Hidden Amplitude Zeros and the Double Copy

Shruti Paranjape University of California, Davis Center for Quantum Mathematics and Physics

Amplitudes 2024 IAS, Princeton

Based on arXiv:2403.10594 and arXiv:2305.05688 with C Bartsch, T Brown, K Kampf, U Oktem and J Trnka

Tree Amplitudes

At tree-level, the amplitude is a rational function of kinematic variables,

 $\mathcal{A}_n = \frac{\text{numerator}}{\text{denominator}}$

Additionally, a lot is known about the singularity structure from:

- Locality: Poles and branch cuts of the amplitudes $\lim_{p_i^2 \to 0} A_n \sim \frac{1}{p_i^2}$
- Unitarity: Factorization into lower-point amplitudes $\operatorname{Res}_{p_{l}^{2}=0} A_{L} \times A_{R}$

What About Numerators?

Unitarity

n-point numerator at singular kinematic points

Determines the amplitude up to "off-pole" contributions

Zeros and poles fully determine any rational function \Rightarrow do amplitudes have zeros?

What About Numerators?

Unitarity

n-point numerator at singular kinematic points

Determines the amplitude up to "off-pole" contributions

Zeros and poles fully determine any rational function \Rightarrow do amplitudes have zeros?

Symmetry	Zero	Example Theory		
$\phi ightarrow \phi + c$	$\mathcal{A}_n \stackrel{p_i \to 0}{\longrightarrow} \mathcal{O}(p_i)$	$\frac{SU(N) \times SU(N)}{SU(N)}$ NLSM		
$\phi ightarrow \phi + m{c} + m{a}^\mu x_\mu$	$\mathcal{A}_n \stackrel{p_i \to 0}{\longrightarrow} \mathcal{O}(p_i^2)$	DBI brane scalar		
$\phi \rightarrow \phi + c + a^{\mu} x_{\mu} + s^{\mu\nu} x_{\mu} x_{\nu}$	$\mathcal{A}_n \stackrel{p_i \to 0}{\longrightarrow} \mathcal{O}(p_i^3)$	special Galileon theory		

Example of a Zero

- Amplitudes of pions have an Adler zero i.e. they vanish in the limit of vanishing external pion momentum.
- ▶ Radiation zeros exist at tree-level in standard model processes like $q_1\bar{q}_2 \rightarrow W^{\pm}Z$ at specific angles.

[Dixon, Kunszt, Signer]

Hidden Zeros

Recently, hidden zeros were discovered in partial amplitudes of a certain class of theories e.g. NLSM, Yang-Mills and $Tr(\phi^3)$.

[Arkani-Hamed, Cao, Dong, Figueiredo, He]

In *d*-dimensional scalar theories, these zeros are reached by sending a specific set of Mandelstam invariants $s_{ij} = (p_i + p_j)^2$ to zero,

4-point	$s_{13} = 0$	
5-point	$s_{13} = s_{14} = 0$	
6-point	$s_{13} = s_{14} = s_{15} = 0$	C_2
	$s_{14} = s_{15} = s_{24} = s_{25} = 0$	C_3

Note: The first type of zero is one Mandelstam away from being an Adler zero $p_1 \rightarrow 0$.

Example in $Tr(\phi^3)$

We only include diagrams compatible with color ordering 1234:

$$A_{4}^{\mathsf{Tr}(\phi^{3})}[1234] = \frac{1}{s_{12}} + \frac{1}{s_{14}} = -\frac{s_{13}}{s_{12}s_{14}} \xrightarrow{s_{13} \to 0} 0$$

Hidden zeros do not occur diagram by diagram.

4-point is trivial:

$$A_4^{\mathsf{NLSM}}[1234] = s_{13} \stackrel{s_{13} \to 0}{\longrightarrow} 0$$

4-point is trivial:

$$\mathsf{A}_4^{\mathsf{NLSM}}[1234] = s_{13} \stackrel{s_{13} \to 0}{\longrightarrow} 0$$

At 6-point, the amplitude is

 $A_6^{\mathsf{NLSM}}[123456] = \frac{s_{13}s_{46}}{s_{123}} + \frac{s_{35}s_{26}}{s_{126}} + \frac{s_{15}s_{24}}{s_{156}} - s_{135}$

Again, the zeros are not manifest.

4-point is trivial:

$$\mathsf{A}_4^{\mathsf{NLSM}}[1234] = s_{13} \stackrel{s_{13} \to 0}{\longrightarrow} 0$$

At 6-point, the amplitude is

 $A_6^{\mathsf{NLSM}}[123456] = \frac{s_{13}s_{46}}{s_{123}} + \frac{s_{35}s_{26}}{s_{26}} + \frac{s_{15}s_{24}}{s_{156}} - s_{13} - s_{15} - s_{35}$

Again, the zeros are not manifest.

4-point is trivial:

$$\mathsf{A}_4^{\mathsf{NLSM}}[1234] = s_{13} \stackrel{s_{13} \to 0}{\longrightarrow} 0$$

At 6-point, the amplitude is

 $A_6^{\mathsf{NLSM}}[123456] = \frac{s_{13}s_{46}}{-s_{126}} + \frac{s_{35}s_{26}}{s_{126}} + \frac{s_{15}s_{24}}{s_{156}} - s_{13} - s_{15} - s_{35}$

Again, the zeros are not manifest.

For scalar theories like NLSM and $\text{Tr}(\phi^3)$, $A_n|_{C_m} = 0$ where the zero condition is given by

$$C_m = \begin{cases} s_{1m+1} = s_{1m+2} = \dots = s_{1n-1} = 0\\ s_{2m+1} = s_{2m+2} = \dots = s_{2n-1} = 0\\ \vdots\\ s_{m-1m+1} = \dots = s_{m-1n-1} = 0 \end{cases}$$

where $m = 2, \cdots, \lfloor \frac{n}{2} \rfloor$.

For scalar theories like NLSM and $\text{Tr}(\phi^3)$, $A_n|_{C_m} = 0$ where the zero condition is given by

$$C_m = \begin{cases} s_{1m+1} = s_{1m+2} = \dots = s_{1n-1} = 0\\ s_{2m+1} = s_{2m+2} = \dots = s_{2n-1} = 0\\ \vdots\\ s_{m-1m+1} = \dots = s_{m-1n-1} = 0 \end{cases}$$

where $m = 2, \cdots, \lfloor \frac{n}{2} \rfloor$.

For scalar theories like NLSM and $\text{Tr}(\phi^3)$, $A_n|_{C_m} = 0$ where the zero condition is given by

$$C_m = \begin{cases} s_{1m+1} = s_{1m+2} = \dots = s_{1n-1} = 0\\ s_{2m+1} = s_{2m+2} = \dots = s_{2n-1} = 0\\ \vdots\\ s_{m-1m+1} = \dots = s_{m-1n-1} = 0 \end{cases}$$

where $m = 2, \cdots, \lfloor \frac{n}{2} \rfloor$.

For scalar theories like NLSM and $\text{Tr}(\phi^3)$, $A_n|_{C_m} = 0$ where the zero condition is given by

$$C_m = \begin{cases} s_{1m+1} = s_{1m+2} = \dots = s_{1n-1} = 0\\ s_{2m+1} = s_{2m+2} = \dots = s_{2n-1} = 0\\ \vdots\\ s_{m-1m+1} = \dots = s_{m-1n-1} = 0 \end{cases}$$

where $m = 2, \cdots, \lfloor \frac{n}{2} \rfloor$.

Factorization Near Zeros

Like near poles, the amplitude factorizes near zeros into lower-point amplitudes, when all-but-one Mandelstam in C_m vanishes.

Unlike near poles, there is no physical principle that tells us why this should be the case.

[Arkani-Hamed, Cao, Dong, Figueiredo, He]

Shruti Paranjape

Factorization Near Zeros

Like near poles, the amplitude factorizes near zeros into lower-point amplitudes, when all-but-one Mandelstam in C_m vanishes.

Unlike near poles, there is no physical principle that tells us why this should be the case.

[Arkani-Hamed, Cao, Dong, Figueiredo, He]

Shruti Paranjape

Hidden Zeros and the Double Copy

Factorization Near Zeros

Like near poles, the amplitude factorizes near zeros into lower-point amplitudes, when all-but-one Mandelstam in C_m vanishes.

Unlike near poles, there is no physical principle that tells us why this should be the case.

Spinning Zeros

For gluons, we need to extend the zero conditions slightly to now include polarization vectors as well i.e.

if
$$s_{ij} = 0$$
 on C_m ,
 $(p_i \cdot p_j) = (\varepsilon_i \cdot p_j) = (p_i \cdot \varepsilon_j) = (\varepsilon_i \cdot \varepsilon_j) = 0$ on C_m^{spinning}

4-point YM has contact+pole terms:

$$(\varepsilon_1 \cdot \varepsilon_3)(\varepsilon_2 \cdot \varepsilon_4) \stackrel{(\varepsilon_1 \cdot \varepsilon_3) \to 0}{\longrightarrow} 0$$

Spinning Zeros

For gluons, we need to extend the zero conditions slightly to now include polarization vectors as well i.e.

if
$$s_{ij} = 0$$
 on C_m ,
 $(p_i \cdot p_j) = (\varepsilon_i \cdot p_j) = (p_i \cdot \varepsilon_j) = (\varepsilon_i \cdot \varepsilon_j) = 0$ on C_m^{spinning}

4-point YM has contact+pole terms:

$$(\varepsilon_{1} \cdot \varepsilon_{3})(\varepsilon_{2} \cdot \varepsilon_{4}) \xrightarrow{(\varepsilon_{1} \cdot \varepsilon_{3}) \to 0} 0$$

$$\frac{1}{s_{12}} ((\varepsilon_{1} \cdot \varepsilon_{2})p_{1}^{\mu} + (\varepsilon_{1} \cdot p_{2})\varepsilon_{2}^{\mu} + (\varepsilon_{2} \cdot p_{1})\varepsilon_{1}^{\mu})$$

$$\times ((\varepsilon_{3} \cdot \varepsilon_{4})p_{3}^{\nu} + (\varepsilon_{3} \cdot p_{4})\varepsilon_{4}^{\nu} + (\varepsilon_{4} \cdot p_{3})\varepsilon_{3}^{\nu})\eta_{\mu\nu} + \operatorname{cyc} \xrightarrow{C_{2}} 0$$

Can this be seen from any of the many constructions we have for YM amplitudes?

Theories with Hidden Zeros

So far, we've seen that the following theories have hidden zeros:

- $Tr(\phi^3)$ theory of adjoint scalars
- SU(N) non-linear sigma model
- Yang-Mills theory
- \circ Yang-Mills + scalar

Theories with Hidden Zeros

So far, we've seen that the following theories have hidden zeros:

- $\operatorname{Tr}(\phi^3)$ theory of adjoint scalars
- SU(N) non-linear sigma model
- Yang-Mills theory
- Yang-Mills + scalar

They all "play a role" in the double copy.

Web of Theories

[Bern, Carrasco, Chiodaroli, Johansson, Roiban]

For example:

$$BI = YM \otimes NLSM \text{ e.g. } \mathcal{M}_{4}^{BI}(1234) = \frac{us}{t} A_{4}^{YM}[1234] A_{4}^{NLSM}[1234]$$

All theories with hidden zeros are related to this map, including

$$A_n^{\phi_{a\bar{a}}^3}[\alpha|\alpha] = A_n^{\mathsf{Tr}(\phi^3)}[\alpha]$$

This Talk

- 1. Do the BCJ relations guarantee the presence of hidden zeros?
- 2. What are the relative strengths of these conditions in an EFT expansion?
- 3. Do these zeros double copy?
- 4. What about factorization?

This Talk

1. Do the BCJ relations guarantee the presence of hidden zeros?

- 2. What are the relative strengths of these conditions in an EFT expansion?
- 3. Do these zeros double copy?
- 4. What about factorization?

BCJ Relations at 6-Point

$$A_{6}[123456] = \frac{1}{s_{12}s_{123}s_{56}} \left[s_{13}s_{25}(s_{56} - s_{24}) A_{6}[162543] + s_{15}(s_{12} + s_{23})(s_{14} - s_{56}) A_{6}[162345] - s_{14}(s_{12} + s_{23})(s_{25} + s_{35}) A_{6}[162354] + s_{13}s_{15}s_{24} A_{6}[162435] + s_{13}s_{24}(s_{15} + s_{35}) A_{6}[162453] - s_{14}s_{25}(s_{12} + s_{23}) A_{6}[162534] \right]$$

BCJ Relations at 6-Point

$$A_{6}[123456] = \frac{1}{s_{12}s_{123}s_{56}} \left[s_{13}s_{25}(s_{56} - s_{24}) A_{6}[162543] + s_{15}(s_{12} + s_{23})(s_{14} - s_{56}) A_{6}[162345] - s_{14}(s_{12} + s_{23})(s_{25} + s_{35}) A_{6}[162354] + s_{13}s_{15}s_{24} A_{6}[162435] + s_{13}s_{24}(s_{15} + s_{35}) A_{6}[162453] - s_{14}s_{25}(s_{12} + s_{23}) A_{6}[162534] \right]$$

 $C_2 = \{s_{13} = s_{14} = s_{15} = 0\}$

BCJ Relations at 6-Point

$$A_{6}[123456] = \frac{1}{s_{12}s_{123}s_{56}} \left[s_{13}s_{25}(s_{56} - s_{24}) A_{6}[162543] + s_{15}(s_{12} + s_{23})(s_{14} - s_{56}) A_{6}[162345] - s_{14}(s_{12} + s_{23})(s_{25} + s_{35}) A_{6}[162354] + s_{13}s_{15}s_{24} A_{6}[162435] + s_{13}s_{24}(s_{15} + s_{35}) A_{6}[162453] - s_{14}s_{25}(s_{12} + s_{23}) A_{6}[162534] \right]$$

 $C_3 = \{s_{14} = s_{15} = s_{24} = s_{25} = 0\}$

BCJ Relations for $Tr(\phi^3)$

A₆[123456|123456]

 $= \frac{1}{s_{12}s_{123}s_{56}} \left[s_{13}s_{25}(s_{56} - s_{24}) A_6[162543|123456] \right. \\ \left. + s_{15}(s_{12} + s_{23})(s_{14} - s_{56}) A_6[162345|123456] \right. \\ \left. - s_{14}(s_{12} + s_{23})(s_{25} + s_{35}) A_6[162354|123456] \right. \\ \left. + s_{13}s_{15}s_{24} A_6[162435|123456] \right. \\ \left. + s_{13}s_{24}(s_{15} + s_{35}) A_6[162453|123456] \right. \\ \left. - s_{14}s_{25}(s_{12} + s_{23}) A_6[162534|123456] \right]$

The amplitudes on the RHS are doubly color-ordered bi-adjoint scalar amplitudes, while the one on the LHS is that of $Tr(\phi^3)$.

2-Particle Poles?

- NLSM+h.d.: Only 4-particle interactions i.e. 3-particle poles
- ► Tr(φ³)+h.d.: Choosing second ordering to be [123456] will give no poles at the location of the zeros

2-Particle Poles?

- NLSM+h.d.: Only 4-particle interactions i.e. 3-particle poles
- ► Tr(φ³)+h.d.: Choosing second ordering to be [123456] will give no poles at the location of the zeros
- ▶ YM: The amplitude factorizes on 2-particle poles into

$$\begin{array}{c} A_n \xrightarrow{p_1 \cdot p_2} A_3(p_1, p_2, -(p_1 + p_2)) \times A_{n-1} \\ \\ \left[(\varepsilon_1 \cdot \varepsilon_2)(\varepsilon_3 \cdot p_1) + (\varepsilon_2 \cdot \varepsilon_3)(\varepsilon_1 \cdot p_2) + (\varepsilon_3 \cdot \varepsilon_1)(\varepsilon_2 \cdot p_3) \right] \times A_{n-1} \end{array}$$

2-Particle Poles?

- NLSM+h.d.: Only 4-particle interactions i.e. 3-particle poles
- ► Tr(φ³)+h.d.: Choosing second ordering to be [123456] will give no poles at the location of the zeros

$$\begin{array}{c} A_n \xrightarrow{p_1 \cdot p_2} A_3(p_1, p_2, -(p_1 + p_2)) \times A_{n-1} \\ \\ \left[(\varepsilon_1 \cdot \varepsilon_2)(\varepsilon_3 \cdot p_1) + (\varepsilon_2 \cdot \varepsilon_3)(\varepsilon_1 \cdot p_2) + (\varepsilon_3 \cdot \varepsilon_1)(\varepsilon_2 \cdot p_3) \right] \times A_{n-1} \end{array}$$

- ► (DF)² + h.d.: Non-local extension of YM also has an A₃ that cancels 2-particle poles.
- ► (F)³ + h.d.: Higher-derivative extension of YM also has an A₃ that cancels 2-particle poles.

BCJ Relation at *n*-Point

$$A_n[123\cdots n] = (-1)^n \sum_{\sigma(3\dots n-1)} A_n[1n2\sigma] \times \prod_{k=3}^{n-1} \frac{\mathcal{F}_k[2\sigma 1]}{s_{kk+1\dots n}}$$

[Bern, Carrasco, Johansson]

The factors \mathcal{F}_k are given by

$$\mathcal{F}_{k}[\rho] = \left\{ \begin{array}{ll} \sum_{l=t_{k}}^{n-1} \mathcal{S}_{k,\rho_{l}} & \text{if } t_{k} > t_{k+1} \\ -\sum_{l=1}^{t_{k}} \mathcal{S}_{k,\rho_{l}} & \text{if } t_{k} < t_{k+1} \end{array} \right\} + \left\{ \begin{array}{ll} s_{kk+1...n} & \text{if } t_{k-1} > t_{k} > t_{k+1} \\ -s_{kk+1...n} & \text{if } t_{k-1} < t_{k} < t_{k+1} \\ 0 & \text{else,} \end{array} \right.$$

where t_k is the position of leg k in the ordered list $\rho = \{2\sigma 1\}$ and ρ_l denotes its *l*-th element and

$$t_2 = 0, t_n = t_{n-2}$$
$$S_{i,j} = \begin{cases} s_{ij} & \text{if } i > j \text{ or } j = 1,2\\ 0 & \text{else} \end{cases}$$

 $BCJ + absence of 2-particle poles \Rightarrow Hidden zeros$

[Bartsch, Brown, Kampf, Oktem, SP, Trnka]

17/31

- 1. Do the BCJ relations guarantee the presence of hidden zeros?
- 2. What are the relative strengths of these conditions in an EFT expansion?
- 3. Do these zeros double copy?
- 4. What about factorization?

Comparing Constraints in NLSM

Take a bootstrap approach: Can I construct a local 6-point NLSM amplitude with a particular mass dimension that satisfy the constraints?

$\mathcal{O}(p^{\#})$	2	4	6	8	10	12	14
Alder zero	1	2	10	29	78	203	461
Hidden zeros	1	1	5	13	41	112	282
BCJ satisfying	1	0	1	1	2	4	7

 $(\mathsf{BCJ satisfying}) \subset (\mathsf{Hidden zeros}) \subset (\mathsf{Adler zero})$

- After imposing factorization near zeros, (BCJ satisfying) is still a subset of (Hidden zeros)
- Adler $\Rightarrow C_2$ zero

Exception: 4 dimensions due to the Gram determinant

$$G(12345) \stackrel{C_2}{\longrightarrow} s_{12}^2 s_{34} s_{35} s_{45}$$

- 1. Do the BCJ relations guarantee the presence of hidden zeros?
- 2. What are the relative strengths of these conditions in an EFT expansion?
- 3. Do these zeros double copy?
- 4. What about factorization?

Remember that the KLT relation at 6-point:

$$\mathcal{M}_{6} = \sum_{\alpha\beta} A_{6}[162\alpha(345)] \ S[\alpha|\beta] \ A_{6}[1\beta(345)26]$$

where $S[\alpha|\beta]$ is the KLT kernel. Consider the last row of the matrix

Remember that the KLT relation at 6-point:

$$\mathcal{M}_{6} = \sum_{\alpha\beta} A_{6}[162\alpha(345)] \ S[\alpha|\beta] \ A_{6}[1\beta(345)26]$$

where $S[\alpha|\beta]$ is the KLT kernel. Consider the last row of the matrix

Remember that the KLT relation at 6-point:

$$\mathcal{M}_{6} = \sum_{\alpha\beta} A_{6}[162\alpha(345)] \ S[\alpha|\beta] \ A_{6}[1\beta(345)26]$$

where $S[\alpha|\beta]$ is the KLT kernel. Consider the last row of the matrix

Remember that the KLT relation at 6-point:

$$\mathcal{M}_{6} = \sum_{\alpha\beta} A_{6}[162\alpha(345)] \ S[\alpha|\beta] \ A_{6}[1\beta(345)26]$$

where $S[\alpha|\beta]$ is the KLT kernel. Consider the last row of the matrix

$$\begin{bmatrix} & & & \\ & & & \\ & & & \\ s_{13}(s_{14}+s_{34})(s_{15}+s_{35}+s_{45}) & & \\ & & & & \\ s_{13}(s_{14}+s_{34})(s_{15}+s_{35}+s_{45}) & & \\ & & & & \\ s_{13}s_{14}(s_{15}+s_{45}) & & \\ & & & \\ s_{13}s_{14}(s_{15}+s_{45}) & & \\ s_{13}s_{14}(s_{15}+s_{15}) & & \\ s_{15}s_{15}(s_{15}+$$

Thus it is important to choose the correct KLT basis in order to manifest a particular zero.

Still, the BCJ relations imply basis independence and so we expect the zeros to survive through the double copy.

Shruti Paranjape

Hidden Zeros and the Double Copy

Special Galileon Example

As before, 4-point is trivial,

$$\mathcal{M}_4^{\mathsf{sGal}} = A_4^{\mathsf{NLSM}} \otimes A_4^{\mathsf{NLSM}} = s_{12} \underbrace{s_{13}}_{s_{23}} \underbrace{s_{13} \to 0}_{s_{13}} 0$$

At 6-point, it is entirely surprising,

$$\mathcal{M}_{6}^{\text{sGal}} = \mathcal{A}_{6}^{\text{NLSM}} \otimes \mathcal{A}_{6}^{\text{NLSM}}$$
$$= \frac{s_{12}s_{13}s_{23}s_{45}s_{46}s_{56}}{s_{123}} + \text{perms} - \frac{1}{2}G(12345)$$

The zeros C_2 and C_3 are not manifest, but exist.

Additionally, the amplitude factorizes near these zeros!

$$\left. \mathcal{M}_{6}^{\mathsf{sGal}} \right|_{C_{3}} \xrightarrow{s_{25}^{*}} \left(\frac{1}{s_{123}} + \frac{1}{s_{345}} \right) \mathcal{M}_{4}^{B} \times \mathcal{M}_{4}^{T}$$

KLT Relation at *n*-Point

At n-point,

$$\mathcal{M}_{n} = \sum_{\alpha\beta} A_{n}[1mn\alpha] S[\alpha|\beta] A_{n}[1\beta mn]$$

where the kernel is

$$S_{[i_1,\cdots,i_m|j_1\cdots,j_m]_p} = \left(\frac{1}{2}\right)^{-m} \prod_{t=1}^m \left(p \cdot k_{i_t} + \sum_{q>t}^m \theta(i_t,i_q)k_{i_t} \cdot k_{i_q}\right)$$

where $\theta(i_t, i_q) = 1$ if the ordering of i_t and i_q is the opposite in $\{i_1, \dots, i_m\}$ and $\{j_1, \dots, j_m\}$ and 0 if the same.

This manifests the m^{th} type of zero i.e. KLT + absence of 2-particle poles \Rightarrow hidden zeros

[Bartsch, Brown, Kampf, Oktem, SP, Trnka]

Special Galileon Theory

Since NLSM amplitudes are free of 2-particle poles, amplitudes of the double copy i.e. special Galileon amplitudes

$$\mathcal{M}_n^{\mathsf{sGal}} = \mathcal{A}_n^{\mathsf{NLSM}} \otimes \mathcal{A}_n^{\mathsf{NLSM}}$$

also have the hidden zeros despite having full permutational symmetry.

Special Galileon Theory

Since NLSM amplitudes are free of 2-particle poles, amplitudes of the double copy i.e. special Galileon amplitudes

$$\mathcal{M}_n^{\mathsf{sGal}} = \mathcal{A}_n^{\mathsf{NLSM}} \otimes \mathcal{A}_n^{\mathsf{NLSM}}$$

also have the hidden zeros despite having full permutational symmetry.

Comparing 6-point constraints in special Galileon theory,

$\mathcal{O}(p^{\#})$	10	12	14	16	18	20	22
$\mathcal{O}(t^3)$ soft behavior	1	0	1	3	10	23	49
Hidden zeros	1	0	1	1	4	6	14
Generated from KLT	1	0	1	1	3	5	10

 $\mathsf{KLT}\;\mathsf{amp}=\mathsf{BCJ}\;\mathsf{amp}\otimes\mathsf{BCJ}\;\mathsf{amp}$

KLT generated \subset Hidden zeros \subset Enhanced soft behaviour

Does the factorization near zeros survive the double copy?

Shruti Paranjape

Hidden Zeros and the Double Copy

- 1. Do the BCJ relations guarantee the presence of hidden zeros?
- 2. What are the relative strengths of these conditions in an EFT expansion?
- 3. Do these zeros double copy?
- 4. What about factorization?

Factorization Revisited

Recall that the factorization rule involved a pre-factor:

$$A_4^{\mathsf{Tr}(\phi^3)} = rac{1}{s_{\{i\}}} + rac{1}{s_{\{j\}}}$$

Interestingly, for an EFT we get the expected modified rule

$$\mathcal{M}_{n}^{\mathsf{sGal+h.d.}}\Big|_{\mathcal{C}_{m}} \xrightarrow{s_{ij}^{*}} \mathcal{A}_{4}^{\mathsf{Tr}(\phi^{3})+\mathsf{h.d.}} \times \mathcal{M}_{m+1}^{\mathsf{sGal+h.d.}} \times \mathcal{M}_{n-m+1}^{\mathsf{sGal+h.d.}}$$

where the pre-factor is a particular correction to $Tr(\phi^3)$,

$$A_4^{\mathsf{Tr}(\phi^3)+\mathsf{h.d.}} = \Lambda(rac{1}{s}+rac{1}{t}) - rac{1}{\Lambda}t + rac{1}{\Lambda^2}t^2 + rac{1}{\Lambda^3}t(7t^2 - us) + \cdots$$

[Brown, Kampf, Oktem, SP, Trnka][Chi, Elvang, Herderschee, Jones, SP]

n-point Factorization and the CHY Formalism

Since the factorization rule changes, we need a double copy formalism that differentiates between leading order theories and EFTs.

n-point Factorization and the CHY Formalism

Since the factorization rule changes, we need a double copy formalism that differentiates between leading order theories and EFTs.

CHY integral representation of tree-level amplitudes does this.

One can show that the special Galileon CHY integrand factorizes \Rightarrow the amplitude does too.

Further discussions on splitting, scattering equations and CHY are in a recent paper.

[Cao, Dong, He, Shi, Zhu]

Preliminary Results: Spinning Double Copies

▶ BI+h.d. = NLSM + h.d. ⊗ YM + h.d. : A₃^{YM} vanishes on the polarization conditions, leading to no 2-particle poles

Preliminary Results: Spinning Double Copies

- ▶ BI+h.d. = NLSM + h.d. ⊗ YM + h.d. : A₃^{YM} vanishes on the polarization conditions, leading to no 2-particle poles
- ► Dilaton gravity = YM \otimes YM: Only graviton polarizations of the type $\varepsilon_{\mu\nu} = \varepsilon_{\mu}\varepsilon_{\nu}$ satisfy the polarization conditions.

Preliminary Results: Spinning Double Copies

- ▶ BI+h.d. = NLSM + h.d. ⊗ YM + h.d. : A₃^{YM} vanishes on the polarization conditions, leading to no 2-particle poles
- ► Dilaton gravity = YM \otimes YM: Only graviton polarizations of the type $\varepsilon_{\mu\nu} = \varepsilon_{\mu}\varepsilon_{\nu}$ satisfy the polarization conditions.
- Conformal gravity = $(DF)^2 \otimes (DF)^2$: Same polarization selection rule
- ► Higher-derivative gravity = YM+h.d. ⊗ YM + h.d.: Same polarization selection rule

Next Questions

- To what extent do gravitational theories exhibit zeros and factorization?
- Does including factorization constraints into the double copy bootstrap change the results?
- To what extent do 4-dimensional theories exhibit zeros and factorization? BCFW?
- Can we use these constraints to build amplitudes recursively?
- Do hidden zeros in double copy theories also have geometric origin?

Next Questions

- To what extent do gravitational theories exhibit zeros and factorization?
- Does including factorization constraints into the double copy bootstrap change the results?
- To what extent do 4-dimensional theories exhibit zeros and factorization? BCFW?
- Can we use these constraints to build amplitudes recursively?
- Do hidden zeros in double copy theories also have geometric origin?
- Loops?

Summary

- The BCJ relations guarantee the presence of hidden zeros in single-copy amplitudes.
- These are strong constraints but are generically weaker than BCJ itself.
- The KLT relations guarantees the presence of hidden zeros in double-copy amplitudes.
- The amplitudes factorize near these zeros despite no physical principle requiring it.
- This should allow us to find new zeros of gravitational amplitudes.

Thank You

Shruti Paranjape