From matrices to motivic homotopy theory I

Aravind Asok (USC)

July 8, 2024

Splitting problems in topology

Homotopy classification of vector bundles

- *M* a "nice" space (manifold, CW complex) of dimension *d*
- $\mathscr{V}_r(M)$ set of isomorphism classes of rank *r* (real) vector bundles on *M*
- $\mathscr{V}_r(M) \to \mathscr{V}_r(M \times I)$ is a bijection (homotopy invariance)
- *Gr*^{*top*} Grassmannian of *r*-dimensional subspaces of an infinite dimensional real vector space
- Gr_r^{top} carries a rank r "tautological" vector bundle
- Continuous maps $M \to Gr_r^{top}$ yield rank *r* vector bundles on *M* by pullback; homotopic maps yield isomorphic bundles

Theorem (Pontryagin–Steenrod)

Pulling back the tautological bundle determines a bijection:

$$[M, Gr_r^{top}] \xrightarrow{\sim} \mathscr{V}_r(M).$$

The topological splitting problem

- There is a map $s_r : Gr_{r-1}^{top} \to Gr_r^{top}$ classifying the sum of the tautological bundle of rank r 1 and a trivial rank 1 bundle.
- A rank *r* bundle has a nowhere vanishing section if and only if it splits off a trivial rank 1 summand, this yields a lifting problem: given $\xi: M \to Gr_r^{top}$, can we complete the following diagram:

Take *M* a closed manifold of dimension *d* and fix $\xi : M \to Gr_r^{top}$.

- By the corank of ξ we will mean the integer d r.
- If r > d, then a generic section of ξ is nowhere vanishing (general position).
- Equivalently, a lift exists as long as r > d.

Non-negative corank: the primary obstruction

Take *M* a closed manifold of dimension *d* and fix $\xi : M \to Gr_d^{top}$.

- Evident obstruction to existence of a nowhere vanishing section: the cohomology class Poincare dual to the vanishing locus of a generic section, a.k.a., (twisted) Euler class.
- Since $\pi_1(Gr_r^{top}) \cong \mathbb{Z}/2$ (via the determinant), ξ yields an orientation character $\omega_{\xi} : \pi_1(M) \to \mathbb{Z}/2 \iff$ orientation local system on M.

Theorem

Given a topological space having the homotopy type of CW complex of dimension d and ξ as above, then the vanishing of the (twisted) Euler class

$$e(\xi) \in H^d(M, \mathbb{Z}[\omega_{\xi}])$$

is the only obstruction to splitting off a free rank 1 summand.

Corank 0: the proof

• The failure of *s_r* to be a weak homotopy equivalence is measured by the fiber sequence:

$$S^{r-1} \longrightarrow Gr_{r-1}^{top} \xrightarrow{s_r} Gr_r^{top}.$$

- Obstruction theory: there is an inductive procedure to decide whether lifts exist using *unstable* homotopy of S^{r-1} .
- The Euler class arises from:

$$deg: \pi_{r-1}(S^{r-1}) \xrightarrow{\sim} \mathbb{Z}$$

for $r \ge 2$; dimension hypothesis implies only obstruction, and this group is *stable*, i.e., the answer is independent of r.

Theorem (S.D. Liao '54)

Assume *M* is a manifold of dimension d + 1, $d \ge 4$. If ξ is an oriented rank *d* vector bundle on *M*, then ξ splits off a trivial rank 1 summand and if and only if $0 = e(\xi) \in H^d(M, \mathbb{Z})$ and $0 = o_2(\xi) \in H^{d+1}(M, \mathbb{Z}/2)/(Sq^2 + w_2(\xi) \cup)H^{d-1}(M, \mathbb{Z}/2).$

- Dimension hypothesis implies there are two obstructions to analyze; primary obstruction is the Euler class.
- If the primary obstruction vanishes, there is a well-defined secondary obstruction arising from:

$$\pi_d(S^{d-1}) = \begin{cases} \mathbb{Z} & \text{if } d = 3\\ \mathbb{Z}/2 & \text{if } d \ge 4 \end{cases};$$

• if $d \ge 4$ the computation is "stable", while d = 3 is "unstable".

Splitting algebraic vector bundles I: a classical story

Throughout the talk: *R* is a commutative (unital) ring.

Definition

An *R*-module *P* is called **projective** if it is a direct summand of a free *R*-module.

Equivalently, P is projective if:

- (lifting property) given an *R*-module map $f : P \to M$, and a surjective *R*-module map $N \twoheadrightarrow M$, we may always find $\tilde{f} : P \to N$.
- (linear algebraic) if *P* is also finitely generated, then there exist an integer *n*, and $\epsilon \in End_R(R^{\oplus n})$ such that $\epsilon^2 = \epsilon$ and $P = \epsilon R^{\oplus n}$.

From now on, all projective modules will be assumed finitely generated (f.g.)

Projective modules "are" vector bundles:

- $R \text{ a ring} \rightarrow \operatorname{Spec} R$ a topological space (with the Zariski topology)
- basis of open sets D(f) (think: complement of f = 0)
- *P* a f.g. projective *R*-module, then there are $f_1, \ldots, f_n \in R$ such that " $P|_{D(f_i)}$ is free," that is $P[\frac{1}{f_i}]$ is a free $R[\frac{1}{f_i}]$ -module
- *P* a projective module → vector bundle on Spec *R* (locally trivial for the Zariski topology)

Vector bundles "are" projective modules:

- *M* a (say) compact manifold;
- C(M) = ring of continuous real-valued functions on M
- $\pi: E \to M$ a vector bundle, $P(\pi) = C(M)$ -module of continuous sections of π

Serre–Swan correspondence

{ finite rank v.b. over M} \longleftrightarrow { f.g. projective C(M) – modules }

Serre's dictionary

If *R* is a commutative ring, then locally free *R*-modules are projective:

{ finite rank v.b. over Spec R} \longleftrightarrow { f.g. projective R – modules };

Definition

Suppose *R* is a Noetherian ring of Krull dimension *d* and *P* is a projective *R*-module of rank *r*.

- $\mathcal{V}_r(\operatorname{Spec} R) \cong$ classes of rank *r* projective *R*-modules a.k.a. rank *r* algebraic vector bundles on $\operatorname{Spec} R$
- corank P = d r.

The assignment $P \mapsto P \oplus R$ determines a stabilization function

$$s_r: \mathscr{V}_{r-1}(\operatorname{Spec} R) \longrightarrow \mathscr{V}_r(\operatorname{Spec} R).$$

Theorem (J.P. Serre '58)

The function s_r *is surjective for* r > d *(i.e., negative corank).*

Remark

The proof of Serre's theorem was based on an algebro-geometric analog of "general position" arguments: a generic section of a topological vector bundle of rank r > d is nowhere vanishing.

Question (H. Bass '64)

Can one characterize the image of s_r ?

Assume k is a field, and R is a smooth k-algebra of dimension d and P a projective R-module of rank d.

- obstruction: "the vanishing locus of a generic section", i.e., the *d*-th Chern class $c_d(P)$ lying in $CH^d(\operatorname{Spec} R)$ the Chow group of codimension *d* algebraic cycles modulo rational equivalence
- obstruction is insufficient in general: (R. Swan '61) the tangent bundle τ_{S^2} to the real 2-sphere (hypersurface given by $x^2 + y^2 + z^2 = 1$) has $c_2(\tau_{S^2}) = 0$ but does not split off a free rank 1 summand.

When (if ever) is the obstruction sufficient?

Theorem

If k is algebraically closed, and X is a smooth affine d-fold over k, then the image of $s_{d-1,X}$ consists of those \mathcal{E} (of rank d) such that $0 = c_d(\mathcal{E}) \in CH^d(X)$.

- d = 2 R. Swan–M.P. Murthy '76
- d = 3 N. Mohan Kumar–M.P. Murthy '82
- $d \ge 4$ M.P. Murthy '94
- Proof uses only "classical" tools.

What happens when k is not algebraically closed? Can one say anything in corank > 0?

Vector bundles and motivic homotopy theory

- Gr_r is an (infinite-dimensional) algebraic variety
- A map Spec *R* → *Gr_r* corresponds to a vector bundle on *R* and a collection of generating sections
- We may speak of "naive" homotopies between such maps, i.e., two maps $f, g: \operatorname{Spec} R \to Gr_r$ are naively homotopic if there exists a map $H: \operatorname{Spec} R[t] \to Gr_r$ with H(0) = f and H(1) = g.

Theorem

If k is a field, and R is a regular k-algebra, then

$$[\operatorname{Spec} R, Gr_r]_{naive} \xrightarrow{\sim} \mathscr{V}_r(\operatorname{Spec} R);$$

- This theorem is much harder than the topological analog: for $R = k[t_1, ..., t_n]$ it follows from the Quillen–Suslin solution to Serre's problem. The general case uses Lindel's verification of the Bass–Quillen conjecture in the geometric case.
- Naive homotopy can be badly behaved (e.g., it is not an equivalence relation, in general).

- The restriction to regular rings is necessary in order to have an analog of homotopy invariance.
- *k* a fixed base-ring; Sm_k, the category of smooth *k*-varieties
- Sm_k is not "big enough" to do homotopy theory (e.g., *Gr_r* is not in this category, cannot form all quotients, etc.)
- $P(Sm_k)$ space-valued presheaves on Sm_k an enlargement of Sm_k where we can perform all the constructions we will want later
- We now force two kinds of maps to be "equivalences":
 - Nisnevich local equivalences: roughly, if *X* can be covered by $\{U_i\}$, then we may build a Cech object $C(u) \to X$, and we force $C(u) \to X$ to be an isomorphism
 - \mathbb{A}^1 -equivalences: $X \times \mathbb{A}^1 \to X$
- Spc_k for the category of *motivic spaces* obtained by inverting both Nisnevich local and A¹-weak equivalences; we write [−, −]_{A¹} for maps in the associated homotopy category (the Morel–Voevodsky motivic homotopy category)

If *k* is regular, one may show $[X, \mathbb{P}^{\infty}]_{\mathbb{A}^1} = Pic(X)$ for any smooth *k*-scheme *X*. Unfortunately, this fails for Gr_r with $r \ge 2$. Nevertheless,

Theorem (Affine representability)

If k is a field or \mathbb{Z} , then for any smooth affine k-scheme $X = \operatorname{Spec} R$,

 $[\operatorname{Spec} R, Gr_r]_{naive} = [\operatorname{Spec} R, Gr_r]_{\mathbb{A}^1} \xrightarrow{\sim} \mathscr{V}_r(\operatorname{Spec} R).$

- Morel '06 if $r \neq 2$ and k a perfect field
- Schlichting '15 arbitrary r, k perfect; simplifies part of Morel's argument
- A.–M. Hoyois–M. Wendt '15 (essentially self-contained: in essence, the theorem is equivalent to the Bass–Quillen conjecture for all smooth algebras over *k*)

Theorem (F. Morel, L.F. Moser, M. Wendt, A.-Hoyois-Wendt)

If k is either a field or a Dedekind ring with perfect residue fields, then there is an \mathbb{A}^1 -fiber sequence of the form

$$\mathbb{A}^r \setminus 0 \longrightarrow Gr_{r-1} \longrightarrow Gr_r$$

- We can build a version of obstruction theory in \mathbb{A}^1 -homotopy theory.
- We need information about motivic homotopy type $\mathbb{A}^r \setminus 0$.

Splitting algebraic vector bundles II: a motivic story

Homotopy theory of $\mathbb{A}^n \setminus 0$

- There are two circles in \mathbb{A}^1 -homotopy theory: S^1 and \mathbb{G}_m .
- There are equivalences in Spc_k of the form $\mathbb{P}^1 \sim S^1 \wedge \mathbb{G}_m$ and $\mathbb{A}^n \setminus 0 \sim S^{n-1} \wedge \mathbb{G}_m^{\wedge n}$; note that $\mathbb{A}^{n+1} \setminus 0 \sim \mathbb{P}^1 \wedge \mathbb{A}^n \setminus 0$. Set:

$$S^{p,q} := S^{p-q} \wedge \mathbb{G}_m^{\wedge q}.$$

• We must consider homotopy *sheaves* not homotopy groups (gives correct form of the Whitehead theorem, etc.), but those associated with S^i are "most important."

Theorem (F. Morel '12)

For any $n \ge 2$, the sphere $\mathbb{A}^n \setminus 0$ is (n-2)- \mathbb{A}^1 -connected.

- Intuition: a space is A¹-connected, if any two points can be connected by a chain of affine lines (over any extension of the base field).
- At least for $\mathbb{A}^n \setminus 0$, higher connectivity can be examined analogously.

Theorem (F. Morel '12)

For any $n \geq 2$, there is an isomorphism $\pi_{n-1}^{\mathbb{A}^1}(\mathbb{A}^n \setminus 0) \cong \mathbf{K}_n^{MW}$.

Vague idea of proof: the Hurewicz theorem tells us first non-vanishing homotopy (when it is abelian) coincides with homology; the suspension isomorphism tells us that homology is a "free sheaf of abelian groups" on

 G_m^{\lambdan}; Morel then describes this in terms of generators and relations.

Theorem (F. Morel '12)

Suppose k is a field, X is a smooth affine k-variety of dimension d, and $\xi : E \to X$ is a rank d algebraic vector bundle on X. There exists a canonically defined "Euler class"

$$e(\xi) \in H^d(X, \mathbf{K}_n^{MW}(\det \xi)) = \widetilde{CH}^d(X, \det \xi)$$

whose vanishing is sufficient to guarantee E splits off a free rank 1 summand.

Proof.

Obstruction theory!

Conjecture (M.P. Murthy '97)

Suppose k is an algebraically closed field and $d \ge 1$ is an integer. If X is a smooth affine k-variety of dimension d + 1, and E is a rank d vector bundle on X, then $E \cong E' \oplus \mathbf{1}_X$ if and only if $0 = c_d(E) \in CH^d(X)$.

Theorem (A.–T. Bachmann–M.J. Hopkins '24)

If k is an algebraically closed field having characteristic 0, X is a smooth affine d-fold over k, then Murthy's conjecture holds.

(building on work of A.–J. Fasel)