From matrices to motivic homotopy theory I

Aravind Asok (USC)

July 8, 2024

Splitting problems in topology

Homotopy classification of vector bundles

- *M* a "nice" space (manifold, CW complex) of dimension *d*
- \bullet $\mathcal{V}_r(M)$ set of isomorphism classes of rank *r* (real) vector bundles on *M*
- $\bullet \mathcal{V}_r(M) \to \mathcal{V}_r(M \times I)$ is a bijection (homotopy invariance)
- Gr_r^{top} Grassmannian of *r*-dimensional subspaces of an infinite dimensional real vector space
- Gr_r^{top} carries a rank *r* "tautological" vector bundle
- Continuous maps $M \to Gr_r^{top}$ yield rank *r* vector bundles on *M* by pullback; homotopic maps yield isomorphic bundles

Theorem (Pontryagin–Steenrod)

Pulling back the tautological bundle determines a bijection:

 $[M, Gr_r^{top}] \longrightarrow \mathcal{V}_r(M).$

The topological splitting problem

- There is a map s_r : Gr_{r-1}^{top} $\rightarrow Gr_r^{top}$ classifying the sum of the tautological bundle of rank $r - 1$ and a trivial rank 1 bundle.
- A rank *r* bundle has a nowhere vanishing section if and only if it splits off a trivial rank 1 summand, this yields a lifting problem: given $\xi : M \to Gr_r^{top}$, can we complete the following diagram:

Take *M* a closed manifold of dimension *d* and fix $\xi : M \to Gr_r^{top}$.

- By the corank of ξ we will mean the integer $d r$.
- **If** $r > d$, then a generic section of ξ is nowhere vanishing (general position).
- Equivalently, a lift exists as long as $r > d$.

Non-negative corank: the primary obstruction

Take *M* a closed manifold of dimension *d* and fix $\xi : M \to Gr_d^{top}$.

- Evident obstruction to existence of a nowhere vanishing section: the cohomology class Poincare dual to the vanishing locus of a generic section, a.k.a., (twisted) Euler class.
- Since $\pi_1(Gr_r^{top}) \cong \mathbb{Z}/2$ (via the determinant), ξ yields an orientation character $\omega_{\xi} : \pi_1(M) \to \mathbb{Z}/2 \Longleftrightarrow$ orientation local system on *M*.

Theorem

Given a topological space having the homotopy type of CW complex of dimension d and ξ *as above, then the vanishing of the (twisted) Euler class*

 $e(\xi) \in H^d(M, \mathbb{Z}[\omega_{\xi}])$

is the only *obstruction to splitting off a free rank* 1 *summand.*

Corank 0: the proof

The failure of s_r to be a weak homotopy equivalence is measured by the fiber sequence:

$$
S^{r-1} \longrightarrow Gr_{r-1}^{top} \stackrel{s_r}{\longrightarrow} Gr_r^{top}.
$$

- Obstruction theory: there is an inductive procedure to decide whether lifts exist using *unstable* homotopy of *S r*−1 .
- The Euler class arises from:

$$
deg: \pi_{r-1}(S^{r-1}) \tilde{\longrightarrow} \mathbb{Z}
$$

for $r > 2$; dimension hypothesis implies only obstruction, and this group is *stable*, i.e., the answer is independent of *r*.

Theorem (S.D. Liao '54)

Assume M is a manifold of dimension d + 1, *d* \geq 4. *If* ξ *is an oriented rank d vector bundle on M, then* ξ *splits off a trivial rank* 1 *summand and if and only* $if 0 = e(\xi) \in H^d(M, \mathbb{Z})$ and $0 = o_2(\xi) \in H^{d+1}(M, \mathbb{Z}/2)/(Sq^2 + w_2(\xi) \cup)H^{d-1}(M, \mathbb{Z}/2).$

- Dimension hypothesis implies there are two obstructions to analyze; primary obstruction is the Euler class.
- If the primary obstruction vanishes, there is a well-defined secondary obstruction arising from:

$$
\pi_d(S^{d-1}) = \begin{cases} \mathbb{Z} & \text{if } d = 3 \\ \mathbb{Z}/2 & \text{if } d \ge 4 \end{cases};
$$

• if $d \geq 4$ the computation is "stable", while $d = 3$ is "unstable".

Splitting algebraic vector bundles I: a classical story

Throughout the talk: *R* is a commutative (unital) ring.

Definition

An *R*-module *P* is called projective if it is a direct summand of a free *R*-module.

Equivalently, *P* is projective if:

- (lifting property) given an *R*-module map $f : P \to M$, and a surjective *R*-module map $N \rightarrow M$, we may always find $\tilde{f}: P \rightarrow N$.
- \bullet (linear algebraic) if *P* is also finitely generated, then there exist an integer *n*, and $\epsilon \in End_R(R^{\oplus n})$ such that $\epsilon^2 = \epsilon$ and $P = \epsilon R^{\oplus n}$.

From now on, all projective modules will be assumed finitely generated (f.g.)

Projective modules "are" vector bundles:

- *R* a ring \rightarrow Spec *R* a topological space (with the Zariski topology)
- basis of open sets $D(f)$ (think: complement of $f = 0$)
- *P* a f.g. projective *R*-module, then there are $f_1, \ldots, f_n \in R$ such that " $P|_{D(f_i)}$ is free," that is $P[\frac{1}{f_i}]$ is a free $R[\frac{1}{f_i}]$ -module
- *P* a projective module → vector bundle on Spec *R* (locally trivial for the Zariski topology)

Vector bundles "are" projective modules:

- *M* a (say) compact manifold;
- $C(M)$ = ring of continuous real-valued functions on *M*
- $\bullet \pi : E \to M$ a vector bundle, $P(\pi) = C(M)$ -module of continuous sections of π

Serre–Swan correspondence

{ finite rank v.b. over M } \longleftrightarrow { f.g. projective $C(M)$ – modules }

Serre's dictionary

If *R* is a commutative ring, then locally free *R*-modules are projective:

{ finite rank v.b. over $\text{Spec } R$ \longleftrightarrow { f.g. projective R – modules };

Definition

Suppose *R* is a Noetherian ring of Krull dimension *d* and *P* is a projective *R*-module of rank *r*.

- V*r*(Spec *R*) ∼= classes of rank *r* projective *R*-modules a.k.a. rank *r* algebraic vector bundles on Spec *R*
- **e** corank $P = d r$.

The assignment $P \mapsto P \oplus R$ determines a stabilization function

$$
s_r
$$
: $\mathscr{V}_{r-1}(\operatorname{Spec} R) \longrightarrow \mathscr{V}_r(\operatorname{Spec} R)$.

Theorem (J.P. Serre '58)

The function s_r *is surjective for* $r > d$ (*i.e., negative corank*).

Remark

The proof of Serre's theorem was based on an algebro-geometric analog of "general position" arguments: a generic section of a topological vector bundle of rank r > *d is nowhere vanishing.*

Question (H. Bass '64)

Can one characterize the image of sr?

Assume *k* is a field, and *R* is a smooth *k*-algebra of dimension *d* and *P* a projective *R*-module of rank *d*.

- obstruction: "the vanishing locus of a generic section", i.e., the *d*-th Chern class $c_d(P)$ lying in $CH^d(\text{Spec } R)$ the Chow group of codimension *d* algebraic cycles modulo rational equivalence
- obstruction is insufficient in general: (R. Swan '61) the tangent bundle τ_{S^2} to the real 2-sphere (hypersurface given by $x^2 + y^2 + z^2 = 1$) has $c_2(\tau_{S^2}) = 0$ but does not split off a free rank 1 summand.

When (if ever) is the obstruction sufficient?

Theorem

If k is algebraically closed, and X is a smooth affine d-fold over k, then the image of $s_{d-1,X}$ *consists of those* \mathcal{E} (*of rank d*) such that $0 = c_d(\mathcal{E}) \in CH^d(X)$.

- \bullet $d = 2$ R. Swan–M.P. Murthy '76
- \bullet $d = 3$ N. Mohan Kumar–M.P. Murthy '82
- *d* ≥ 4 M.P. Murthy '94
- Proof uses only "classical" tools.

What happens when *k* is not algebraically closed? Can one say anything in corank > 0 ?

Vector bundles and motivic homotopy theory

- *Gr^r* is an (infinite-dimensional) algebraic variety
- A map $\text{Spec } R \to Gr_r$ corresponds to a vector bundle on R and a collection of generating sections
- We may speak of "naive" homotopies between such maps, i.e., two maps f, g : Spec $R \rightarrow Gr_r$ are naively homotopic if there exists a map $H : \text{Spec } R[t] \to Gr_r \text{ with } H(0) = f \text{ and } H(1) = g.$

Theorem

If k is a field, and R is a regular k-algebra, then

$$
[\operatorname{Spec} R,Gr_r]_{naive} \stackrel{\sim}{\longrightarrow} \mathscr{V}_r(\operatorname{Spec} R);
$$

- This theorem is much harder than the topological analog: for $R = k[t_1, \ldots, t_n]$ it follows from the Quillen–Suslin solution to Serre's problem. The general case uses Lindel's verification of the Bass–Quillen conjecture in the geometric case.
- Naive homotopy can be badly behaved (e.g., it is not an equivalence relation, in general).
- The restriction to regular rings is necessary in order to have an analog of homotopy invariance.
- k a fixed base-ring; Sm_k , the category of smooth k -varieties
- Sm_k is not "big enough" to do homotopy theory (e.g., Gr_r is not in this category, cannot form all quotients, etc.)
- $P(Sm_k)$ space-valued presheaves on Sm_k an enlargement of Sm_k where we can perform all the constructions we will want later
- We now force two kinds of maps to be "equivalences":
	- Nisnevich local equivalences: roughly, if *X* can be covered by $\{U_i\}$, then we may build a Cech object $C(u) \to X$, and we force $C(u) \to X$ to be an isomorphism
	- \mathbb{A}^1 -equivalences: $X \times \mathbb{A}^1 \to X$
- Spc*^k* for the category of *motivic spaces* obtained by inverting both Nisnevich local and \mathbb{A}^1 -weak equivalences; we write $[-,-]_{\mathbb{A}^1}$ for maps in the associated homotopy category (the Morel–Voevodsky motivic homotopy category)

If k is regular, one may show $[X, \mathbb{P}^{\infty}]_{\mathbb{A}^1} = Pic(X)$ for any smooth k-scheme *X*. Unfortunately, this fails for Gr_r with $r \geq 2$. Nevertheless,

Theorem (Affine representability)

If k is a field or \mathbb{Z} *, then for any smooth affine k-scheme* $X = \text{Spec } R$ *,*

 $[\operatorname{Spec} R, Gr_{r}]_{naive} = [\operatorname{Spec} R, Gr_{r}]_{\mathbb{A}^{1}} \xrightarrow{\sim} \mathcal{V}_{r}(\operatorname{Spec} R).$

- Morel '06 if $r \neq 2$ and *k* a perfect field
- Schlichting '15 arbitrary *r*, *k* perfect; simplifies part of Morel's argument
- A.–M. Hoyois–M. Wendt '15 (essentially self-contained: in essence, the theorem is equivalent to the Bass–Quillen conjecture for all smooth algebras over *k*)

Theorem (F. Morel, L.F. Moser, M. Wendt, A.-Hoyois-Wendt)

If k is either a field or a Dedekind ring with perfect residue fields, then there is an A 1 *-fiber sequence of the form*

$$
\mathbb{A}^r\setminus 0\longrightarrow Gr_{r-1}\longrightarrow Gr_r
$$

- We can build a version of obstruction theory in \mathbb{A}^1 -homotopy theory.
- We need information about motivic homotopy type $\mathbb{A}^r \setminus 0$.

Splitting algebraic vector bundles II: a motivic story

Homotopy theory of $\mathbb{A}^n \setminus 0$

- There are two circles in \mathbb{A}^1 -homotopy theory: S^1 and \mathbb{G}_m .
- There are equivalences in Spc_k of the form $\mathbb{P}^1 \sim S^1 \wedge \mathbb{G}_m$ and $\mathbb{A}^n \setminus 0 \sim S^{n-1} \wedge \mathbb{G}_m \wedge^n$; note that $\mathbb{A}^{n+1} \setminus 0 \sim \mathbb{P}^1 \wedge \mathbb{A}^n \setminus 0$. Set:

$$
S^{p,q} := S^{p-q} \wedge \mathbb{G}_m^{\wedge q}.
$$

We must consider homotopy *sheaves* not homotopy groups (gives correct form of the Whitehead theorem, etc.), but those associated with $Sⁱ$ are "most important."

Theorem (F. Morel '12)

For any $n \geq 2$, the sphere $\mathbb{A}^n \setminus 0$ is $(n-2)$ - \mathbb{A}^1 -connected.

- Intuition: a space is \mathbb{A}^1 -connected, if any two points can be connected by a chain of affine lines (over any extension of the base field).
- At least for $\mathbb{A}^n \setminus \mathbb{0}$, higher connectivity can be examined analogously.

Theorem (F. Morel '12)

For any n \geq 2, there is an isomorphism $\pi_{n-1}^{\mathbb{A}^1}$ $A_{n-1}^{\mathbb{A}^1}(\mathbb{A}^n \setminus 0) \cong \mathbf{K}_n^{MW}.$

• Vague idea of proof: the Hurewicz theorem tells us first non-vanishing homotopy (when it is abelian) coincides with homology; the suspension isomorphism tells us that homology is a "free sheaf of abelian groups" on $\mathbb{G}_m^{\wedge n}$; Morel then describes this in terms of generators and relations.

Theorem (F. Morel '12)

Suppose k is a field, X is a smooth affine k-variety of dimension d, and $\xi : E \to X$ is a rank d algebraic vector bundle on X. There exists a *canonically defined "Euler class"*

$$
e(\xi) \in H^d(X, \mathbf{K}_n^{MW}(\det \xi)) = \widetilde{CH}^d(X, \det \xi)
$$

whose vanishing is sufficient to guarantee E splits off a free rank 1 *summand.*

Proof.

Obstruction theory!

Conjecture (M.P. Murthy '97)

Suppose k is an algebraically closed field and d ≥ 1 *is an integer. If X is a smooth affine k-variety of dimension d* + 1*, and E is a rank d vector bundle on X*, then $E \cong E' \oplus \mathbf{1}_X$ *if and only if* $0 = c_d(E) \in CH^d(X)$.

Theorem (A.–T. Bachmann–M.J. Hopkins '24)

If k is an algebraically closed field having characteristic 0*, X is a smooth affine d-fold over k, then Murthy's conjecture holds.*

(building on work of A.–J. Fasel)