. Ciocanea Teodorescu. Algorithms for finite rings. PhD thesis, Leiden Univ., 2016.

[3] J. E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata Theory, Languages
and Computations. Pearson, 3 edition, 2006.

[4] H. W. Lenstra, Jr. Computing jacobi symbols in algebraic number fields. Nieuw Archief voor
Wiskunde, 14(3):421–426, 1995.

[5] H. W. Lenstra, Jr. Lattices. Algorithmic Number Theory, 44:127–181, 2008.

[6] P. Q. Nguyen and B. Vallée, editors. The LLL Algorithm, Survey and Applications. Springer,
2010.

22

