
Positive Scattering Amplitudes 
Based on work with Prashanth Raman (Max Planck Institute for Physics)

Johannes M. Henn

Amplitudes Conference 2024, June 10-14, 2024



Why do amplitudes have so few numerical features?
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Steinmann Cluster Bootstrap for N = 4 SYM Amplitudes Georgios Papathanasiou

As an illustration, in figure 4 we plot the remainder function (7.7) on the line ai = 1/u or ui = u,
normalized by its value at u = 1, across loop orders, also including the strong coupling prediction
of Alday, Gaiotto and Maldacena (AGM) [20]. Once normalized in this way, the functions are
almost indistinguishable for u < 1, and maintain quite similar shapes also for u > 1.
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Figure 4: Normalized perturbative coefficients of the remainder function, R(L)
6 (u,u,u)/R(L)

6 (1,1,1), for
L = 2 to 7, plotted along with the strong-coupling result of AGM. The curves all have a remarkably similar
shape for u . 1.

On the analytic side, one rather interesting observation was that at the origin in the space of
cross ratios (2.7), namely the limit where all three ui ! 0, the remainder function (i.e. logarithm of
the BDS-normalized MHV amplitude) behaves as

R6 = c1P1 + c2P2 + c0 +O(ui) , (8.1)

where Pi denotes the two symmetric quadratic polynomials in logui,

P1 = P2 +
3

Â
i=1

log2 ui , P2 =
3

Â
i=1

logui logui+1 , (8.2)

and c(L)i are constants, in particular combinations of zeta values. For example, their values at six
and seven loops are:
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Example: Remainder function in N=4 super Yang-Mills (sYM)

Figure from [Caron-Huot et al, 2005.06735]



Why do amplitudes have so few numerical features?
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Angle-dependent ( ) QCD and QED cusp anomalous dimensionsx = eiϕ

Based on analytic QCD and QED expressions from [Grozin et al, 1409.0023],[Brüser et al, 2007.04851].
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Completely monotonous functions for scattering amplitudes

Let me introduce functions with an infinite number of positivity properties:




All their signed derivatives are positive. 
 In particular, such functions are:

 - positive:   

 - monotonically decreasing:  


 - convex:  

We will see that such functions, called completely monotonous, appear in 
several scattering amplitudes and Feynman diagrams.

(−∂x)n f(x) ≥ 0 , for n ≥ 0 , x ∈ I ⊂ ℝ

f(x) ≥ 0
∂x f(x) ≤ 0

∂2
x f(x) ≥ 0
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Examples of completely monotonous (CM) functions
Simple examples:


    , ,      on .    on 


Closure under products and convex linear combinations:            

            


are CM if   are CM.

Also closure under differentiation and integration (with a condition on 
the choice of integration constant).

1
x

1
1 + x

log x
x − 1

x ∈ (0,∞) −Li2 (1 −
1
x ) x ∈ (0,1)

f1(x)f2(x) , c1 f1(x) + c2 f2(x) , c1, c2 ≥ 0
f1(x) , f2(x)
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Haussdorff-Bernstein-Widder theorem (HBW)
A function  is completely monotonic on  if and only if it is 
the Laplace transform of a non-negative function . 





Example:   has .

f(x) x ∈ (0,∞)
μ(t)

f(x) = ∫
∞

0
e−txμ(t)dt .

f(x) =
log x
x − 1

μ(t) = ∫
∞

0

e−ty

y + 1
dy ≥ 0
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[Widder, Absolutely and Completely Monotonic Functions, Chapter 4, Princeton University Press, 1941]



Extension to multiple variables
Complete monotonicity in n variables :





The HBW theorem exists for this multi-variable case as well.

Two-variable example:





is CM on . 

This function appears in one-loop integrals:

xi

(−1)∑n
i=1 mi∂m1

x1
…∂mn

xn
f(x1, …, xn) ≥ 0 .

f(x1, x2) =
1

1 − x1 − x2
[Li2(1 − x1) + Li2(1 − x2) + log x1 log x2 − ζ2]

x1, x2 > 0
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Abundance of CM functions in quantum field theory
(1) Positive Geometry motivates that we think of scattering amplitudes 
as volumes. Evidence for positive integrated amplitudes in planar N=4 
sYM was found in Amplituhedron kinematics. 


In this talk, we discuss evidence of a CM property for this and several 
other quantities in quantum field theory (QFT). 
(2) The CM property appears in many QFT building blocks: Any scalar 
Feynman diagram in Euclidean kinematics has this property.

(3) There is a close connection to integral representations, such as 
dispersion relations.
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[Arkani-Hamed, Hodges, Trnka, 1412.8478] [Dixon, von Hippel, McLeod, Trnka, 1611.08325]



CM functions from integral representations
Back to two-variable example from a Feynman integral.





This has the dispersive (Mandelstam) representation:





The CM property follows if one assumes that taking derivatives and 
integrations may be interchanged.  

f(x1, x2) =
1

1 − x1 − x2
[Li2(1 − x1) + Li2(1 − x2) + log x1 log x2 − ζ2]

f(x1, x2) = ∫
∞

0 ∫
∞

0

dy1dy2

(x1 + y1)(x2 + y2)(1 + y1 + y2)
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Feynman integrals with Euclidean region
The CM property holds for any scalar Feynman diagram that has a 
Euclidean region. This follows from the Feynman parametrization formula.  

Example (massive bubble diagram):


is CM in , for . 


This widely applicable property may be useful for constraining Feynman 
integrals via semidefinite programming, as in . 

x1 = − P2 , x2 = m2 x1, x2 > 0

[Zeng, 2303.15624]
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f(x1, x2) = ∫
∞

0

dα1dα2

GL(1)
1

x1α1α2 + x2(α1 + α2)2
,

m

m

P



Other relevant occurrences of CM functions

- Non-planar integrals with a Euclidean region

- Cosmological Correlators, e.g. 





- Stringy integrals, e.g. 

- Gelfand-Aomoto hypergeometric functions 



- …

[Arkani-Hamed et al, 2312.05303]

ΨFRW ∝ ∫
∞

0 ∫
∞

0

dx1dx2(x1x2)ϵ

(X1 + X2 + x1 + x2)(X1 + x1 + Y)(X2 + x2 + Y)
[Arkani-Hamed, He, Lam, 1912.08707]

[Kozhasov, Michałek, Sturmfels, 1908.04191]
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Recap:

12

We discussed completely monotonic functions (CM), which satisfy an 
infinite number of positivity conditions.


Although this is a strong constraint, we saw that many building blocks 
in quantum field theory (QFT) have this property.


QFT observables are typically linear combinations of such building 
blocks, with plus and minus signs. Are any of them CM? 



Positivity of six-particle  MHV amplitudes in N=4 sYM 
The Amplituhedron determines the loop integrands, which are rational 
functions. These are positive within the Amplituhedron region.  



What happens when one integrates the integrand over Minkowski space? 

 found evidence that the finite part of 
integrated amplitudes is also positive, when evaluated within the tree 
Amplituhedron kinematic region. 

There is a subtlety in which quantity to study, due to infrared divergences. 
For MHV amplitudes, suggested to 
consider the ‘BDS-like-subtracted remainder function’ .

[Hodges, 0905.1473],[Arkani-Hamed and Trnka, 1312.2007]

[Arkani-Hamed, Hodges, Trnka, 1412.8478]

[Dixon, von Hippel, McLeod, Trnka, 1611.08325] 

ℰ(u, v, w)
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Positivity of six-particle MHV amplitudes in N=4 sYM 
The six-particle MHV Amplituhedron region is:





 found that  in , up to . 


They showed this analytically in certain limits / kinematic slices, and by 
numerical evaluation for kinematic points in . They also found 
evidence for monotonicity in a double scaling limit.

Γ : u > 0,v > 0,w > 0,u + v + w < 1,(u + v + w − 1)2 < 4uvw

[Dixon et al, 1611.08325] (−1)Lℰ(L)(u, v, w) > 0 Γ L = 4

Γ
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Two-loop positivity

15Positive Scattering Amplitudes Johannes M. Henn

Plot based on [Goncharov et al, 
1006.5703] analytic formula

For  , the Amplituhedron region becomes .u = v = w 0 < u < 1/4

Function looks monotonically decreasing and convex in . Can this be 
proven? Goal: show that  is CM in .

Γ
(−1)Lℰ(L)(u, v, w) Γ

ℰ(2)(u, u, u)/ℰ(2)(u = v = w = 1/4)

u

Figure from [Caron-Huot 
et al, 2005.06735]

Steinmann Cluster Bootstrap for N = 4 SYM Amplitudes Georgios Papathanasiou

As an illustration, in figure 4 we plot the remainder function (7.7) on the line ai = 1/u or ui = u,
normalized by its value at u = 1, across loop orders, also including the strong coupling prediction
of Alday, Gaiotto and Maldacena (AGM) [20]. Once normalized in this way, the functions are
almost indistinguishable for u < 1, and maintain quite similar shapes also for u > 1.
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Figure 4: Normalized perturbative coefficients of the remainder function, R(L)
6 (u,u,u)/R(L)

6 (1,1,1), for
L = 2 to 7, plotted along with the strong-coupling result of AGM. The curves all have a remarkably similar
shape for u . 1.

On the analytic side, one rather interesting observation was that at the origin in the space of
cross ratios (2.7), namely the limit where all three ui ! 0, the remainder function (i.e. logarithm of
the BDS-normalized MHV amplitude) behaves as

R6 = c1P1 + c2P2 + c0 +O(ui) , (8.1)

where Pi denotes the two symmetric quadratic polynomials in logui,
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Proof of CM property at one loop
   with 


Note that  implies that . 


(1)  and  are CM for . Therefore their product  is also CM.


(2) We have that . This is CM.


(3) One checks that  . 

This completes the proof that  is CM on , and hence so is 

 in the Amplituhedron region .

−ℰ(1)(u, v, w) = f(u) + f(v) + f(w) f(x) = − Li2(1 − 1/x)
Γ 0 < u, v, w < 1

log x
(x − 1)

1
x

0 < x
log x

(x − 1)x

−∂x f(x) =
log x

(x − 1)x
f(1) = 0

f(x) 0 < x < 1
−ℰ(1)(u, v, w) Γ
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Sketch of CM property proof at two loops
We prove that  is CM as follows:


(1) We use the following representation :                       

                 


(2) Proof of CM property of  via a suitable dispersive representation for 
its first derivative.

(3) Proof that  is CM via an integral representation:


                  , 


where  and  are known CM functions.

ℰ(2)(u, v, w)
[Dixon, Drummond, Henn, 1111.1704]

ℰ(2)(u, v, w) = Ω(2)(u, v, w) + r̃(u) + cyclic
r̃(u)

Ω(2)(u, v, w)

Ω(2)(u, v, w) = ∫
w

0
H6(u, v, t)dt + Ψ(2)(u, v)

H6 Ψ(2)
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Numerical CM evidence at higher loops
We verified positivity of 

 and of its 
first two signed derivatives 
numerically at various points 

 chosen randomly 
within the Amplituhedron 
region , for . 

(  check is in progress.)

(−1)Lℰ(L)(u, v, w)

(u, v, w)

Γ L = 2,3
L = 4
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Plot for symmetric configuration:
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Finite part of MHV amplitudes in N=4 sYM



Evidence for CM property of other quantities
We have numerical evidence, and in some cases proofs, of the CM 
property for several further quantities in planar N=4 super-Yang-Mills:


- Four-point Wilson loop with Lagrangian insertion

- Angle-dependent cusp anomalous dimension

- Deformed Amplituhedron and Coulomb branch amplitudes

- Four-point correlation functions


Furthermore, the three-loop angle-dependent cusp anomalous 
dimension in QCD, and the four-loop QED one are CM.
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Summary

We showed evidence that completely monotonic (CM) 
functions appear in many quantum field theory quantities.


In some cases there is an elementary explanation (positive 
integral representations), while in other cases the CM property 
was motivated by the Amplituhedron, or more generally by 
Positive Geometry, but remains to be proven.


Much more remains to be explored!
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Research directions related to Complete Monotonicity (CM)

• Use CM information for numerical approximation or bootstrap. 

• Study implications for analytically continued kinematic configurations.
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1) Explore data: in what cases does CM hold?

2) Understand from first principles why this property holds.

3) What is it good for?

• Develop methods to systematically prove the CM property.

• Explore CM property for helicity configurations beyond MHV.

• Can the CM property be derived from Positive Geometry?

• What is the relationship to dispersion relations and partial wave analysis?



Thank you!
henn@mpp.mpg.de 

www.positive-geometry.com
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