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1 Introduction

Duality is a useful idea used in many different contexts. In quantum physics, there is particle-wave
duality, electric-magnetic duality of electromagnetism, boson-vortex duality of 2+1D boson system,
Kramers-Wannier duality of 1+1D Ising model, and AdS-CFT correspondence of quantum gravity.
In cases like electric-magnetic duality, boson-vortex duality, and AdS-CFT, dual theories provide
different descriptions of the same underlying physics. This can be useful especially if one of the
theories is weakly interacting and hence easy to do calculations with while the other theory may
be strongly interacting and hard to compute any quantity. Examples like Kramers-Wannier are
self-dualities that map a theory back to itself but with a change in parameters. Self-dualities put
strong constraints on the structure of the phase diagram, especially at the self-dual critical point.

In this lecture note, we will discuss duality in the Topological Holography (TH) / Symmetry
Topological Field Theory (symTFT) / Symmetry Topological Order (symTO) framework. The TH
/ symTFT / symTO framework provides a systematic way to discuss (some) duality. Moreover,
using our recent study of sequential quantum circuits, we can make concrete statements about the
relation of dual theories (what remains invariant and what can change). We start in section 2 with
an introduction to the TH framework. In particular, we give the explicit example of realizing the
1+1D transverse field Ising model in a ‘sandwich’ structure with 2+1D topological order in the bulk.
Then in section 3, we discuss how the Kramers-Wannier duality of the Ising chain can be induced
by changing the top boundary condition of the sandwich. In section 4, we extend the discussion
to the Kennedy-Tasaki transformation of the 1 + 1D Z2 × Z2 spin chain. We discuss using the
sandwich construction how the four ground states in the SPT phase on an open chain maps to the
four ground states in the symmetry breaking phase. We also discuss how the transformation allows
us to map the critical theory at the symmetry breaking transition point to that at the transition
between SPT phases. In section 5, we discuss a 2 + 1D sandwich with 3 + 1D Z2 topological order
in the bulk and show how the gauging duality in the 2 + 1D Ising theory is realized.

2 Topological Holography / Symmetry TFT / Symmetry TO

The TH / symTFT / symTO framework realizes a d+1D system as a ‘sandwich’ with a (d+1)+1D
topological bulk and a gapped top boundary. Let’s illustrate this with the simple example of a 1+1D
sandwich with 2+1D Toric Code bulk which realizes the 1+1D spin chain with global Z2 symmetry.
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In the next section, we are going to show how the Kramers-Wannier duality corresponds to changing
the gapped boundary condition at the top while preserving all other parts of the sandwich.

A 1 + 1D transverse field Ising model is defined on a spin 1/2 chain with Hamiltonian

H̃ = −
∑
i

σxi − g
∑
i

σzi σ
z
i+1 (1)

The model has a global Z2 symmetry
∏
i σ

x
i . When g << 1, the model is in the symmetric phase;

when g >> 1, the model is in the symmetry-breaking phase. The transition point is described by
the 2D Ising CFT. Now we are going to write it in a more complicated form as a ‘sandwich’. The
advantage of this sandwich structure will show up when we discuss the Kramers-Wannier duality
of the Ising chain.

Figure 1: 1 + 1D sandwich structure with 2 + 1D Toric code in the bulk.

Consider the 2 + 1D Toric Code on a square lattice with bulk Hamiltonian

Hbulk
TC = −

∑
v

[
Z Z

Z

Z

v

]
−
∑
p

[
X
X
X

X
p

]
, (2)

With periodic boundary conditions, the logical operators that map between degenerate ground
states are W e =

∏
X and Wm =

∏
Z loop operators along nontrivial direct and dual lattice

cycles, respectively. The superscript labels the e and m excitations created at the two ends of open
string operators.

There are two possible gapped boundary conditions: a flux (m)-condensed boundary, called ‘smooth’,
and a charge (e)-condensed boundary, called ‘rough’. Concretely, the two boundaries correspond to
ending the lattice on horizontal and vertical edges respectively and truncating the bulk Hamiltonian
terms into three-body ones, as shown in Fig. 1 (Ãv and B̃p). Consider the toric code model living
on a cylinder (periodic boundary conditions in the horizontal direction) and fix the top boundary to
be smooth or rough. When the cylinder is set to have finite size in the y direction but infinite size
in the x direction, the sandwich becomes an effective 1 + 1D system. The bulk and top boundary
determine the low energy Hilbert space of the 1 + 1D system. The bottom boundary is not fixed
but left free, leaving dangling degrees of freedom in order to represent the dynamics of the effective
1 + 1D model.

There are several kinds of operators in the formalism that each play a different role, as pictured in
Fig. 1. First, there are the local stabilizers whose +1 eigenspace specifies the low-energy subspace
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in which the corresponding 1+1D theory is defined. These consist of all bulk stabilizers Av and Bp,
as defined in Eq. 2, and truncated vertex Ãv (for a smooth boundary) or plaquette B̃p (for a rough
boundary) stabilizers at the top boundary. Next, the horizontal W e

x and Wm
x string operators

winding around the cylinder on the direct and dual lattice commute with all the bulk and top
boundary stabilizers and act in the low-energy subspace. We will see that the ±1 eigenvalue of W e

x

and Wm
x label different symmetry charge and symmetry flux sectors of the 1 + 1D theory. Finally,

there are two kinds of local operators at the bottom boundary—a single X and three Z’s—that
commute with all the aforementioned operators, and therefore act only within a given charge / flux
sector of the low-energy subspace. These operators form a complete set of symmetric operators for
each sector and determine the dynamics of the 1D theory.

Let us now match the Hilbert / operator space of the sandwich with that of the 1 + 1D spin chain
with global Z2 symmetry.

Consider first the case of a smooth top boundary (m-condensed). The horizontal Wm
x loop operator

is equal to the product of B̃p stabilizers on the top boundary. Therefore, as long as there are no
‘defects’ on the top boundary, Wm

x = 1. (We will discuss in a minute the case where there is a
defect on the top boundary and Wm

x = −1.) The W e
x loop operator, on the other hand, is not

fixed by the bulk and top boundary stabilizers and can take both ±1 values. Therefore, W e
x can be

thought of as the Z2 global symmetry operator of the sandwich. The vertical Wm
y string operator

anti-commutes with W e
x and should be interpreted as the Z2 charge operator. Note that Wm

y does
not create any excitation in the bulk or on the top boundary, and hence preserves the low-energy
subspace of the 1+1D system. When matched with operators in the 1+1D Ising chain, we see that
W e
x becomes the

∏
σx symmetry operator and Wm

y becomes the σz charge operator. The three-
body ZZZ operator on the bottom boundary is equivalent to the product of two Wm

y operators
(next to each other) up to bulk and top boundary stabilizer terms. Therefore, it can be interpreted
as the σzσz Ising coupling term in the Ising chain. The single X operator on the bottom boundary
anti-commutes with neighboring ZZZ terms and hence can be interpreted as the σx operator of
the Ising chain.

Smooth top Boundary :W e
x ∼

∏
σx, Wm

y ∼ σz,

bottom boundary ZZZ ∼ σzσz, bottom boundary X ∼ σx (3)

When we enforce that all X terms on the bottom boundary of the sandwich to have eigenvalue +1,
this makes the bottom boundary a rough boundary. From the correspondence to the Ising chain,
we see that with a smooth top boundary and a rough bottom boundary, the sandwich realizes the
symmetric phase of the Z2 symmetry. Similarly, setting all ZZZ terms on the bottom boundary
to be +1 creates a smooth bottom boundary and the whole sandwich is in the symmetry-breaking
phase of the Z2 symmetry. In particular, when both top and bottom boundaries are smooth,
applying the charge operator Wm

y does not create any excitation. Therefore, the symmetry charge
is ‘condensed’ and the sandwich is in the symmetry-breaking phase.

Since W e
x is the Z2 operator of the sandwich, its ±1 eigenvalue labels the two charge sectors of the

system. How to access the flux sector? We claim that the flux sector corresponds to the eigenvalue
−1 sector of operator Wm

x . Because Wm
x =

∏
B̃p on the top boundary, in this sector one of the

B̃p terms on the top boundary has eigenvalue −1. This sector is orthogonal to the original one
with Wm

x = 1. To see that this is the flux sector, let’s find its mapping to the 1 + 1D Ising chain.
In the discussion above, we see that the sector with Wm

x = 1 has a mapping to the 1 + 1D Ising
chain with a direct correspondence of their operator algebra. To see how the Wm

x = −1 sector is
related to the 1 + 1D Ising chain, we can map it back to the Wm

x = 1 sector by applying W e
y . W e

y
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commutes with the Z2 symmetry operator W e
x , the Z2 charge operator Wm

y , the transverse field
term of a single X on the bottom boundary and all but one of the Ising coupling term of ZZZ on
the bottom boundary. Therefore, mapped to the Ising chain, it corresponds to the Hamiltonian

H̃ = −
∑
i

σxi − g
∑
i 6=N

σzi σ
z
i+1 + gσzNσ

z
1 (4)

which is exactly the Hamiltonian of the Ising chain with a Z2 flux. Note that in the 1 + 1D Ising
chain, the different flux sectors correspond to models living in the same 2⊗N -dimensional Hilbert
space but with modified Hamiltonian (sign change at the boundary). In the sandwich construction,
different flux sectors live in orthogonal Hilbert spaces while the dynamical terms on the bottom
boundary are kept the same. The advantage of the sandwich construction is to treat charge sectors
and flux sectors on equal footing (orthogonal sectors in a bigger Hilbert space while the Hamiltonian
terms are kept invariant). This is a very helpful feature to have when discussing duality which maps
between charge and flux sectors, as we see below. One thing that is lost in the process, though, is
the tensor product structure of Hilbert space.

Therefore, the horizontal string operators W e
x = ±1 and Wm

x = ±1 label the charge and flux sectors
of the sandwich while the vertical Wm

y and W e
y operators toggle between the sectors.

Figure 2: The sandwich structure in the Topological Holography framework.

This example illustrates the key features of the sandwich construction in the TH framework. As
shown in Fig. 2, a d+ 1-dimensional sandwich

• has a (d+ 1) + 1-dimensional (gapped) topological theory in the bulk,

• the top boundary is gapped by condensing certain topological excitations from the bulk,

• the bulk and top boundary Hamiltonian terms define the low-energy space of the sandwich,

• Hamiltonian terms on the bottom boundary generate the dynamics in the low-energy space,

• closed horizontal logical operators of the topological bulk parallel to the boundaries define
the symmetry and flux sectors of the sandwich,

• open vertical logical operators connecting the top and bottom boundaries toggle between the
sectors.

The sectors can be labeled by either the eigenvalues of the horizontal logical operators or the vertical
logical operator that maps to each sector starting from the sector with positive eigenvalue for all
horizontal logical operators. In a 1 + 1D sandwich with a 2 + 1D bulk, the second labeling is the
anyon label.
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In the example discussed, we have the simplest case where the symmetry is a conventional 0-form
on-site Z2 symmetry. With different choices of the topological bulk, the sandwich can have more
general forms of symmetries

• 2 + 1D doubled-semion: the bulk contains a boson, a semion and their composite – an anti-
semion. The top boundary can be gapped by condensing the boson. The symmetry of the
sandwich is generated by the horizontal semion string operator, which generates an anomalous
0-form Z2 symmetry.

• 2 + 1D doubled-Ising: the bulk anyon set is the composite of two chiral copies (1, ψ, σ) ×(
1, ψ̄, σ̄

)
. The top boundary can be gapped by condensing both ψψ̄ and σσ̄. The symmetry

of the sandwich is generated by Wψ
x and W σ

x which satisfy the non-invertible fusion rule of
W σ
x ×W σ

x = 1 +Wψ
x .

• 3 + 1D toric code: the bulk contains a bosonic point charge excitation and a flux loop
excitation. The top boundary can be gapped by condensing the flux loop. In this case,
the symmetry of the sandwich is generated by the string operators of the bosonic charge in
the two directions parallel to the boundary. This corresponds to a 1-form Z2 symmetry in
the 2 + 1D sandwich.

3 Kramers-Wannier duality of 1 + 1D Ising chain

The 1 + 1D Ising model (a + subscript is added to indicate that this is the model with no flux and
periodic boundary condition)

H̃+(g) = −
∑
i

σxi − g
∑
i

σzi σ
z
i+1 (5)

has a well-known self-duality. Under the duality, Z2 symmetric local operators map as

σxi → σzi σ
z
i+1, σ

z
i σ

z
i+1 → σxi+1 (6)

such that H̃+ maps back to itself with a change of parameter g → 1/g, H̃+(g) → gH̃+(1/g). The
operator algebra (commutation relation) among the symmetric local operators is preserved, so this
mapping works well locally. But globally it runs into the problem∏

i

σxi →
∏
i

σzi σ
z
i+1 = 1, 1 =

∏
i

σzi σ
z
i+1 →

∏
i

σxi (7)

Therefore, the duality mapping works only in the no-charge (and no-flux) sector with
∏
i σ

x
i .

A slight modification of the duality mapping can be applied to other sectors. Consider the mapping

σzi σ
z
i+1 → σxi+1,∀i, σxi → σzi σ

z
i+1 for i 6= N, σxN → −σzNσz1 , (8)

The local operator algebra is still preserved while globally∏
i

σxi → −
∏
i

σzi σ
z
i+1 = −1, 1 =

∏
i

σzi σ
z
i+1 →

∏
i

σxi (9)
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The Hamiltonian H̃+ is mapped to the twisted Hamiltonian with anti-periodic boundary condition

H̃+(g)→ −
∑
i 6=N

σzi σ
z
i+1+σzNσ

z
1−g

∑
i

σxi = g

−∑
i

σxi − 1/g
∑
i 6=N

σzi σ
z
i+1 + 1/gσzNσ

z
1

 = gH̃−(1/g)

(10)
Therefore, the charge-no-flux sector is mapped to the flux-no-charge sector under the duality map-
ping.

If we label the four sectors of the Ising chain as (±1,±1) with the first ±1 labeling the charge
/ no-charge sector and the second ±1 labeling the flux / no-flux sector. Under duality, they are
mapped as

(+1,+1)↔ (+1,+1), (−1,+1)↔ (+1,−1), (−1,−1)↔ (−1,−1), (11)

We can explicitly compare the low-energy spectrum in the symmetry-breaking phase and the sym-
metric phase (at the exactly solvable point) in the four sectors and see how they match before and
after the duality mapping, as shown in Table 1.

Symmetry breaking Symmetric

Sector (1, 1) (1, 1)

GS |ψsb〉 = |00...0〉+ |11...1〉 |ψsym〉 = |+ + ...+〉
Ex.

∏i1
i0
Xi |ψsb〉 Zi0Zi1 |ψsym〉

Sector (1,−1) (−1, 1)

GS
∏N
i0
Xi |ψsb〉 Zi0 |ψsym〉

Ex.
∏i2
i1
Xi
∏N
i0
Xj |ψsb〉 Zi0Zi1Zi2 |ψsym〉

Sector (−1, 1) (−1, 1)

GS |ψsb〉′ = |00...0〉 − |11...1〉 |ψsym〉
Ex.

∏i1
i0
Xi |ψsb〉 Zi0Zi1 |ψsym〉

Sector (−1,−1) (−1,−1)

GS
∏N
i0
Xi |ψsb〉′ Zi0 |ψsym〉

Ex.
∏i2
i1
Xi
∏N
i0
Xj |ψsb〉′ Zi0Zi1Zi2 |ψsym〉

Table 1: Spectrum matching. We list ground states and 1st excited states within each sector

When the Ising chain is realized as a 1+1D sandwich as discussed above, the duality transformation
corresponds to changing the top boundary from smooth to rough (and vice verse). We discussed
the case of smooth top boundary above. Let’s now consider the case of rough top boundary, as
shown in Fig. 3. The case of smooth boundary is also shown for comparison. The discussion is
completely analogous to the one for smooth boundary and we will see explicitly how duality is
induced once the boundary type is changed.

A rough top boundary ends on vertical edges and the bulk Hamiltonian terms Bp are truncated into
three-body ones B̃p. The e anyons are condensed on the rough boundary because a W e

y string can
end on the rough boundary without leaving any excitation. The horizontal W e

x operator is fixed by
the boundary while the horizontal Wm

x operator is now the Z2 symmetry operator of the sandwich.
The sandwich therefore still represents a 1 + 1D system with global (non-anomalous) Z2 symmetry
– the Ising chain. Therefore the duality induced by the change from smooth to rough boundary is
a self-duality. The W e

y operator is now the symmetry charge operator since it anti-commutes with
Wm
x . The single X term on the bottom boundary is equal to the product of two W e

y operators next
to each other. Therefore, it is identified with the Ising coupling term σzi σ

z
i+1 in the Ising chain.

The ZZZ operator on the boundary is now identified with the transverse field term σx which is
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Figure 3: 1 + 1D sandwich structure with 2 + 1D Toric code in the bulk.

consistent with the fact that the product of all such operators along the boundary gives the Z2

symmetry operator Wm
x . The operator correspondence can be summarized as follows:

Rough top Boundary :Wm
x ∼

∏
σx, W e

y ∼ σz,

bottom boundary X ∼ σzσz, bottom boundary ZZZ ∼ σx (12)

Comparing this to Eq. 3, we see that when the top boundary is changed from smooth to rough,
the interpretation of bottom boundary operators in terms of symmetric operators in the Ising
chain is exactly the opposite. We want to emphasize that, when the boundary type changes, the
Hamiltonian terms on the bottom boundary do not change. It is their interpretation as Ising chain
operators that change. Moreover, the role ofW e

x andWm
x are also switched. With smooth boundary,

W e
x measures symmetry charge while Wm

x measures symmetry flux; with rough boundary, Wm
x

measures symmetry charge while W e
x measures symmetry flux. When the boundary type changes,

W e
x and Wm

x do not change as they live in the bulk. Again it is their interpretation as charge
and flux sector labels that change. Note that the boundary change automatically takes care of the
mapping in different sectors, as given in for example Eq. 6 and 8. To see this, we notice that the
bottom boundary Hamiltonian terms do not change in the process, but their interpretation as Ising
chain operator changes. As discussed above, with fixed top boundary, in the flux sector, one of the
bottom boundary terms that correspond to the Ising coupling term get a minus sign when mapped
to the Ising coupling term, as discussed around Eq. 4. With this extra minus sign, the induced
duality mapping exactly matches with that given in Eq. 6 and 8.

From this discussion, we see that duality mapping in the symmetry TFT / Topological holography
framework corresponds to changing the gapped top boundary condition in the sandwich without
touching the bulk or the bottom boundary. Therefore, the bulk operators and bottom boundary
operators do not change, but their interpretation may change due to the change in the top boundary
condition. We can further show that the change in top boundary condition can be induced by a
unitary quantum circuit applied to the top boundary only. The unitarity of the circuit is the reason
that the spectrum before and after the duality mapping are exactly the same in corresponding
sectors, as shown in Table 1. This is a generic feature for dualities in the symmetry TFT /
topological holography framework.

The circuit that maps from the rough to the smooth boundary is illustrated in Fig. 4. Let’s look at
what the circuit does to the stabilizers when going from a rough to a smooth boundary. Starting
from the rough boundary, all truncated plaquette terms B̃p have eigenvalue +1 except for the one
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Figure 4: Kramers-Wannier duality via unitary sequential quantum circuit in the toric code sand-
wich going from rough to smooth boundary. After the circuit, we are left with a smooth boundary
with an omitted boundary stabilizer at the position marked by the hollow circle, and all rough legs
are disentangled into product states. After the circuit, the eigenvalues of the bulk symmetry and
twist operators remain unchanged, but their roles are reversed.

at the red circle which has eigenvalue +1 in the no flux sector and −1 in the flux sector. On the
resulting smooth boundary, all truncated vertex terms Ãv have eigenvalue +1 except for the one at
the green circle which has eigenvalue +1 in the new no flux sector and −1 in the new flux sector.

Under the circuit, the boundary plaquette terms and bulk vertex terms near the boundary (except
the circled ones) are mapped as follows:

X X X

X

Z Z

Z

Z Z

Z

Z

(13)

where the controlled-NOT gates are centered on the top-right plaquette in the lower expression.
The B̃p term at the red circle is mapped to the W e

x string operator which is consistent with the
fact that with rough boundary, the two have the same eigenvalue. The vertex term at the green
circle is mapped as,

Z Z

Z

Z

Z
(14)

The truncated Ãv term at the green circle on the smooth boundary is mapped from the Wm
x string

operator, which is also consistent with the fact that with smooth boundary, they have the same
eigenvalue.We see that the rough edges get disentangled from the bulk by the circuit, and that the
new boundary stabilizers are that of the smooth boundary. Since the horizontal string operators
in the bulk are not touched by the circuit, their eigenvalues remain unchanged, as claimed in
the previous section. A similar circuit can be constructed to map from the smooth to the rough
boundary.

4 Kennedy-Tasaki duality of 1 + 1D Z2 × Z2 spin chain

We have discussed the Kramers-Wannier duality in the Ising chain in great detail. The Kramers-
Wannier duality is special in that there are only two gapped phases in the phase diagram which map
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into each other and the critical point in between is self-dual. In this section, we are going to discuss
the Kennedy-Tasaki duality in a Z2×Z2 symmetric spin chain using the sandwich construction. The
Kennedy-Tasaki duality was originally designed to map the nontrivial SPT phase to the symmetry-
breaking phase. It is also a self-duality in the sense that the system before and after the duality
mapping are both 1 + 1D spin chains with Z2×Z2 symmetry. But this is a more general case than
Kramers-Wannier. There are six gapped phases in the 1 + 1D spin chains with Z2 ×Z2 symmetry.
The duality induces a permutation among the six phases and the phase transitions in between.
We are going to use the sandwich construction to see how Kennedy-Tasaki permutes the full phase
diagram and relates different phase transitions to each other.

Consider a 1 + 1D spin chain with two sets of Z2 degrees of freedom, σ and τ , located on odd and
even sites respectively. The system has a Z2×Z2 symmetry generated by

∏
i σ

x
2i−1 and

∏
i τ

x
2i. The

trivial symmetric phase is realized with the Hamiltonian

HSPT0 = −
∑
i

σx2i−1 −
∑
i

τx2i (15)

The fully symmetry-breaking phase is realized with the Hamiltonian

HSB = −
∑
i

σz2i−1σ
z
2i+1 −

∑
i

τ z2iτ
z
2i+2 (16)

The nontrivial SPT phase is realized with the Hamiltonian

HSPT1 = −
∑
i

τ z2i−2σ
x
2i−1τ

z
2i −

∑
i

σz2i−1τ
x
2iσ

z
2i+1 (17)

With the open boundary condition, the nontrivial SPT phase has a four-fold ground state degener-
acy, two-fold on each edge. The edge states can be recoupled back with boundary terms ±τ z2Nσx1τ z2
and ±σz2N−1τ

x
2Nσ

z
1 . The four boundary terms correspond to the four different flux sectors on a

closed chain and the ground states in these four sectors carry different charges. In particular, a
τ flux carries a σ charge and a σ flux carries a τ charge. The Kennedy-Tasaki transformation
maps these four ground states of the nontrivial SPT phase to the four-fold ground states of the
symmetry-breaking phase.

Now let’s see how this mapping is realized in a sandwich structure by changing top boundary
conditions. Consider a 1 + 1D sandwich with the 2 + 1D Z2×Z2 topological order in the bulk (i.e.
two copies of Toric Code). There are 16 anyons in the bulk (1, e1,m1, ψ1) × (1, e2,m2, ψ2). There
are six types of gapped boundaries corresponding to the condensation of

A1 : {1, e1, e2, e1e2}, A2 : {1, e1,m2, e1m2}, A3 : {1,m1, e2,m1e2}
A4 : {1, e1e2,m1m2, ψ1ψ2}, A5 : {1,m1,m2,m1m2}, A6 : {1,m1e2, e1m2, ψ1ψ2}

(18)

We are going to focus on the duality transformation induced by changing from boundary A1 to
A6. In Table 4, we list the gapped phases realized in the sandwich with top boundary A1 and A6

and the bottom boundary in one of the six gapped states. The symmetry-breaking pattern of the
gapped phases can be deduced from the set of anyons that can tunnel between the two boundaries
without creating excitations on either boundary.

A1 A2 A3 A4 A5 A6

A1 SSB → 1 SSB → Z2 SSB → Z2 SSB → Z2 SPT0 SPT1

A6 SPT SSB → Z2 SSB → Z2 SSB → Z2 SPT SSB → 1

9



From the last column in the table, we see that changing from the A1 top boundary to the A6

top boundary induces a duality mapping from the nontrivial SPT phase (the Haldane phase) to
the fully symmetry-breaking phase, which is exactly the effect of Kennedy-Tasaki. (From the
first column, we see that the same duality takes the fully symmetry-breaking phase to a symmetric
phase, although with the A6 top boundary, it is ambiguous to say whether it is a trivial or nontrivial
SPT.) Following a similar analysis as in the previous section, we can identify the corresponding
sectors and match their spectrum before and after the mapping. In particular, we can see how
the four-fold degenerate edge states of the nontrivial SPT on an open chain map to the four-fold
degenerate ground state in the fully symmetry-breaking phase.

With the A1 top boundary, the sandwich has Z2 × Z2 symmetry generated by Wm1
x and Wm2

x .
The flux sectors are labeled by the eigenvalues of W e1

x and W e2
x . With the A6 top boundary,

the flux sectors are labeled by the eigenvalues of Wm1e2
x and W e1m2

x . The Z2 × Z2 symmetry is
generated by Wm1

x and Wm2
x , or equivalently by W e1

x and W e2
x . From the above discussion we

see that the four-fold degenerate edge states of the SPT correspond to the four flux sectors of the
spin chain and each flux is attached to corresponding charges. In the sandwich structure, with A1

top boundary top boundary and A6 bottom boundary, these four ground states are ground states
in the {Wm1

x = 1,Wm2
x = 1,W e1

x = 1,W e2
x = 1}, {Wm1

x = −1,Wm2
x = 1,W e1

x = 1,W e2
x = −1},

{Wm1
x = 1,Wm2

x = −1,W e1
x = −1,W e2

x = 1}, {Wm1
x = −1,Wm2

x = −1,W e1
x = −1,W e2

x = −1}
sectors respectively. When the top boundary is changed from A1 to A6, the ground states in
these sectors remain the lowest energy, although the interpretation of Wm1

x , Wm2
x , W e1

x and W e2
x

changes. Since with A6 top boundary, Wm1
x and Wm2

x (or equivalently W e2
x and W e1

x ) measures the
Z2×Z2 symmetry charges, the four ground states after the duality transformation carries different
symmetry charges but the same symmetry flux – they are the degenerate ground states of the
symmetry breaking phase.

More interestingly, we can learn about the critical point at phase transitions using the duality map.
Consider the first column and the fifth column. We see that the KT duality maps the symmetry-
breaking transition (from fully symmetric trivial SPT phase to fully symmetry-breaking phase) to
the transition between the two SPTs. The symmetry-breaking transition is very well understood –
it is two copies of the Ising CFT, one for each Z2. The duality tells us that there is a continuous
transition between the trivial and nontrivial SPT and the critical theory is basically also two copies
of Ising CFT. The possible difference between the two critical theories is the reorganization of
different symmetry sectors. Let’s take what is known about the Ising CFT and find out about the
critical theory between the two Z2 × Z2 SPTs.

A single Ising CFT contains four sectors: the trivial sector labeled ++, the charge sector labeled
−+, the flux sector labeled +− and the fermion sector (composite of charge and flux) −−. Each
sector contains several primary fields and their descendants. The partition function of each sector
is a sum over the conformal towers associated with the contained primary fields.

ZIsing
++ = Z1 + Zε, Z

Ising
−+ = Zσ, Z

Ising
+− = Zµ, Z

Ising
−− = Zφ + Zφ̄ (19)

1 is the trivial primary field, ε is the energy primary field, σ is the spin (order parameter) primary
field, µ is the disorder parameter primary field, φ and φ̄ are the left and right moving fermions.
The spectrum of the Ising model in Eq. 1 contains only the charge sectors. Therefore the total
partition function is

ZIsing = ZIsing
++ + ZIsing

−+ = Z1 + Zε + Zσ (20)

This is the well-known partition function of Ising CFT. We can also understand this combination of
sectors in the total partition function from the sandwich structure discussed in the previous section.
In the sandwich with a single copy of Toric Code in the bulk, suppose that the top boundary is
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gapped with the condensation of the e anyon. Only the two charge sectors are contained in the
sandwich without any defect on the top boundary. Therefore, the top boundary chooses the two
charge sectors when forming the 1 + 1D sandwich and ZIsing

tot = ZIsing
++ + ZIsing

−+ .

The symmetry-breaking transition in a Z2 × Z2 spin chain is simply two copies of the Ising CFT.

ZIsing2 = (Z1 + Zε1 + Zσ1) (Z1 + Zε2 + Zσ2) (21)

which contains the four charge sectors of the Z2 × Z2 spin chain

ZIsing2 = ZIsing2

++,++ + ZIsing2

++,−+ + ZIsing2

−+,++ + ZIsing2

−+,−+ (22)

This can again be understood from the perspective of the sandwich structure. The symmetry-
breaking transition is realized in the Z2 × Z2 sandwich with top boundary being A1 and the
bottom boundary between A1 and A5. The four charge sectors in the partition function is chosen
by the A1 top boundary where {1, e1, e2, e1e2} condense.

Now if we change the top boundary to A6, the condensate changes to {1, e1m2,m1e2, ψ1ψ2}. There-
fore, the sectors that show up at the critical point are

ZSPT→SPT = ZIsing2

++,++ + ZIsing2

−+,+− + ZIsing2

+−,−+ + ZIsing2

−−,−− (23)

which in terms of the single Ising conformal towers takes the form

ZSPT→SPT = (Z1 + Zε1)(Z1 + Zε2) + Zσ1Zµ2 + Zµ1Zσ2 + (Zφ1 + Zφ̄1)(Zφ2 + Zφ̄2) (24)

5 Gauging of 2 + 1D Ising model

Finally, let’s consider a 2 + 1D sandwich with a 3 + 1D topological order in the bulk. Let’s consider
the simplest case of the 3 + 1D toric code in the bulk. The sandwich can realize a 2 + 1D spin
system with either a 0-form Z2 symmetry or a 1-form Z2 symmetry. As we will see, the duality
induced corresponds to the one between the 2 + 1D Ising model and the 2 + 1D Z2 gauge theory.

The 3 + 1D toric code can be realized on 3D cubic lattice with Hamiltonian

Hbulk
3DTC =−

∑
v

[
Z Z

Z

Z

Z

Z

]
−
∑
p,xz

[
X

X

X

X
]

−
∑
p,yz

[
X
X

X
X

]
−
∑
p,zy

[
X
X

X
X

]
, (25)

with the plaquettes living in the three planes according to Fig. ??. The bulk topological phase
hosts two types of excitations: point-like charge (e) excitations that live on the endpoints of X-
strings and string-like flux-loop excitations (m) that live at the boundary of membranes formed
by Z-operators on the dual lattice. We will focus on two possible types of top boundary usually
called ‘rough’ and ‘smooth’ (in analogy with the 2D case). At the ‘rough’ boundary, the lattice
terminates on vertical edges and the vertical plaquette terms near the boundary are truncated into
three-body B̃p terms. At the ‘smooth’ boundary, the lattice terminates on horizontal plaquettes,
and the vertex terms near the boundary are truncated into five-body Ãv terms.
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Figure 5: 3D toric code in the sandwich picture with smooth top boundary (a) and rough top
boundary (b). Boundaries in the x and y direction are periodic. The unshaded terms are the
boundary stabilizers (enforced) and the eigenvalues of the shaded terms label the symmetry or
twist sectors depending on the top boundary. The hollow circles denote the location of omitted
boundary stabilizers. For visual clarity, we have not drawn the operators Xz, Zxz, or Zyx which
toggle between the sectors of the Hilbert space.

The bulk and top boundary terms define the low-energy sub-space of the sandwich. Logical oper-
ators parallel to the boundaries label the symmetry and flux sectors. These include the membrane
operator V m

xy and string operators W e
x , W e

y . With the rough top boundary, W e
x , W e

y are determined
by the top boundary while V m

xy is not. Therefore, V m
xy becomes the 0-form Z2 symmetry of the

sandwich while W e
x , W e

y measures the Z2 flux in the x and y directions respectively. On the other
hand, with the smooth top boundary, V m

xy is determined by the top boundary while W e
x , W e

y are
not. Therefore, the sandwich has a 1-form Z2 symmetry with symmetry operators along nontrivial
cycles being W e

x , W e
y . V m

xy then measures the flux of the 1-form symmetry.

Table 5 lists gapped phases realized by the 2+1D sandwich with smooth / rough top boundary and
smooth / rough bottom boundary respectively. We see that, when the top boundary is changed
from rough to smooth, a (0-form) Z2 symmetric phase is mapped to the Z2 gauge theory while the
0-form symmetry breaking phase is mapped to a trivial phase. This is exactly the gauging map for
the phases in for 2 + 1D Ising system.

symmetry bottom smooth bottom rough

top smooth 1-form Z2 Z2 gauge theory (1-form SB) trivial 1-form symmetric phase

top rough 0-form Z2 trivial 0-form symmetric phase Ising ferromagnet (0-form SB)
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