SCATTERING AMPLITUDES (and feynman integrals) FOR COLLIDER PHYSICS

Amplitudes 2024
IAS (Princeton, NJ, USA) - June 10th 2024

Lorenzo Tancredi - Technical University Munich

DISCLAIMER:
 THIS IS NOT A REVIEW OF RESULTS !!

MORE OF A PERSONAL PERSPECTIVE ON SOME INTERESTING ISSUES THAT WE ARE DEALING WITH TODAY

IT WILL BE, BY CONSTRUCTION, BIASSED AND INCOMPLETE

WHY (stllu) COLLIDERS? THE LHC (and beyond)...

THE LHC HAS BECOME A PRECISION MACHINE

After its discovery in 2012, a lot (but not only) revolving around Higgs boson's properties

Status: October 2023

THE HIGGS BOSON: THE LAST MISSING PIECE

[Snowmass 2022 arXiv:2209.0751]

HIGGS INTERACTIONS at tHe LHC

Hints to answer these questions hidden in the details of Higgs interactions to SM particles

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}
$$

$$
+i \not \subset X \psi
$$

LHC has opened a window for us to peak at Higgs' interactions for the first time!

HIGGS INTERACTIONS the galge sector

Higgs discovery through its couplings to gauge sector

Anomalous couplings?

HIGGS INTERACTIONS тне Yukawa sector

Run 2 direct observation of H coupling to third family fermions
 $Z=-\frac{1}{4} F_{N \nu} F^{N D}$ Cole $+\left|D_{\mu} \phi\right|^{2}-V(\phi)$

35.9-137 $\mathrm{fb}^{-1}(13 \mathrm{TeV})$

Run 3 and HL potential:

1. Precision measurements for third family
2. Discovery couplings to second family ($\mu \& c$)

HIGGS SELF INTERACTIONS тне most mYsterious?

HL-LHC first to see the triple-H coupling

$+i F D \psi$
$+x_{i} y_{i j} \psi_{j} \phi+h$. $\left.+\left|D_{m} \phi\right|^{2}-V(\phi)\right)$

We have seen the Higgs but

$$
V(\phi)=-\mu^{2} \phi^{2}+\frac{\lambda}{4!} \phi^{4}
$$

is a "toy model"!

1. more minima?
2. more Higges?
3. microscopic model of SSB?
4. ...

Higgs self coupling extremely difficult to measure.

With 2018 estimates 4σ ATLAS+CMS

PROBING THE GAUGE SECTOR

Multiboson final states as probe of electroweak sector of SM

PROBING THE YUKAWA SECTOR

$b \bar{b} H$ production

PROBING H SELF INTERACTION the challenges ahead

Direct sensitivity in HH production: Progress, but extremely hard to measure even at (HL-)LHC

PROBING H SELF INTERACTION the challenges ahead

Direct sensitivity in HH production: Progress, but extremely hard to measure even at (HL-)LHC

Indirect sensitivity through precision studies!
$b \bar{b} \tau \tau+b \bar{b} \gamma \gamma+b \bar{b} b \bar{b}$

PLENTY OF DISCOVERY POTENTIAL AHEAD

\oplus
 ATLAS

For the first time in decades, we might not expect new particles ahead...
Still, thanks to \% precision physics program at colliders, we have the chance to discover "new interactions", and have the concrete opportunity to uncover details of new "Higgs" physics!

PRECISION STUDIES "OPPORTUNITIES" ALL OVER

PREGIGUN GTUD|EC «ODNODTIMITIEQ" AII NI/ED

Standard Model Production Cross Section Measurements

LHC is reaching \% level precision for many of these observables, and much is still to come with 95% more data set at HL-LHC!

\% PRECISION, HOW DO WE GET THERE?

FROM THEORY TO THEORY PREDICTIONS IT's a long way!

$$
\begin{aligned}
\mathcal{L} & =-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \\
& +i \neq D \psi \\
& +\psi_{i} y_{i j} \psi_{j} \phi+h \cdot c . \\
& +\left|D_{\mu} \phi\right|^{2}-V(\phi)
\end{aligned}
$$

Signal to BKG interference for $g g \rightarrow H \rightarrow \gamma \gamma$

PRECISION AT COLLIDERS

PRECISION ATCOLIDERS

Impressive effort dedicated to get all these ingredients under control with \% level precision.
"Understanding QCD"...!

PRECISION AT COLLIDERS

For now, we ignore all that (see later) and zoom in the so-called
'Hard Scattering'

Building blocks are "Scattering Amplitudes"
\% precision possible?!

HARD SCATTERING

$$
\sigma_{q \bar{q} \rightarrow g g}=\int[\mathrm{dPS}]\left|\mathcal{M}_{q \bar{q} \rightarrow g g}\right|^{2}
$$

$$
\left|\mathcal{M}_{q \bar{q} \rightarrow g g}\right|^{2}=\left|\mathcal{M}_{q \bar{q} \rightarrow g g}^{L O}\right|^{2}+\left(\frac{\alpha_{s}}{2 \pi}\right)\left|\mathcal{M}_{q \bar{q} \rightarrow g g}^{N L O}\right|^{2}+\left(\frac{\alpha_{s}}{2 \pi}\right)^{2}\left|\mathcal{M}_{q \bar{q} \rightarrow g g}^{N N L O}\right|^{2}+\ldots
$$

HARD SCATTERING

$$
\sigma_{q \bar{q} \rightarrow g g}=\int[\mathrm{dPS}]\left|\mathcal{M}_{q \bar{q} \rightarrow g g}\right|^{2}
$$

$$
\left|\mathcal{M}_{q \bar{q} \rightarrow g g}\right|^{2}=\left|\mathcal{M}_{q \bar{q} \rightarrow g g}^{L O}\right|^{2}+\left(\frac{\alpha_{s}}{2 \pi}\right)\left|\mathcal{M}_{q \bar{q} \rightarrow g g}^{N L O}\right|^{2}+\left(\frac{\alpha_{s}}{2 \pi}\right)^{2}\left|\mathcal{M}_{q \bar{q} \rightarrow g g}^{N N L O}\right|^{2}+\ldots
$$

$$
\begin{aligned}
& \text { Parke-Taylor formula (1986) }
\end{aligned}
$$

HARD SCATTERING

$$
\sigma_{q \bar{q} \rightarrow g g}=\int[\mathrm{dPS}]\left|\mathcal{M}_{q \bar{q} \rightarrow g g}\right|^{2}
$$

$$
\left|\mathcal{M}_{q \bar{q} \rightarrow g g}\right|^{2}=\left|\mathcal{M}_{q \bar{q} \rightarrow g g}^{L O}\right|^{2}+\left(\frac{\alpha_{s}}{2 \pi}\right)\left|\mathcal{M}_{q \bar{q} \rightarrow g g}^{N L O}\right|^{2}+\left(\frac{\alpha_{s}}{2 \pi}\right)^{2}\left|\mathcal{M}_{q \bar{q} \rightarrow g g}^{N N L O}\right|^{2}+\ldots
$$

$$
\begin{aligned}
& \sim 0(30 \%-10 \%) \\
& \text { precision }
\end{aligned}
$$

Virtual
One-loop Amplitudes

HARD SCATTERING

$$
\sigma_{q \bar{q} \rightarrow g g}=\int[\mathrm{dPS}]\left|\mathcal{M}_{q \bar{q} \rightarrow g g}\right|^{2}
$$

$$
\left|\mathcal{M}_{q \bar{q} \rightarrow g g}\right|^{2}=\left|\mathcal{M}_{q \bar{q} \rightarrow g g}^{L O}\right|^{2}+\left(\frac{\alpha_{s}}{2 \pi}\right)\left|\mathcal{M}_{q \bar{q} \rightarrow g g}^{N L O}\right|^{2}+\left(\frac{\alpha_{s}}{2 \pi}\right)^{2}\left|\mathcal{M}_{q \bar{q} \rightarrow g g}^{N N L O}\right|^{2}+\ldots
$$

THE NEED OF PRECISION: towards the \% level

THE NEED OF PRECISION: towards the \% level

THE NEED OF PRECISION: towards the \% level

THE NEED OF PRECISION: towards the \% level

THE NEED OF PRECISION: towards the \% level

AMPLITUDES FOR COLLIDERS: HOW do we go About them?

The integrand

AMPLITUDES FOR COLLIDERS: HOW do we go About THeM?

The integrand

Decomposition into building blocks

AMPLITUDES FOR COLLIDERS: HOW do we go About THeM?

The integrand

AMPLITUDES FOR COLLIDERS: HOW do we go About THeM?

$$
\frac{197}{144}+\frac{1}{12} \pi^{2}-\frac{1}{2} \pi^{2} \ln 2+\frac{3}{4} \zeta(3)
$$

computations of the building blocks

AMPLITUDES FOR COLLIDERS: HOW do we go About THeM?

ON THE INTEGRAND

ON THE INTEGRAND: who is afrald of feymman diagrams?

"just a sum of Feynman diagrams"

ON THE INTEGRAND: who is afraid of feymman dIagrams?

+500 more pages
(50000 Feynman diagrams)

Is this what scares us?

ON THE INTEGRAND: who is afrald of feymman diagrams?

Computers and clever programming today can handle hundreds of thousands of Feynman diagrams
The real issue: hidden simplicity
Gauge symmetry, analytic structure (poles and branch cuts) etc are hidden in this decompositions
Starting from generic Feynman diagrams, things might look much worse than what they really are...

ON THE INTEGRAND: who is afraid of feymman dagrams?

Where do we stand?

Tree-level: (On-shell) recursions: BCFW
One-loop: Unitarity (extended to higher loops in specific cases, no triangles/no bubbles etc)
Higher loops: ??? [...Arkani-Hamed, Frost, Salvatori, Plamondon, Thomas '23 ...]

ON THE DECOMPOSITION

ON THE DECOMPOSITION

If we can decompose the amplitude into a (minimal) set of building blocks, problem solved*! (all cancelations, structures, symmetries should become manifest...)

In practice, this can be achieved starting from any representation, but difficulty depends strongly on where we start

ON THE DECOMPOSITION: one loop and nlo revolution

One of the main reasons of the so-called NLO revolution

$$
=\sum_{i} C_{i}^{4}
$$

[Extremely efficient techniques to get the $C_{i} \rightarrow$ very efficient ones ALSO based on Feynman diagrams] Blackhat, MadLoops, Openloops, Recola, GoSam, Ninja,...

ON THE DECOMPOSITION: the standard way at ℓ Loops

$$
=\epsilon_{1}^{\mu_{1}} \cdots \epsilon_{n}^{\mu_{n}} \bar{v}(q) \Gamma_{\mu_{1}, \ldots, \mu_{n}} u(p)
$$

$$
0=\int \prod_{l=1}^{L} \frac{d^{D} k_{l}}{(2 \pi)^{D}} \frac{\partial}{\partial \ell_{k}^{\mu}}\left[v^{\mu} \frac{S_{1}^{b_{1}} \ldots S_{m}^{b_{m}}}{D_{1}^{a_{1}} \ldots D_{n}^{a_{n}}}\right]
$$

$\longleftarrow \mathscr{F}=\int \prod_{l=1}^{L} \frac{d^{D} k_{l}}{(2 \pi)^{D}} \frac{S_{1}^{b_{1}} \ldots S_{m}^{b_{m}}}{D_{1}^{a_{1}} \ldots D_{n}^{a_{n}}}$

Integration by parts identities (IBPs)
(+ Symmetries, Lorentz ids and all that)
[Chetyrkin, Tkachov; Laporta; ...]
scalar Feynman integrals

$$
\begin{aligned}
& D_{i}=q_{i}^{2}-m_{i}^{2} \\
& S_{i}=\left\{\ell_{j} \cdot \ell_{k}, \ell_{j} \cdot p_{k}\right\}
\end{aligned}
$$

ON THE DECOMPOSITION: IBPS and master integrals

IBPs are extremely powerful, both conceptually and practically!

- One can prove that MIs are in finite number
- MIs provide a basis in space of all Feynman integrals \rightarrow structure of a vector space
-Turn the decomposition problem into a linear algebra problem
- As any basis in any vector space, some bases are better than others
-VERY powerful bi-product: the differential-equation method

ON THE DECOMPOSITION: IBPS and master integrals

The "Laporta method", first applied* in a systematic way in 1997 to reduce 3loop g-2 to 17 MIs

$$
a_{e}^{Q E D}=C_{1}\left(\frac{\alpha}{\pi}\right)+C_{2}\left(\frac{\alpha}{\pi}\right)^{2}+C_{3}\left(\frac{\alpha}{\pi}\right)^{3}+C_{4}\left(\frac{\alpha}{\pi}\right)^{4}+C_{5}\left(\frac{\alpha}{\pi}\right)^{5}+\ldots
$$

$C_{3}=$

$$
\begin{aligned}
& =\frac{83}{72} \pi^{2} \zeta(3)-\frac{215}{24} \zeta(5)+\frac{100}{3}\left[\left(\operatorname{Li}_{4}\left(\frac{1}{2}\right)+\frac{\ln ^{4} 2}{24}\right)-\frac{\pi^{2} \ln ^{2} 2}{24}\right] \\
& -\frac{239}{2160} \pi^{4}+\frac{139}{18} \zeta(3)-\frac{298}{9} \pi^{2} \ln 2+\frac{17101}{810} \pi^{2}+\frac{28259}{5184}
\end{aligned}
$$

ON THE DECOMPOSITION: IBPS and mATter Integrals

The "Laporta method", first applied* in a systematic way in 1997 to reduce 3loop g-2 to 17 MIs

Since then, things have changed a lot!

Complexity increases factorially with \# of legs and \# of loops

- many scales \rightarrow huge rational functions to handle symbolically (typically TBs of RAM on large machines!)
- many loops \rightarrow explosion in number of identities (typically $\geq 10^{9}$ for $2 \rightarrow 2$ at three loops, again TBs!)

ON THE DECOMPOSITION: IbPS and mATter Integrals

The "Laporta method", first applied* in a systematic way in 1997 to reduce 3loop g-2 to 17 MIs

Since then, things have changed a lot! State-of-the-art: 2 loop 5 point - 3 loop 4 point - 4 loop 3 point

Abreu, Agarwal, Badger, Buccioni, Chawdhry, Chicherin, Czakon, de Laurentis, Febres-Cordero, Gambuti, Gehrmann, Henn, Ita, Lo Presti, Manteuffel, Ma, Mitov, Page, Peraro, Pochelet, Schabinger, Sotnikov, Tancredi, Zhang, ...

Bargiela, Bobadilla, Canko, Caola, Jakubcik, Gambuti, Gehrmann, Henn, Lim, Mella, Mistlberger, Wasser, Manteuffel, Syrrakos, Smirnov, Tancredi, ...

Henn, Lee, Manteuffel, Schabinger, Smirnov, Smirnov, Stainhauser,...

ON THE DECOMPOSITION: IBPS and master integrals

Finite-fields methods

Avoid intermediate expression swell
[von Manteufell, Schabinger,
Peraro, Abreu, Page, Ita,
Klappert, Lange,....]

Algebraic geometry methods

Reduce the number of IBPs generated
[Zhang, Bohem, Kosower,
Peraro, Page, Abreu, Ita, von
Manteuffel, Schabinger ...]

ON THE DECOMPOSITION: IBPS and master integrals

Finite-fields methods

Avoid intermediate expression swell
[von Manteufell, Schabinger,
Peraro, Abreu, Page, Ita,
Klappert, Lange,....]

Algebraic geometry methods

Reduce the number of IBPs generated
[Zhang, Bohem, Kosower,
Peraro, Page, Abreu, Ita, von
Manteuffel, Schabinger ...]

$$
\begin{gathered}
\text { intersection theory } \\
\langle\varphi| \mathcal{C}]=\sum_{i, j, k, l=1}^{|\chi|}\left\langle\varphi \mid \varphi_{j}\right\rangle\left(\mathbf{C}^{-1}\right)_{j i} \mathbf{P}_{i l}\left(\mathbf{H}^{-1}\right)_{l k}\left[\mathcal{C}_{k} \mid \mathcal{C}\right]
\end{gathered}
$$

[Mizera, Mastrolia, Frellesvig, Brunello, Crisanti, Mattiazzi, Gasparotto, Smith, Chen, Feng, Yang, Xu, Pokraka, Caron-Huot, Giroux, Weinzierl, Fontana,
Peraro...]

ON THE DECOMPOSITION: LEARNNG FROM N=4 SYM

Together with computational advances, the crucial question is, what we decompose onto?
Learning from $\mathrm{N}=4$ important breakthroughs:

encode (log) singularities of Amplitude locally
Pure and of Uniform Transcendental Weight

Simplification happens in $\mathrm{D}=4$
What about UV and IR divergences?

Dim Reg is good ?

Dim Reg is evil ?

How do we keep dim reg, but also make simplicity in $\mathrm{D}=4$ manifest?

How to define finite remainders?

ON THE DECOMPOSITION: open ISSUES (\& ONE-LOOP LESSONS)

$=\sum C_{i}^{4}$
 $+\sum_{i} c_{i}^{2}$
 $+\mathcal{R}$

One loop decomposition often non-minimal. Using IBPs (all massless):

IR (soft+collinear) divergence $\rightarrow \frac{1}{D-4} \times$ UV divergence

$$
\sim \frac{1}{(D-4)^{2}}
$$

ON THE DECOMPOSITION: open ISSUES (\& ONE-LOOP LESSONS)

$=\sum C_{i}^{4}$

 $+\mathcal{R}$

QCD is not $\mathrm{N}=4 \mathrm{SYM}$

QCD is not UT
QCD is not Pure
-

Their richness indicates that we need to use an over-complete, non UT basis, which makes IR and UV divergences manifest (?)

$$
\begin{aligned}
& \quad \frac{9}{4} \mathcal{I}^{F}+2(d-4) \mathcal{I}^{\mathrm{IR}}+\frac{2}{3}(d-5)(d-1) \mathcal{I}_{1}^{\mathrm{UV}} \\
& =\quad-\frac{(d-4)(d-2)}{3}\left[\left(\frac{1}{2}+\frac{s_{23}}{s_{12}}\right) \mathcal{I}_{2}^{\mathrm{UV}}-\left(1-\frac{s_{23}}{s_{12}}\right) \mathcal{I}_{3}^{\mathrm{UV}}+\mathcal{I}_{4}^{\mathrm{UV}}\right] \\
& \quad+(1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1)
\end{aligned}
$$

$$
\longleftarrow \text { not UT, not pure ints... }
$$

ON THE INTEGRALS

ON THE INTEGRALS: the geomerry of ferwman nitegrals

Two points of view on Feynman integrals

ON THE INTEGRALS: the geometry of feymman integrals

Two points of view on Feynman integrals

1. Direct Integration

$$
\mathfrak{J}\left(a_{1}, \ldots, a_{n}\right)=\frac{(-1)^{\omega+d} \Gamma(d / 2)}{\Gamma((L+1) d / 2-\omega)}\left(\prod_{k=1}^{n} \int_{0}^{\infty} \frac{x_{k}^{a_{k}-1} d x_{k}}{\Gamma\left(a_{k}\right)}\right)\left[\mathscr{G}\left(x_{i}, s_{i j}, m_{i}^{2}\right)\right]-d / 2
$$

[Lee, Pomeransky '13]

$$
\mathscr{G}\left(x_{i}, s_{i j}, m_{i}^{2}\right)=0 \quad \text { Determines an algebraic variety }
$$

ON THE INTEGRALS: the geometry of feymman integrals

Two points of view on Feynman integrals

2. Differential Equations
$d \mathscr{I}=A\left(D, s_{i j}\right) \mathscr{J} \quad$ "trivial" consequence of IBPs [Kotikov '93; Remiddi '97; Gehrmann, Remiddi '99]
$A\left(D, s_{i j}\right) \quad$ Matrix of rational functions in D, kinematical invariants and masses
$A\left(D \rightarrow 4, s_{i j}\right) \quad \begin{aligned} & \text { Homogeneous solution(s) close to } D \rightarrow 4(2 n) \text { determine geometry (periods } \\ & \text { of algebraic varieties) } \\ & \text { [Frellesvig, Papadopoulos, Primo, Tancredi, Weinzierl, Zhang, ...] }\end{aligned}$

ON THE INTEGRALS: the riemann sphere

All meromorphic functions defined on RS
are rational functions $\frac{1}{(x-a)^{k}} \quad a \in \mathbb{C}$

If we integrate a rational function on $\mathbb{C P} \mathbb{P}^{1}$ Only non-trivial thing:

$$
\log (1-x / a)=\int_{0}^{x} \frac{d t}{t-a}
$$

Generalisation: Multiple PolyLogarithms (MPLs)

$$
\begin{aligned}
G\left(c_{1}, c_{2}, \ldots, c_{n}, x\right) & =\int_{0}^{x} \frac{d t_{1}}{t_{1}-c_{1}} G\left(c_{2}, \ldots, c_{n}, t_{1}\right) \\
& =\int_{0}^{x} \frac{d t_{1}}{t_{1}-c_{1}} \int_{0}^{t_{1}} \frac{d t_{2}}{t_{2}-c_{2}} \ldots \int_{0}^{t_{n-1}} \frac{d t_{n}}{t_{n}-c_{n}}
\end{aligned}
$$

ON THE INTEGRALS: the riemann sphere \& Local ntegrals

Further generalization:
Chen iterated integrals over dlog forms

$$
\int_{\gamma} d \log f_{1} \wedge d \log f_{2} \wedge \ldots \wedge d \log f_{n}
$$

Local integrals fulfil canonical diff-equations

$$
d \mathscr{F}=(D-4) d A\left(s_{i j}\right) \mathscr{I}
$$

$d A$ in d log-form \rightarrow naturally expressed as Chen iterated integrals

ON THE INTEGRALS: the riemann sphere \& Local ntegrals

Further generalization:
Chen iterated integrals over dlog forms

$$
\int_{\gamma} d \log f_{1} \wedge d \log f_{2} \wedge \ldots \wedge d \log f_{n}
$$

Massless QCD profited enormously from MPLs and "iterated integrals of dlog-forms"

ON THE INTEGRALS: gENUS ONE

The electron propagator in QED; A. Sabri 1962

ON THE INTEGRALS: gENUS ONE

The electron propagator in QED; A. Sabri 1962

$$
=\frac{1}{\sqrt{(3 m-\sqrt{s})(\sqrt{s}+m)^{3}}} \mathrm{~K}\left(\frac{16 m^{3} \sqrt{s}}{(3 m-\sqrt{s})(\sqrt{s}+m)^{3}}\right)
$$

The sunrise integral

ON THE INTEGRALS: gENUS ONE

The electron propagator in QED; A. Sabri 1962

The sunrise integral

In QCD this happens all the time, especially when masses cannot be neglected

See talk by F. Porkert

ON THE INTEGRALS: befono in dIMENsIon and in genvs

Higgs physics
Top physics
EW physics

ON THE INTEGRALS: befono in dIMENsIon and in genvs

Higgs physics
Top physics
EW physics

ON THE INTEGRALS: beyond in dimension and in genus

QED propagator

THE PRACTICAL APPROACH: nuMERICAL Solutions

Methods for direct numerical integration
$q \bar{q} \rightarrow t \bar{t} H n_{f}$ enhanced contributions with sector decomposition

Numerical solution of differential equations
series expansions a la Frobenius (many applications)

ttH [Cordero, Figueiredo, Kraus, Page, Reina]

(a) Topology PB_{A}.
(b) Topology PB_{B}.

(c) Topology PB_{C}.

[Hasselhuhn, Luthe, Steinhauser] [Wang, Xu, Xu, Yang]
[Chen, Davies, Jones, Kerner] [Degrassi, Gröber, Vitti, Zhao]
ttj [Badger, Becchetti, Giraudo, Zoia]

Many other examples of problems successfully solved numerically (tt$@ N N L O, H H @ N L O, H j @ N L O, \gamma \gamma @ N L O \ldots$...)

ON THE INTEGRALS: open questions

Whether we use numerical or analytical methods to evaluate the integrals, a question remains central:

What are good integrands that give rise to nice integrals? See also work by J. Bourjaily, Caron-Huot, ...

ϵ factorised bases of differential equations?
for elliptics, Calabi-Yaus and beyond

Progress: Dlapa, Henn, Wagner; Pögel, Wang, Weinzierl; Frellesvig; Görges, Nega, Tancredi, Wagner; ...

Cohomology beyond Riemann sphere requires higher poles
Space of functions must (in some form) encode higher singularities
Conspiracy at the level of physical amplitudes for their cancellation - make it explicit?

AN EXAMPLE CALCULATION: the three-Loop aed self energy

$\longrightarrow \hat{p} \Sigma_{V}\left(p^{2}, m^{2}\right)+m \Sigma_{S}\left(p^{2}, m^{2}\right)$
$\Sigma_{V} \& \Sigma_{S}$ expressed in terms of $\mathcal{O}(50)$ Masters Integrals There is a bunch of elliptic sectors

For each such sector:

$$
y=\sqrt{P_{3}(x)}
$$

Forms of first kind No poles $\omega \sim \int \frac{d x}{y}$

Forms of third kind
single poles $G \sim \int \frac{d x}{\left(x-c_{i}\right) y}$

Forms of second kind
double poles $\eta \sim \int \frac{d x x}{y}$

Only integrals involving forms of first and third kind show up at order $\mathcal{O}\left(\epsilon^{0}\right)$ - second kind suppressed by $\mathcal{O}(\epsilon)$!
Similar structure in other elliptic amplitudes...!

CONCLUSIONS

1.Colliders remain some of the most flexible (multi-purpose) experiments to investigate fundamental questions in physics
2.Next generation colliders have the guaranteed outcome of discovering the Higgs selfinteractions and measuring the Higgs potential
3.Problems in Collider physics and Scattering Amplitudes are tightly intertwined
4.These furnish motivation to solve challenging problems for Amplitudes community
5.Exporting from N=4 SYM, String theory, CFT to QCD provides us the chance to address deep problems in QFT (IR divergences, high-energy Regge limit, structure of singularities etc)

Let's keep exploring!

THANK YOU!

 1

