Problems and exercises in motivic homotopy theory

PCMI Graduate Summer School

Frédéric Déglise and Niels Feld

12-16 July 2021

1 Milnor K-theory

(see [GS17]) The Milnor K-groups $K_n^M(k)$ attached to a field k is the quotient of the n-th tensor power $(k^{\times})^{\otimes n}$ of the multiplicative group of k by the subgroup generated by those elements $a_1 \otimes \cdots \otimes a_n$ for which $a_i + a_j = 1$ for some $1 \leq i < j \leq n$. Thus $K_0^M(k) = \mathbb{Z}$ and $K_1^M(k) = k^{\times}$. Elements of $K_n^M(k)$ are called symbols; we write $[a_1, \ldots, a_n]$ for the image of $a_1 \otimes \cdots \otimes a_n$ in $K_n^M(k)$.

1. Show that Milnor K-groups are functorial with respect to field extensions: given an inclusion $\varphi: k \subset K$, there is a natural map $i_{K/k}: K_n^M(k) \to K_n^M(K)$ induced by φ .

Given $\alpha \in K_n^M(K)$, we shall often abbreviate $i_{K/k}(\alpha)$ by α_K .

2. Show that the product pairings

$$(k^{\times})^{n\otimes} \times (k^{\times})^{m\otimes}$$

induce a structure of graded ring on

$$K_*^M(k) = \bigoplus_{n \geq 0} K_n^M(k).$$

3. (a) Prove that the group $K_2^M(k)$ satisfies the relations

$$[x, -x] = 0$$
 and $[x, x] = [x, -1]$.

(b) Prove that the product operation on $K_*^M(k)$ is graded-commutative, i.e. it satisfies

$$[\alpha, \beta] = (-1)^{nm} [\beta, \alpha]$$

for $\alpha \in K_n^M(k)$ and $\beta \in K_m^M(k)$

- 4. Let **F** be a finite field. Prove that, for all n > 1, the groups $K_n^M(\mathbf{F})$ are trivial.
- 5. Let K be a field equipped with a discrete valuation $v: K^{\times} \to \mathbb{Z}$. Denote by \mathcal{O}_v the associated valuation ring and by $\kappa(v)$ its residue field.
 - (a) Fix π a local parameter (i.e. an element satisfying $v(\pi) = 1$). For n a natural number, show that $K_n^M(K)$ is generated by symbols of the form $[\pi, u_2, \ldots, u_n]$ and $[u_1, \ldots, u_n]$ where u_i are units in \mathcal{O}_v .
 - (b) For each n > 0, there exists a unique morphism

$$\partial^M: K_n^M(K) \to K_{n-1}^M(\kappa(v))$$

satisfying

$$\partial^M([\pi, u_2, \dots, u_n]) = [\bar{u_2}, \dots, \bar{u_n}]$$

for all local parameters π and all units u_i , where $\bar{u_i}$ denotes the image of u_i in $\kappa(v)$.

Moreover, once a local parameter π is fixed, there is a unique morphism

$$s_{\pi}^{M}: K_{n}^{M}(K) \to K_{n}^{M}(\kappa(v))$$

with the property

$$s_{\pi}^{M}([\pi^{i_1}u_1,\ldots,\pi^{i_n}u_n])=[\bar{u_1},\ldots,\bar{u_n}]$$

for all integers i_i and units u_i of \mathcal{O}_v .

(c) Prove that the tame symbol $\partial^M: K_1^M(K) \to K_0(\kappa(v))$ is the valuation map $v: K^\times \to \mathbb{Z}$, and that the tame symbol $\partial^M: K_2^M(K) \to K_1^M(\kappa(v))$ is given by the formula

$$\partial^{M}([a,b]) = (-1)^{v(a)v(b)} \overline{a^{v(b)}b^{-v(a)}}$$

where the lines denotes the image in $\kappa(v)$.

(d) Prove that, for $[a_1, \ldots, a_n] \in K_n^M(K)$, one has the formula

$$s_{\pi}^{M}([a_1,\ldots,a_n]) = \partial^{M}([-\pi,a_1,\ldots,a_n])$$

for all local parameters π .

(e) Let L/K be a field extension and b_L a discrete valuation of L extending v with residue field $\kappa(v_L)$ and ramification index e. Denoting the associated tame symbol by ∂_L^M , one has for all $\alpha \in K_n^M(K)$

$$\partial_L^M(\alpha_L) = e \cdot \partial^M(\alpha).$$

- (f) Denote by U_n the subgroup of $K_n^M(K)$ generated by those symbols $[u_1, \ldots u_n]$ where all the u_i are units in \mathcal{O}_v , and $U_n^1 \subset K_n^M(K)$ the subgroup generated by symbols $[x_1, \ldots, x_n]$ with x_1 a unit in \mathcal{O}_v satisfying $\overline{x}_1 = 1$.
 - i. Prove that $U_n^1 \subset U_n$.
 - ii. Prove that we have exact sequences

$$0 \longrightarrow U_n \longrightarrow K_n^M(K) \stackrel{\partial^M}{\longrightarrow} K_{n-1}^M(\kappa(v)) \longrightarrow 0$$

and

$$0 \longrightarrow U_n^1 \longrightarrow K_n^M(K) \xrightarrow{(s_\pi^M, \partial^M)} K_n^M(\kappa(v)) \oplus K_{n-1}^M(\kappa(v)) \longrightarrow 0.$$

(g) Assume moreover that K is complete with respect to v, and let m > 0 be an integer invertible in $\kappa(v)$.

Prove that the pair $(s_{\pi}^{M}, \partial^{M})$ induces an isomorphism

$$K_n^M(K)/mK_n^M(K) \simeq K_n^M(\kappa(v))/mK_n^M(\kappa(v)) \oplus K_{n-1}^M(\kappa(v))/mK_{n-1}^M(\kappa(v)).$$

6. Recall that the discrete valuations of k(t) trivial on k correspond to the local rings of closed points P on the projective line \mathbb{P}^1_k . As before, we denote by $\kappa(P)$ their residue fields and by v_P the associated valuations. At each closed point $P \neq \infty$ a local parameter is furnished by a monic irreducible polynomial $\pi_P \in k[t]$; at $P = \infty$ one may take $\pi_P = t^{-1}$. The degree of the field extension $[\kappa(P), k]$ is called the degree of the closed point P; it equals the degree of the polynomial π_P . Thus we obtain tame symbols

$$\partial_P^M:K_n^M(k(t))\to K_{n-1}^M(\kappa(P))$$

and specialization maps

$$s_{\pi}^{M}:K_{n}^{M}(k(t))\to K_{n}^{M}(\kappa(P)).$$

(a) Show that the image of the product map

$$\partial^M := (\partial_P^M): K_n^M(k(t)) \to \prod_{P \in \mathbb{P}^1 - \{\infty\}} K_{n-1}^M(\kappa(P))$$

lies in the direct sum.

(b) Denote by L_d the subgroup of $K_n^M(k(t))$ generated by those symbols $[f_1, \ldots, f_n]$ where f_i are polynomials in k[t] of degree $\leq d$. For each d > 0, consider the map

$$\partial_d^M: K_n^M(k(t)) \to \bigoplus_{\deg(P) = d} K_{n-1}^M(\kappa(P))$$

defined as the direct sum of the maps ∂_P^M for all closed points P of degree d.

Prove that its restriction to L_d induces an isomorphism

$$\overline{\partial}_d^M: L_d/L_{d-1} \simeq \bigoplus_{\deg(P)=d} K_{n-1}^M(\kappa(P)).$$

(c) (Homotopy invariance) Prove that the sequence

$$0 \longrightarrow K_n^M(k) \longrightarrow K_n^M(k(t)) \xrightarrow{\partial^M} \bigoplus_{P \in \mathbb{P}^1 - \{\infty\}} K_{n-1}^M(\kappa(P)) \longrightarrow 0$$

is exact and split by the specialization map s_{t-1}^M at ∞ .

2 Milnor-Witt K-theory

1. Generalize the previous results to the Milnor-Witt K-groups $\mathbf{K}_{*}^{\mathrm{MW}}(k)$.

3 Smooth models

- 1. Let E be a finitely generated field over the perfect field k. By definition, a smooth model of E is an affine smooth scheme $X = \operatorname{Spec} A$ of finite type such that A is a sub-k-algebra of E, with function field E.
 - Convince yourself that such a smooth model always exists.
- 2. Let E/k and L/k be two extensions and $\varphi: E \to L$ a morphism such that the extension L/E is finite. By definition, we call k-model of L/E any triplet $((X,x),(Y,y),f:Y\to X)$ such that (X,x) is a model of E/k, (Y,y) is a model of L/k and f is a dominant finite morphism making the following diagram commutative:

$$\operatorname{Spec} L \xrightarrow{\operatorname{Spec} \varphi} \operatorname{Spec} E$$

$$\downarrow^y \qquad \qquad \downarrow^x$$

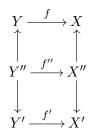
$$Y \xrightarrow{f} X$$

where the vertical maps are induced by the points x and y.

- (a) Let $f: Y \to X$ be an equidimensional finite morphism of schemes. Assume that U is a dense open subscheme of Y. Prove that the open subscheme $f^{-1}(X - f(Y - U))$ is dense containing U.
- (b) Let E/k be an extension and E/L a finite extension of fields. Prove that there exists a k-model of L/E.

3. Let E/k be an extension and L/E a finite extension. Consider $f: Y \to X$ and $f': Y' \to X'$ two k-models of L/E.

Prove that there is a $k\text{-model}\ f'':Y''\to X''$ of L/E such that the diagram



is commutative and compatible with the base points.

4 Grothendieck-Witt groups

1. Let E be a field of characteristic p > 0. Let $\alpha \in GW(E)$ be an element in the kernel of the rank morphism $GW(E) \to \mathbb{Z}$.

Prove that α is nilpotent in GW(E).

5 Enumerative geometry

5.1 Apollonius circles

(see [Che19])

- 1. Show that the two following definitions are equivalent:
 - (a) A circle in \mathbb{P}^2 is given by the equation

$$(x - az)^2 + (y - bz)^2 = r^2 z^2.$$

- (b) A circle in \mathbb{P}^2 is a conic given by V(f) where $f \in (z, x^2 + y^2)$.
- 2. Define

$$\Phi = \{(r, C) \in D \times \mathbb{P}^3 \mid C \text{ is tangent to } D \text{ at } r\}$$

where D is a smooth circle and \mathbb{P}^3 is viewed as the space of circles. Prove that the correspondence Φ is 2-dimensional and irreducible.

3. Denote by $\pi_2: \Phi \to \mathbb{P}^3$ the second canonical projection and $Z_D = \pi_2(\Phi)$ its image.

Prove that Z_D has dimension 2.

- 4. Consider a line L inside \mathbb{P}^3 . Viewing \mathbb{P}^3 again as the space of circles, L parameterizes a family of circles $\{C_t\}_{t\in\mathbb{P}^3}$.
 - Assuming L is generic, prove that $L \cap Z_D$ consists of 2 points.
 - Conclude that Z_D is a quadric surface.
- 5. Let C be a circle tangent to D. Prove that the line between C and D is in Z_D . Hence Z_D is a quadric cone with vertex in D.
- 6. Given three circles in general position, how many circles are tangent to all three?

References

- [Che19] Y. Chen. Enumerative geometry through intersection theory. 2019.
- [GS17] Philippe Gille and Tamás Szamuely. Central simple algebras and Galois cohomology. 2nd revised and updated edition., volume 165. Cambridge: Cambridge University Press, 2nd revised and updated edition edition, 2017.