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Review

Conjecture (M.P. Murthy ’97)
Suppose k is an algebraically closed field and d ≥ 1 is an integer. If X is a
smooth affine k-variety of dimension d + 1, and E is a rank d vector bundle on
X, then E ∼= E′ ⊕ 1X if and only if 0 = cd(E) ∈ CHd(X).

Theorem (A.–T. Bachmann–M.J. Hopkins ’24)
If k is an algebraically closed field having characteristic 0, X is a smooth
affine d-fold over k, then Murthy’s conjecture holds.

(building on work of A.–J. Fasel)
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Review: obstruction theory after Moore–Postnikov

Fix X smooth affine of dimension d + 1 over k alg. closed, ξ : X → Grd.

Affine representability =⇒ suffices to lift ξ to X → Grd−1 in motivic
homotopy

Since dim X = d + 1 =⇒ lift exists if and only if

primary obstruction in Hd(X,πd−1(Ad) \ 0) vanishes and

assuming primary obstruction vanishes, obstruction theory =⇒
secondary obstruction in

o2(ξ) ∈ Hd+1(X,πd(Ad \ 0)(det ξ))

vanishes.
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Euler classes vs. top Chern classes

Since πd−1(Ad \ 0) ∼= KMW
d (F. Morel),

universal example: Hd(Grd,KMW
d (det γd)) free rank 1 KMW

0 (k)-module
generated by e(γd)

the primary Euler class obstruction e(ξ) lives in Hd(X,KMW
d (det ξ)).

There is an exact sequence:

0 −→ Id+1(det ξ) −→ KMW
d (det ξ) −→ KM

d −→ 0.

the map Hd(X,KMW
d (det ξ))→ Hd(X,KM

d ) ∼= CHd(X) sends e(ξ) to
cd(ξ) (treat the universal example)

kernel and cokernel =⇒ analyze Hd+j(X, Id+1(det ξ)), j = 0, 1.
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dim X = d + 1, k alg. closed =⇒ the sheaf Ij(det ξ) = 0 for j ≥ d + 2
(Arason–Pfister)

then,
Id+1(det ξ) = Id+1(det ξ)/Id+2(det ξ) ∼= KM

d+1/2 ∼= Hd+1
ét (µ⊗d+1

2 )
(Milnor conjectures on quadratic forms by Orlov–Vishik–Voevodsky and
mod2 norm residue homomorphism by Voevodsky–Rost)

Bloch–Ogus s.s. analysis =⇒ H2d+1
ét (X) � Hd(X,Hd+1

ét (µ⊗d+1
2 ))

+ X affine =⇒ Hd(X, Id+1(det ξ)) = 0 (Artin–Grothendieck vanishing)

thus, Hd(X,KMW
d (det ξ))

∼−→CHd(X) and this iso sends e(ξ) to cd(ξ).
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Low-dimensional exceptional isomorphisms

Cartesian square:
Sp2n−2 //

��

Sp2n

��

SL2n−1 // SL2n

Sp2n/Sp2n−2 ∼= SL2n/SL2n−1 ∼ A2n \ 0

SL2n−1/Sp2n−2 ∼= SL2n/Sp2n n = 2; SL4/Sp4 ∼ A3 \ 0

analyze motivic homotopy by stabilizing: standard inclusions

Sp2 ⊂ Sp4 ⊂ · · · ⊂ Sp

SL4/Sp4 ⊂ GL4/Sp4 ⊂ GL6/Sp6 ⊂ · · · ⊂ GL/Sp
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Z× BSp represents symplectic K-theory (Schlichting–Tripathi)

Connectivity estimate =⇒ πi(Sp2) −→ πi(Sp) ∼= πi+1(BSp) is{
π1(A2 \ 0) ∼= KMW

2
∼−→KSp

2 (Suslin’s theorem)
π2(A2 \ 0) � KSp

3

stabilization fiber sequences =⇒ exact sequence

0 −→ coker(KSp
4 −→ KMW

4 ) −→ π2(A2 \ 0) −→ KSp
3 −→ 0

coker(KSp
4 → KMW

4 ) ∼= “KM
4 /12×KM

4 /2 I4”

Borel–Serre in classical topology: π6(S3) = π7(BSp2) = Z/12
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GL/Sp represents a another Hermitian K-theory (Schlichting–Tripathi):

Ω2,1GL/Sp ∼ Sp

Connectivity estimates =⇒
πi(SL4/Sp4) −→ πi(SL/Sp) ∼= πi(GL/Sp), i ≥ 2 is{

π2(A3 \ 0) ∼= KMW
3

∼−→GW3
3

π3(A3 \ 0) � GW3
4

stabilization fiber sequences =⇒ exact sequence

0 −→ coker(GW3
5 −→ KMW

5 ) −→ π3(A3 \ 0) −→ GW3
4 −→ 0

coker(GW3
5 → KMW

5 ) ∼= “KM
5 /24×KM

5 /2 I5”

Classical topology π8(S5) ∼= Z/24 gen. by suspension of Hopf map ν
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Homotopy of An \ 0, n ≥ 4

The notion of “stable range” in topology comes from:

Theorem (Freudenthal)
If n ≥ 2, X is a pointed (n− 1)-connected space, then

X −→ ΩΣX

is 2n− 1-connected.

Morel established an exact analog of this statement for S1-suspension.

Since An+1 \ 0 ∼ P1 ∧ An \ 0, we need to understand how homotopy
sheaves behave with respect to P1-suspension.

Morel’s calculations =⇒ Freudenthal suspension is false for
P1-suspension: πn(Sn) = Z, while πn(Ω2,1Sn+2,1) = KMW

0 (the source is
not “Gm-connected”)
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Weak cellular classes

The collection of n− 1-connected spaces is the smallest class of spaces
containing Sn, stable under (homotopy) colimits and (homotopy) cofiber
extensions, i.e., if

A −→ B −→ C

is a cofiber sequence and A and C are (n− 1)-connected, then so is B.

Definition
Say X ∈ O(Sp,q) (weakly Sp,q-cellular) if it is contained in the smallest
subcategory of pointed motivic spaces containing all spaces of the form
Sp,q ∧ X+, X ∈ Smk that is closed under formation of (homotopy) colimits and
(homotopy) cofiber extensions.

If X ∈ O(Sp,q), then X is (p− q− 1)-connected.
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Example

The space An \ 0 lies in O(S2n−1,n).

Lemma
If F → E → B is a motivic fiber sequence, F ,B ∈ O(Sp,q) =⇒
E ∈ O(Sp,q) (assuming all spaces are connected).

Example

The space fib(BSp2 → BSp) ∼ Sp/Sp2 ∈ O(S7,4):

Sp/Sp2 = colimn Sp2n/Sp2, and

n ≥ 2, there are fiber sequences

Sp2n−2/Sp2 −→ Sp2n/Sp2 −→ Sp2n/Sp2n−2 ∼ S4n−1,2n
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Example
If X ∈ O(Sp,q), p− q ≥ 0, then J(X ) ∼ ΩΣX ∈ O(Sp,q) as well.

Example

The space fib(SL4/Sp4 → SL/Sp) ∈ O(S8,5):

SL/Sp = colimn SL2n/Sp2n, and

fibers of composites

n ≥ 3, there are fiber sequences

ΩS4n−3,2n−1 −→ SL2n−2/Sp2n−2 −→ SL2n−1/Sp2n−2 ∼= SL2n/Sp2n

Example
The space K(Z(n), 2n) (i.e., Voevodsky’s motivic Eilenberg Mac Lane space)
lies in O(S2n,n): use Voevodsky’s motivic Dold–Thom theorem.
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Calculus of cellular classes

For “sufficiently nice” motivic spaces (e.g., 1-connected):

We can build a functorial weakly Sp,q-cellular cover: τ≥(p,q) by analogy
with connective covers.
If X ∈ O(Sp,q), then taking Postnikov layers need not preserve weak
cellular class:

one can refine the Postnikov tower to preserve cellularity.
if q ≥ 2, layers of refined tower are P1-infinite loop spaces
(Bachmann–Yakerson, which uses motivic infinite loop space technology
of EHKSY)

For p, q large enough, if X ∈ O(Sp,q), then Ω2,1X ∈ O(Sp−2,q−1);
similar statements can be made about fibers (Levine’s results on the
slice/homotopy coniveau tower)
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The motivic Freudenthal theorem

Theorem (A.-Bachmann-Hopkins)
Assume k is a field having characteristic 0. If X ∈ O(Sp,q) with
p− q ≥ 2, q ≥ 2, then

fib(X −→ Ω2,1Σ2,1X ) ∈ O(Sa,2q),

where a = min(2p− 1, p + 2q− 1) (these agree when p = 2q).

Corollary
If k has characteristic 0, then

fib(A3 \ 0 −→ Ω2,1A4 \ 0) ∈ O(S9,6);

in particular, π3(A3 \ 0)→ π3(Ω2,1A4 \ 0) is surjective.
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Step 1. Reduce to the case of P1-infinite loop spaces using the
weakly-cellular refinement of the Postnikov tower.

Step 2. Devissage, using ideas of Levine’s slice convergence results as
extended by Bachmann–Elmanto–Østvær (uses the Voevodsky–Rost
verification of the Bloch–Kato conjecture!), to the case of motives of
smooth varieties.

Step 3. Treat the case of motives of smooth varieties by an explicit
argument using the geometry of symmetric powers.
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The identity map on K(Z(n), 2n) ∼ Ω2,1K(Z(n + 1), 2n + 2) factors as

K(Z(n), 2n) −→ Ω2,1Σ2,1K(Z(n), 2n)
Ω2,1an−→ Ω2,1K(Z(n + 1), 2n + 2),

and it suffices to establish a suitable cellularity estimate for cof(an).

The space K(Z(n), 2n) = colimr Symr(P1∧n
) (motivic Dold–Thom).

The assembly map an arises from the Σr-equivariant map
A1 × (An)×r −→ An × (An)×r ∼= (An+1)×r by taking quotients and
applying Thom spaces and taking a colimit.

It suffices to understand the cofiber of the map just described, which
following Nakaoka and Voevodsky can be described explicitly in terms
of representation theory of the symmetric group and is built iteratively
out of Thom complexes where weak cellularity class are easier to
understand.
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Back to Murthy’s conjecture

The maps {
S3,2 ∼ SL2 = Sp2 −→ Sp
S5,3 ∼ SL4/Sp4 ⊂ GL4/Sp4 −→ GL/Sp

described earlier, fit into a sequence.

Via the geometric form of Bott periodicity for Hermitian K-theory, the
unit map S0 → KO is stabilization of sequence of maps

S2n−1,n −→ Ω−2n−1,−nBétO;

realized explicitly as (hyperbolic quadric) Q2n−1 to spaces in geometric
form of Bott periodicity via “Suslin matrices” (Asok–Fasel).

Factors through the weakly-cellular cover τ≥2n−1,nΩ−2n−1,−nBétO;
induced map is an iso on bottom degree homotopy by Morel’s
calculations.
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For n ≥ 4, the motivic Hopf map ν : S2n+2,n+2 → S2n−1,n covers the fiber of
the above map; this can be accomplished by comparison with the stable
situation (Röndigs–Spitzweck–Østvær).

Theorem
If k has characteristic 0, and n ≥ 4, then there is an exact sequence

0 −→ KM
n+2/24 −→ πA

1

n (An \ 0) −→ πn(τ≥2n−1,nΩ−2n−1,−nBétO) −→ 0.
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The explcit description of πd(Ad \ 0) allows us to analyze the secondary
obstruction:

Part coming from ν: for X of dimension d + 1 over a field k:

Hd+1(X,KM
d+2/24) ∼= H2d+3,d+2(X,Z/24)

also a quotient of
⊕

x∈X(d+1) KM
1 (κx)/24 (Gersten)

If k algebraically closed, KM
1 (κx) is divisible so KM

1 (κx)/24 vanishes.
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Part coming from the destablized unit map to KO:

Hd+1(X, τ≥2n−1,nΩ−2n−1,−nBétO) ∼= Hd+1(X,GWd
d+1)

Theorem (A., Fasel)
If X is a smooth k-scheme of dimension d + 1 over a field k (char. k 6= 2), then

Hd+1(X,GWd
d+1(L)) ∼= H2d+2,d+1(X,Z/2)/(Sq2 + c1(L)∪)H2d,d(X,Z/2).

If X affine, and k alg. closed, then H2d+2,d+1(X,Z) is divisible (Roitman),
hence H2d+2,d+1(X,Z/2) vanishes as well.
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Thank you!
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