Hidden Amplitude Zeros and the Double Copy

Shruti Paranjape
University of California, Davis Center for Quantum Mathematics and Physics

Amplitudes 2024
IAS, Princeton

Based on arXiv:2403.10594 and arXiv:2305.05688 with C Bartsch, T Brown, K Kampf, U Oktem and J Trnka

Tree Amplitudes

At tree-level, the amplitude is a rational function of kinematic variables,

$$
\mathcal{A}_{n}=\frac{\text { numerator }}{\text { denominator }}
$$

Additionally, a lot is known about the singularity structure from:

- Locality: Poles and branch cuts of the amplitudes $\lim _{p_{I}^{2} \rightarrow 0} A_{n} \sim \frac{1}{p_{I}^{2}}$
- Unitarity: Factorization into lower-point amplitudes

$$
\underset{p_{l}^{2}=0}{\operatorname{Res}} A_{n}=A_{L} \times A_{R}
$$

What About Numerators?

Determines the amplitude up to "off-pole" contributions

Zeros and poles fully determine any rational function \Rightarrow do amplitudes have zeros?

What About Numerators?

Determines the amplitude up to "off-pole" contributions

Zeros and poles fully determine any rational function \Rightarrow do amplitudes have zeros?

Symmetry	Zero	Example Theory
$\phi \rightarrow \phi+c$	$\mathcal{A}_{n} \xrightarrow{p_{i} \rightarrow 0} \mathcal{O}\left(p_{i}\right)$	$\xrightarrow[\text { SU(N)×SU(N)}]{\text { SU(N) }}$ NLSM
$\phi \rightarrow \phi+c+a^{\mu} x_{\mu}$	$\mathcal{A}_{n} \xrightarrow{p_{i} \rightarrow 0} \mathcal{O}\left(p_{i}^{2}\right)$	DBI brane scalar
$\phi \rightarrow \phi+c+a^{\mu} x_{\mu}+s^{\mu \nu} x_{\mu} x_{\nu}$	$\mathcal{A}_{n} \xrightarrow{p_{i} \rightarrow 0} \mathcal{O}\left(p_{i}^{3}\right)$	special Galileon theory

Example of a Zero

- Amplitudes of pions have an Adler zero i.e. they vanish in the limit of vanishing external pion momentum.
- Radiation zeros exist at tree-level in standard model processes like $q_{1} \bar{q}_{2} \rightarrow W^{ \pm} Z$ at specific angles.

[Dixon, Kunszt, Signer]

Hidden Zeros

Recently, hidden zeros were discovered in partial amplitudes of a certain class of theories e.g. NLSM, Yang-Mills and $\operatorname{Tr}\left(\phi^{3}\right)$.
[Arkani-Hamed, Cao, Dong, Figueiredo, He]
In d-dimensional scalar theories, these zeros are reached by sending a specific set of Mandelstam invariants $s_{i j}=\left(p_{i}+p_{j}\right)^{2}$ to zero,

$$
\begin{array}{ccc}
\text { 4-point } & s_{13}=0 \\
\text { 5-point } & s_{13}=s_{14}=0 & \\
\text { 6-point } & s_{13}=s_{14}=s_{15}=0 & C_{2} \\
& s_{14}=s_{15}=s_{24}=s_{25}=0 & C_{3}
\end{array}
$$

Note: The first type of zero is one Mandelstam away from being an Adler zero $p_{1} \rightarrow 0$.

Example in $\operatorname{Tr}\left(\phi^{3}\right)$

We only include diagrams compatible with color ordering 1234:

$$
A_{4}^{\operatorname{Tr}\left(\phi^{3}\right)}[1234]=\frac{1}{s_{12}}+\frac{1}{s_{14}}=-\frac{s_{13}}{s_{12} s_{14}} \xrightarrow{s_{13} \rightarrow 0} 0
$$

Hidden zeros do not occur diagram by diagram.

Examples in SU(N) NLSM

4-point is trivial:

$$
A_{4}^{\text {NLSM }}[1234]=s_{13} \xrightarrow{s_{13} \rightarrow 0} 0
$$

Examples in SU(N) NLSM

4-point is trivial:

$$
A_{4}^{\text {NLSM }}[1234]=s_{13} \xrightarrow{s_{13} \rightarrow 0} 0
$$

At 6-point, the amplitude is

Again, the zeros are not manifest.

Examples in SU(N) NLSM

4-point is trivial:

$$
A_{4}^{\text {NLSM }}[1234]=s_{13} \xrightarrow{s_{13} \rightarrow 0} 0
$$

At 6-point, the amplitude is

Again, the zeros are not manifest.

Examples in SU(N) NLSM

4-point is trivial:

$$
A_{4}^{\text {NLSM }}[1234]=s_{13} \xrightarrow{s_{13} \rightarrow 0} 0
$$

At 6-point, the amplitude is

Again, the zeros are not manifest.

General n-Point Example

For scalar theories like NLSM and $\operatorname{Tr}\left(\phi^{3}\right)$, $\left.A_{n}\right|_{C_{m}}=0$ where the zero condition is given by

$$
C_{m}=\left\{\begin{array}{l}
s_{1 m+1}=s_{1 m+2}=\cdots=s_{1 n-1}=0 \\
s_{2 m+1}=s_{2 m+2}=\cdots=s_{2 n-1}=0 \\
\vdots \\
s_{m-1 m+1}=\cdots=s_{m-1 n-1}=0
\end{array}\right.
$$

where $m=2, \cdots,\left\lfloor\frac{n}{2}\right\rfloor$.

[Arkani-Hamed, Cao, Dong, Figueiredo, He]

General n-Point Example

For scalar theories like NLSM and $\operatorname{Tr}\left(\phi^{3}\right)$, $\left.A_{n}\right|_{C_{m}}=0$ where the zero condition is given by

$$
C_{m}=\left\{\begin{array}{l}
s_{1 m+1}=s_{1 m+2}=\cdots=s_{1 n-1}=0 \\
s_{2 m+1}=s_{2 m+2}=\cdots=s_{2 n-1}=0 \\
\vdots \\
s_{m-1 m+1}=\cdots=s_{m-1 n-1}=0
\end{array}\right.
$$

where $m=2, \cdots,\left\lfloor\frac{n}{2}\right\rfloor$.

[Arkani-Hamed, Cao, Dong, Figueiredo, He]

General n-Point Example

For scalar theories like NLSM and $\operatorname{Tr}\left(\phi^{3}\right)$, $\left.A_{n}\right|_{C_{m}}=0$ where the zero condition is given by

$$
C_{m}=\left\{\begin{array}{l}
s_{1 m+1}=s_{1 m+2}=\cdots=s_{1 n-1}=0 \\
s_{2 m+1}=s_{2 m+2}=\cdots=s_{2 n-1}=0 \\
\vdots \\
s_{m-1 m+1}=\cdots=s_{m-1 n-1}=0
\end{array}\right.
$$

where $m=2, \cdots,\left\lfloor\frac{n}{2}\right\rfloor$.

[Arkani-Hamed, Cao, Dong, Figueiredo, He]

General n-Point Example

For scalar theories like NLSM and $\operatorname{Tr}\left(\phi^{3}\right)$, $\left.A_{n}\right|_{C_{m}}=0$ where the zero condition is given by

$$
C_{m}=\left\{\begin{array}{l}
s_{1 m+1}=s_{1 m+2}=\cdots=s_{1 n-1}=0 \\
s_{2 m+1}=s_{2 m+2}=\cdots=s_{2 n-1}=0 \\
\vdots \\
s_{m-1 m+1}=\cdots=s_{m-1 n-1}=0
\end{array}\right.
$$

where $m=2, \cdots,\left\lfloor\frac{n}{2}\right\rfloor$.

[Arkani-Hamed, Cao, Dong, Figueiredo, He]

Factorization Near Zeros

Like near poles, the amplitude factorizes near zeros into lower-point amplitudes, when all-but-one Mandelstam in C_{m} vanishes.

Unlike near poles, there is no physical principle that tells us why this should be the case.

Factorization Near Zeros

Like near poles, the amplitude factorizes near zeros into lower-point amplitudes, when all-but-one Mandelstam in C_{m} vanishes.

Unlike near poles, there is no physical principle that tells us why this should be the case.
[Arkani-Hamed, Cao, Dong, Figueiredo, He]

Factorization Near Zeros

Like near poles, the amplitude factorizes near zeros into lower-point amplitudes, when all-but-one Mandelstam in C_{m} vanishes.

Unlike near poles, there is no physical principle that tells us why this should be the case.
[Arkani-Hamed, Cao, Dong, Figueiredo, He]

Spinning Zeros

For gluons, we need to extend the zero conditions slightly to now include polarization vectors as well i.e.

$$
\begin{aligned}
& \text { if } s_{i j}=0 \text { on } C_{m} \text {, } \\
& \left(p_{i} \cdot p_{j}\right)=\left(\varepsilon_{i} \cdot p_{j}\right)=\left(p_{i} \cdot \varepsilon_{j}\right)=\left(\varepsilon_{i} \cdot \varepsilon_{j}\right)=0 \text { on } C_{m}^{\text {spinning }}
\end{aligned}
$$

4-point $Y M$ has contact+pole terms:

$$
\left(\varepsilon_{1} \cdot \varepsilon_{3}\right)\left(\varepsilon_{2} \cdot \varepsilon_{4}\right) \xrightarrow{\left(\varepsilon_{1} \cdot \varepsilon_{3}\right) \rightarrow 0} 0
$$

Spinning Zeros

For gluons, we need to extend the zero conditions slightly to now include polarization vectors as well i.e.

$$
\begin{aligned}
& \text { if } s_{i j}=0 \text { on } C_{m} \text {, } \\
& \left(p_{i} \cdot p_{j}\right)=\left(\varepsilon_{i} \cdot p_{j}\right)=\left(p_{i} \cdot \varepsilon_{j}\right)=\left(\varepsilon_{i} \cdot \varepsilon_{j}\right)=0 \text { on } C_{m}^{\text {spinning }}
\end{aligned}
$$

4-point $Y M$ has contact+pole terms:

$$
\begin{gathered}
\left(\varepsilon_{1} \cdot \varepsilon_{3}\right)\left(\varepsilon_{2} \cdot \varepsilon_{4}\right) \xrightarrow{\left(\varepsilon_{1} \cdot \varepsilon_{3}\right) \rightarrow 0} 0 \\
\frac{1}{s_{12}}\left(\left(\varepsilon_{1} \cdot \varepsilon_{2}\right) p_{1}^{\mu}+\left(\varepsilon_{1} \cdot p_{2}\right) \varepsilon_{2}^{\mu}+\left(\varepsilon_{2} \cdot p_{1}\right) \varepsilon_{1}^{\mu}\right) \\
\times\left(\left(\varepsilon_{3} \cdot \varepsilon_{4}\right) p_{3}^{\nu}+\left(\varepsilon_{3} \cdot p_{4}\right) \varepsilon_{4}^{\nu}+\left(\varepsilon_{4} \cdot p_{3}\right) \varepsilon_{3}^{\nu}\right) \eta_{\mu \nu}+\operatorname{cyc} \xrightarrow{c_{2}} 0
\end{gathered}
$$

Can this be seen from any of the many constructions we have for YM amplitudes?

Theories with Hidden Zeros

So far, we've seen that the following theories have hidden zeros:

- $\operatorname{Tr}\left(\phi^{3}\right)$ theory of adjoint scalars
- SU(N) non-linear sigma model
- Yang-Mills theory
- Yang-Mills + scalar

Theories with Hidden Zeros

So far, we've seen that the following theories have hidden zeros:

- $\operatorname{Tr}\left(\phi^{3}\right)$ theory of adjoint scalars
- SU(N) non-linear sigma model
- Yang-Mills theory
- Yang-Mills + scalar

They all "play a role" in the double copy.

Web of Theories

[Bern, Carrasco, Chiodaroli, Johansson, Roiban]
For example:

$$
\mathrm{BI}=\mathrm{YM} \otimes \mathrm{NLSM} \text { e.g. } \mathcal{M}_{4}^{\mathrm{BI}}(1234)=\frac{u s}{t} A_{4}^{\mathrm{YM}}[1234] A_{4}^{\mathrm{NLSM}}[1234]
$$

All theories with hidden zeros are related to this map, including

$$
A_{n}^{\phi_{\text {aä }}^{3}}[\alpha \mid \alpha]=A_{n}^{\operatorname{Tr}\left(\phi^{3}\right)}[\alpha]
$$

This Talk

1. Do the BCJ relations guarantee the presence of hidden zeros?
2. What are the relative strengths of these conditions in an EFT expansion?
3. Do these zeros double copy?
4. What about factorization?

This Talk

1. Do the BCJ relations guarantee the presence of hidden zeros?
2. What are the relative strengths of these conditions in an EFT expansion?
3. Do these zeros double copy?
4. What about factorization?

BCJ Relations at 6-Point

$$
\begin{aligned}
A_{6}[123456]=\frac{1}{s_{12} s_{123} s_{56}}[& s_{13} s_{25}\left(s_{56}-s_{24}\right) A_{6}[162543] \\
& +s_{15}\left(s_{12}+s_{23}\right)\left(s_{14}-s_{56}\right) A_{6}[162345] \\
& -s_{14}\left(s_{12}+s_{23}\right)\left(s_{25}+s_{35}\right) A_{6}[162354] \\
& +s_{13} s_{15} s_{24} A_{6}[162435] \\
& +s_{13} s_{24}\left(s_{15}+s_{35}\right) A_{6}[162453] \\
& \left.-s_{14} s_{25}\left(s_{12}+s_{23}\right) A_{6}[162534]\right]
\end{aligned}
$$

BCJ Relations at 6-Point

$$
\begin{aligned}
& A_{6}[123456]=\frac{1}{s_{12} s_{123} s_{56}}[s_{13} s_{25}\left(s_{56}-s_{24}\right) A_{6}[162543] \\
&+s_{15}\left(s_{12}+s_{23}\right)\left(s_{14}-s_{56}\right) A_{6}[162345] \\
&-s_{14}\left(s_{12}+s_{23}\right)\left(s_{25}+s_{35}\right) A_{6}[162354] \\
&+s_{13} s_{15} s_{24} A_{6}[162435] \\
&+s_{13} s_{24}\left(s_{15}+s_{35}\right) A_{6}[162453] \\
&\left.-s_{14} s_{25}\left(s_{12}+s_{23}\right) A_{6}[162534]\right] \\
& C_{2}=\left\{s_{13}=s_{14}=s_{15}=0\right\}
\end{aligned}
$$

BCJ Relations at 6-Point

$$
\begin{aligned}
& A_{6}[123456]=\frac{1}{s_{12} s_{123} s_{56}}[
\end{aligned} \begin{array}{ll}
& s_{13} s_{25}\left(s_{56}-s_{24}\right) A_{6}[162543] \\
& +s_{15}\left(s_{12}+s_{23}\right)\left(s_{14}-s_{56}\right) A_{6}[162345] \\
& -s_{14}\left(s_{12}+s_{23}\right)\left(s_{25}+s_{35}\right) A_{6}[162354] \\
& +s_{13} s_{15} s_{24} A_{6}[162435] \\
& +s_{13} s_{24}\left(s_{15}+s_{35}\right) A_{6}[162453] \\
& \left.-s_{14} s_{25}\left(s_{12}+s_{23}\right) A_{6}[162534]\right] \\
C_{3}=\left\{s_{14}=s_{15}=s_{24}=s_{25}\right. & =0\}
\end{array}
$$

BCJ Relations for $\operatorname{Tr}\left(\phi^{3}\right)$

$A_{6}[123456 \mid 123456]$

$$
\begin{aligned}
= & \frac{1}{s_{12} s_{123} s_{56}}\left[s_{13} s_{25}\left(s_{56}-s_{24}\right) A_{6}[162543 \mid 123456]\right. \\
& +s_{15}\left(s_{12}+s_{23}\right)\left(s_{14}-s_{56}\right) A_{6}[162345 \mid 123456] \\
& -s_{14}\left(s_{12}+s_{23}\right)\left(s_{25}+s_{35}\right) A_{6}[162354 \mid 123456] \\
& +s_{13} s_{15} s_{24} A_{6}[162435 \mid 123456] \\
& +s_{13} s_{24}\left(s_{15}+s_{35}\right) A_{6}[162453 \mid 123456] \\
& \left.-s_{14} s_{25}\left(s_{12}+s_{23}\right) A_{6}[162534 \mid 123456]\right]
\end{aligned}
$$

The amplitudes on the RHS are doubly color-ordered bi-adjoint scalar amplitudes, while the one on the LHS is that of $\operatorname{Tr}\left(\phi^{3}\right)$.

2-Particle Poles?

- NLSM+h.d.: Only 4-particle interactions i.e. 3-particle poles
- $\operatorname{Tr}\left(\phi^{3}\right)+$ h.d.: Choosing second ordering to be [123456] will give no poles at the location of the zeros

2-Particle Poles?

- NLSM+h.d.: Only 4-particle interactions i.e. 3-particle poles
- $\operatorname{Tr}\left(\phi^{3}\right)+$ h.d.: Choosing second ordering to be [123456] will give no poles at the location of the zeros
- YM: The amplitude factorizes on 2-particle poles into

$$
A_{n} \xrightarrow{p_{1} \cdot p_{2}} A_{3}\left(p_{1}, p_{2},-\left(p_{1}+p_{2}\right)\right) \times A_{n-1}
$$

$$
\left[\left(\varepsilon_{1} \cdot \varepsilon_{2}\right)\left(\varepsilon_{3} \cdot p_{1}\right)+\left(\varepsilon_{2} \cdot \varepsilon_{3}\right)\left(\varepsilon_{1} \cdot p_{2}\right)+\left(\varepsilon_{3} \cdot \varepsilon_{1}\right)\left(\varepsilon_{2} \cdot p_{3}\right)\right] \times A_{n-1}
$$

2-Particle Poles?

- NLSM+h.d.: Only 4-particle interactions i.e. 3-particle poles
- $\operatorname{Tr}\left(\phi^{3}\right)+$ h.d.: Choosing second ordering to be [123456] will give no poles at the location of the zeros
- YM: The amplitude factorizes on 2-particle poles into
$A_{n} \xrightarrow{p_{1} \cdot p_{2}} A_{3}\left(p_{1}, p_{2},-\left(p_{1}+p_{2}\right)\right) \times A_{n-1}$

$$
\left[\left(\varepsilon_{1} \cdot \varepsilon_{2}\right)\left(\varepsilon_{3} \cdot p_{1}\right)+\left(\varepsilon_{2} \cdot \varepsilon_{3}\right)\left(\varepsilon_{1} \cdot p_{2}\right)+\left(\varepsilon_{3} \cdot \varepsilon_{1}\right)\left(\varepsilon_{2} \cdot p_{3}\right)\right] \times A_{n-1}
$$

- $(D F)^{2}+h . d .:$ Non-local extension of YM also has an A_{3} that cancels 2-particle poles.
- $(F)^{3}+$ h.d.: Higher-derivative extension of YM also has an A_{3} that cancels 2-particle poles.

BCJ Relation at n-Point

$$
A_{n}[123 \cdots n]=(-1)^{n} \sum_{\sigma(3 \ldots n-1)} A_{n}[1 n 2 \sigma] \times \prod_{k=3}^{n-1} \frac{\mathcal{F}_{k}[2 \sigma 1]}{s_{k k+1 \ldots n}}
$$

The factors \mathcal{F}_{k} are given by

$$
\mathcal{F}_{k}[\rho]=\left\{\begin{array}{ll}
\sum_{l=t_{k}}^{n-1} \mathcal{S}_{k, \rho_{l}} & \text { if } t_{k}>t_{k+1} \\
-\sum_{l=1}^{t_{k}} \mathcal{S}_{k, \rho_{l}} & \text { if } t_{k}<t_{k+1}
\end{array}\right\}+ \begin{cases}s_{k k+1 \ldots n} & \text { if } t_{k-1}>t_{k}>t_{k+1} \\
-s_{k+1 \ldots n} & \text { if } t_{k-1}<t_{k}<t_{k+1} \\
0 & \text { else }\end{cases}
$$

where t_{k} is the position of leg k in the ordered list $\rho=\{2 \sigma 1\}$ and ρ_{l} denotes its l-th element and

$$
\begin{aligned}
& t_{2}=0, \\
& \mathcal{S}_{i, j}= \begin{cases}s_{n}=t_{n-2} \\
s_{i j} & \text { if } i>j \text { or } j=1,2 \\
0 & \text { else }\end{cases}
\end{aligned}
$$

BCJ + absence of 2-particle poles \Rightarrow Hidden zeros
[Bartsch, Brown, Kampf, Oktem, SP, Trnka]

1. Do the BCJ relations guarantee the presence of hidden zeros?
2. What are the relative strengths of these conditions in an EFT expansion?
3. Do these zeros double copy?
4. What about factorization?

Comparing Constraints in NLSM

Take a bootstrap approach: Can I construct a local 6-point NLSM amplitude with a particular mass dimension that satisfy the constraints?

$\mathcal{O}\left(p^{\#}\right)$	2	4	6	8	10	12	14
Alder zero	1	2	10	29	78	203	461
Hidden zeros	1	1	5	13	41	112	282
BCJ satisfying	1	0	1	1	2	4	7

$(B C J$ satisfying $) \subset($ Hidden zeros $) \subset($ Adler zero $)$

- After imposing factorization near zeros, (BCJ satisfying) is still a subset of (Hidden zeros)
- Adler $\nRightarrow C_{2}$ zero

Exception: 4 dimensions due to the Gram determinant

$$
G(12345) \xrightarrow{C_{2}} s_{12}^{2} s_{34} s_{35} s_{45}
$$

1. Do the BCJ relations guarantee the presence of hidden zeros?
2. What are the relative strengths of these conditions in an EFT expansion?
3. Do these zeros double copy?
4. What about factorization?

Double Zero Six

Remember that the KLT relation at 6-point:

$$
\mathcal{M}_{6}=\sum_{\alpha \beta} A_{6}[162 \alpha(345)] S[\alpha \mid \beta] A_{6}[1 \beta(345) 26]
$$

where $S[\alpha \mid \beta]$ is the KLT kernel. Consider the last row of the matrix

Double Zero Six

Remember that the KLT relation at 6-point:

$$
\mathcal{M}_{6}=\sum_{\alpha \beta} A_{6}[162 \alpha(345)] S[\alpha \mid \beta] A_{6}[1 \beta(345) 26]
$$

where $S[\alpha \mid \beta]$ is the KLT kernel. Consider the last row of the matrix

Double Zero Six

Remember that the KLT relation at 6-point:

$$
\mathcal{M}_{6}=\sum_{\alpha \beta} A_{6}[162 \alpha(345)] S[\alpha \mid \beta] A_{6}[1 \beta(345) 26]
$$

where $S[\alpha \mid \beta]$ is the KLT kernel. Consider the last row of the matrix

$$
\begin{aligned}
& C_{3}=\left\{s_{14}=s_{15}=s_{24}=s_{25}=0\right\}
\end{aligned}
$$

Double Zero Six

Remember that the KLT relation at 6-point:

$$
\mathcal{M}_{6}=\sum_{\alpha \beta} A_{6}[162 \alpha(345)] S[\alpha \mid \beta] A_{6}[1 \beta(345) 26]
$$

where $S[\alpha \mid \beta]$ is the KLT kernel. Consider the last row of the matrix

$$
\begin{aligned}
& C_{3}=\left\{s_{14}=s_{15}=s_{24}=s_{25}=0\right\}
\end{aligned}
$$

Thus it is important to choose the correct KLT basis in order to manifest a particular zero.

Still, the BCJ relations imply basis independence and so we expect the zeros to survive through the double copy.

Special Galileon Example

As before, 4-point is trivial,

$$
\mathcal{M}_{4}^{\text {sGal }}=A_{4}^{\text {NLSM }} \otimes A_{4}^{\text {NLSM }}=s_{12} s_{13} s_{23} \xrightarrow{s_{13} \rightarrow 0} 0
$$

At 6-point, it is entirely surprising,

$$
\begin{aligned}
\mathcal{M}_{6}^{\text {sGal }} & =A_{6}^{\mathrm{NLSM}} \otimes A_{6}^{\mathrm{NLSM}} \\
& =\frac{s_{12} s_{13} s_{23} s_{45} s_{46} s_{56}}{s_{123}}+\text { perms }-\frac{1}{2} G(12345)
\end{aligned}
$$

The zeros C_{2} and C_{3} are not manifest, but exist. Additionally, the amplitude factorizes near these zeros!

$$
\left.\mathcal{M}_{6}^{\mathrm{sGal}}\right|_{C_{3}} \xrightarrow{s_{25}^{*}}\left(\frac{1}{s_{123}}+\frac{1}{s_{345}}\right) \mathcal{M}_{4}^{B} \times \mathcal{M}_{4}^{T}
$$

KLT Relation at n-Point

At n-point,

$$
\mathcal{M}_{n}=\sum_{\alpha \beta} A_{n}[1 m n \alpha] S[\alpha \mid \beta] A_{n}[1 \beta m n]
$$

where the kernel is

$$
\left.S_{\left[i_{1}\right.}, \cdots i_{m} \mid j_{1} \cdots j_{m}\right]_{p}=\left(\frac{1}{2}\right)^{-m} \prod_{t=1}^{m}\left(p \cdot k_{i_{t}}+\sum_{q>t}^{m} \theta\left(i_{t}, i_{q}\right) k_{i_{t}} \cdot k_{i_{q}}\right)
$$

where $\theta\left(i_{t}, i_{q}\right)=1$ if the ordering of i_{t} and i_{q} is the opposite in $\left\{i_{1}, \cdots i_{m}\right\}$ and $\left\{j_{1}, \cdots j_{m}\right\}$ and 0 if the same.

This manifests the $m^{\text {th }}$ type of zero i.e.
KLT + absence of 2-particle poles \Rightarrow hidden zeros
[Bartsch, Brown, Kampf, Oktem, SP, Trnka]

Special Galileon Theory

Since NLSM amplitudes are free of 2-particle poles, amplitudes of the double copy i.e. special Galileon amplitudes

$$
\mathcal{M}_{n}^{\mathrm{sGal}}=A_{n}^{\mathrm{NLSM}} \otimes A_{n}^{\mathrm{NLSM}}
$$

also have the hidden zeros despite having full permutational symmetry.

Special Galileon Theory

Since NLSM amplitudes are free of 2-particle poles, amplitudes of the double copy i.e. special Galileon amplitudes

$$
\mathcal{M}_{n}^{\mathrm{sGal}}=A_{n}^{\mathrm{NLSM}} \otimes A_{n}^{\mathrm{NLSM}}
$$

also have the hidden zeros despite having full permutational symmetry.
Comparing 6-point constraints in special Galileon theory,

$\mathcal{O}\left(p^{\#}\right)$	10	12	14	16	18	20	22
$\mathcal{O}\left(t^{3}\right)$ soft behavior	1	0	1	3	10	23	49
Hidden zeros	1	0	1	1	4	6	14
Generated from KLT	1	0	1	1	3	5	10

$$
\mathrm{KLT} \mathrm{amp}=\mathrm{BCJ} \mathrm{amp} \otimes \mathrm{BCJ} \mathrm{amp}
$$

KLT generated \subset Hidden zeros \subset Enhanced soft behaviour
Does the factorization near zeros survive the double copy?

1. Do the BCJ relations guarantee the presence of hidden zeros?
2. What are the relative strengths of these conditions in an EFT expansion?
3. Do these zeros double copy?
4. What about factorization?

Factorization Revisited

Recall that the factorization rule involved a pre-factor:

$$
A_{4}^{\operatorname{Tr}\left(\phi^{3}\right)}=\frac{1}{s_{\{i\}}}+\frac{1}{s_{\{j\}}}
$$

Interestingly, for an EFT we get the expected modified rule

$$
\left.\mathcal{M}_{n}^{\text {sGal+h.d. }}\right|_{C_{m}} \xrightarrow{s_{i j}^{*}} A_{4}^{\operatorname{Tr}\left(\phi^{3}\right)+\text { h.d. }} \times \mathcal{M}_{m+1}^{\text {sGal+h.d. }} \times \mathcal{M}_{n-m+1}^{\text {sGal+h.d. }}
$$

where the pre-factor is a particular correction to $\operatorname{Tr}\left(\phi^{3}\right)$,

$$
A_{4}^{\operatorname{Tr}\left(\phi^{3}\right)+\text { h.d. }}=\Lambda\left(\frac{1}{s}+\frac{1}{t}\right)-\frac{1}{\Lambda} t+\frac{1}{\Lambda^{2}} t^{2}+\frac{1}{\Lambda^{3}} t\left(7 t^{2}-u s\right)+\cdots
$$

[Brown, Kampf, Oktem, SP, Trnka][Chi, Elvang, Herderschee, Jones, SP]

n-point Factorization and the CHY Formalism

Since the factorization rule changes, we need a double copy formalism that differentiates between leading order theories and EFTs.

n-point Factorization and the CHY Formalism

Since the factorization rule changes, we need a double copy formalism that differentiates between leading order theories and EFTs.

CHY integral representation of tree-level amplitudes does this.

One can show that the special Galileon CHY integrand factorizes \Rightarrow the amplitude does too.

Further discussions on splitting, scattering equations and CHY are in a recent paper.
[Cao, Dong, He, Shi, Zhu]

Preliminary Results: Spinning Double Copies

- $\mathrm{BI}+$ h.d. $=\mathrm{NLSM}+$ h.d. $\otimes \mathrm{YM}+$ h.d. $: A_{3}^{\mathrm{YM}}$ vanishes on the polarization conditions, leading to no 2-particle poles

Preliminary Results: Spinning Double Copies

- $\mathrm{BI}+$ h.d. $=\mathrm{NLSM}+$ h.d. $\otimes \mathrm{YM}+$ h.d. $: A_{3}^{\mathrm{YM}}$ vanishes on the polarization conditions, leading to no 2-particle poles
- Dilaton gravity $=\mathrm{YM} \otimes \mathrm{YM}$: Only graviton polarizations of the type $\varepsilon_{\mu \nu}=\varepsilon_{\mu} \varepsilon_{\nu}$ satisfy the polarization conditions.

Preliminary Results: Spinning Double Copies

- $\mathrm{BI}+$ h.d. $=\mathrm{NLSM}+$ h.d. $\otimes \mathrm{YM}+$ h.d. $: A_{3}^{\mathrm{YM}}$ vanishes on the polarization conditions, leading to no 2-particle poles
- Dilaton gravity $=\mathrm{YM} \otimes \mathrm{YM}$: Only graviton polarizations of the type $\varepsilon_{\mu \nu}=\varepsilon_{\mu} \varepsilon_{\nu}$ satisfy the polarization conditions.
- Conformal gravity $=(D F)^{2} \otimes(D F)^{2}$: Same polarization selection rule
- Higher-derivative gravity $=\mathrm{YM}+$ h.d. $\otimes \mathrm{YM}+$ h.d.: Same polarization selection rule

Next Questions

- To what extent do gravitational theories exhibit zeros and factorization?
- Does including factorization constraints into the double copy bootstrap change the results?
- To what extent do 4-dimensional theories exhibit zeros and factorization? BCFW?
- Can we use these constraints to build amplitudes recursively?
- Do hidden zeros in double copy theories also have geometric origin?

Next Questions

- To what extent do gravitational theories exhibit zeros and factorization?
- Does including factorization constraints into the double copy bootstrap change the results?
- To what extent do 4-dimensional theories exhibit zeros and factorization? BCFW?
- Can we use these constraints to build amplitudes recursively?
- Do hidden zeros in double copy theories also have geometric origin?
- Loops?

Summary

- The BCJ relations guarantee the presence of hidden zeros in single-copy amplitudes.
- These are strong constraints but are generically weaker than BCJ itself.
- The KLT relations guarantees the presence of hidden zeros in double-copy amplitudes.
- The amplitudes factorize near these zeros despite no physical principle requiring it.
- This should allow us to find new zeros of gravitational amplitudes.

Thank You

