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Take-home message 

When the complexity of the problem increases, 
look at simple, recurring structures! 
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dσ = ∑
ij

∫ dx1 dx2 fi/p (x1) fj/p (x2) d ̂σij(x1x2s) (1 + 𝒪(
Λn

QCD

Qn )) , n ≥ 1

3

Rudiments of particle physics at colliders
The success of a percent level phenomenology program relies on our ability to interpret and predict the outcome of LHC 
measurements. [Snowmass’2021 whitepaper]

                            Collinear factorisation theorem  [Collins, Soper, Sterman ‘04]: separate energy scale  different treatment→

dσij = dσij, LO(1 + αs ΔQCD
ij, NLO + αew ΔEW

ij, NLO + α2
s ΔQCD

ij, NNLO + αs αew ΔQCD⊗EW
ij, NNLO + …)

[Phys. Proc. 51(2014)25-30]

[G. Salam]
No large hierarchies of scales + no strong sensitivity to infrared physics 


  fixed order calculations provide a robust and reliable framework to obtain

       precision predictions at the LHC 
→
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dσ
dX

=
dσLO

dX
+ αs

dσNLO

dX
+ α2

s
dσN2LO

dX
+ α3

s
dσN3LO

dX
+ …

4

 = IRC-safe, X δXi
= δ(X − Xi)

Ingredients for higher-order corrections and main difficulties

Strong coupling:  
αs ∼ 0.1 𝒪(α3

s ) ∼ 0.1 %𝒪(α2
s ) ∼ 1 %𝒪(αs) ∼ 10 %
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 = IRC-safe, X δXi
= δ(X − Xi)

dσN2LO

dX
= ∫ dΦn VV δXn

+ ∫ dΦn+1 RV δXn+1
+ ∫ dΦn+2 RR δXn+2

Each ingredient presents significant technical challenges. Overcoming these issues 
requires profound insight from QFT

Ingredients for higher-order corrections and main difficulties

Virtual amplitudes: 
• Multi-loop integrals involving multiple scales, 

arising from different masses and many legs

Real radiation singularities  
• Extraction of soft and collinear singularities 

Strong coupling:  
αs ∼ 0.1 𝒪(α3

s ) ∼ 0.1 %𝒪(α2
s ) ∼ 1 %𝒪(αs) ∼ 10 %
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Real corrections:

• Singularities arising from unresolved radiation after integration over full phase space of radiated parton

• Goal: extract IR singularities without integrating over the resolved phase space  obtain fully differential prediction
→

IR singularities 

6

Unresolved limits are universal and known (even at N3LO)   a general procedure is in principle feasible→

∫ dΦg = ∫ [ − ] dΦg + ∫ dΦg

Finite in d=4 
integrable numerically 

exposes  the same  poles as 
the virtual correction 

1/ϵ

Integrated countertermCounterterm

Subtraction:  conceptually non-trivial, but if local and analytic then extremely versatile and numerically stable
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Subtractions: status

7

NLO:  
solved conceptually in the 90s and now implemented in automatic frameworks  

NNLO:   
still looking for the optimal scheme  the problem is highly non-trivial and a simple generalisation of NLO not doable due to 
overlapping singularities  

Example:    di-jet two-loop amplitudes  years ago [Anastasiou et al. ‘01]

                di-jet production at NNLO  years ago [Currie et al. ‘17]


→

∼ 20
∼ 5

Antenna [Gehrmann-De Ridder et al. ‘05], ColorfullNNLO [Del Duca et al. ’16], STRIPPER [Czakon ’10], Nested soft-collinear [Caola et al. ’17], 

Local analytic sector [Magnea, CSS et al. ’18], Geometric IR subtraction  [Herzog ’18], Unsubtraction  [Sborlini et al. ’16], FDR  [Pittau ’12], 

Universal Factorisation [Sterman et al. ’20], …

Most of them feature a relevant degree of complexity, and are not ready to tackle multi-patron scattering.


Simplifications and recurring patterns seem to be elusive!


Chiara Signorile-Signorile                                                                                                                                                                                                                        Subtraction                                                       



Why is NNLO so difficult?

1. Clear understanding of which singular configurations do actually contribute


2. Get to the point where the problem is well defined 


3. Solve the phase space integrals of the relevant limits 

k1

k1 + k2 + k3

k2

k1 + k2

k3

∼
1

E1 E2 (1 − ⃗n1 ⋅ ⃗n2)
1

E1 E2(1 − ⃗n1 ⋅ ⃗n2) + E1 E3(1 − ⃗n1 ⋅ ⃗n3) + E2 E3(1 − ⃗n2 ⋅ ⃗n3)

Strongly-ordered configurations have also to be included:

1
2

3

1

2
3

1

2

3
⃗n1 ⋅ ⃗n2 < ⃗n1 ⋅ ⃗n3 ⃗n2 ⋅ ⃗n3 < ⃗n1 ⋅ ⃗n3 ⃗n1 ⋅ ⃗n3 < ⃗n2 ⋅ ⃗n3

E1 ≪ E2 , E2 ≪ E1

E1 → 0 E2 → 0 E1, E2 → 0

⃗n1 ∥ ⃗n2 ∥ ⃗n3 ⃗n1 ∥ ⃗n2

Non-trivial structures to integrate  double-soft and triple-collinear kernels→

I(gg)
S56

= ∫ [dk5] [dk6] θ(Emax − E5) θ(E5 − E6) I(gg)(56)
12 (k1, k2, k5, k6)

I(gg)(56)
12 =

(1 − ϵ)(s51s62 + s52s61) − 2s56s12

s2
56(s51 + s61)(s52 + s62)

+ s12
s51s62 + s52s61 − s56s12

s56s51s62s52s61
[1 −

1
2

s51s62 + s52s61

(s51 + s61)(s52 + s62) ]
[ dfi ] =

ddki

(2π)d
(2π) δ+(k2

i )

sab = 2pa ⋅ pb
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Nested soft-collinear subtraction at NNLO: generalities [Caola, Melnikov, Röntsch ‘17]

Example: DIS [Asteriadis, Caola, Melnikov, Röntsch ’19]

9

• Extract double soft singularities first 
( )


• Gluons ordered in energy  only one single 
soft singularity


• Collinear singularities: partition function + 
sectoring [separate overlapping singularities]

E5 ∼ E6 → 0

→

[figures curtsy of K. Asteriadis]
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• Integrate subtraction terms analytically using Reverse Unitarity [Anastasiou, Melnikov ‘02]: map phase space integrals onto loop integrals 
[Caola, Delto, Frellesvig, Melnikov ’18, ‘19]



Application to Z+j production

10

State of the art:
Separation of complex  processes into simpler building blockspp → N

QCD corrections to Drell-Yan 
Both initial state momenta  
[Caola, Melnikov, Röntsch ‘19] 

Higgs decay 
Both final state momenta  

[Caola, Melnikov, Röntsch ‘19] 

Deep Inelastic Scattering 
One initial and one final state momentum  

[Asteriadis, Calola, Melnikov Röntsch ‘19]  

Focus on simple processes  full control of the procedure, check against analytic results sometime possible.→

Prototype for 

NNLO

New!

Chiara Signorile-Signorile                                                                                                                                                                                                                        Subtraction                                                       



11

Application to Z+j production

Subtraction terms

Fully regulated 
contribution

1

2

3

4

5

Implemented numerically  
no issues in increasing the 

number of partons

→

In principle generalisable to n-partons
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12

Application to Z+j production
1

2

3

4

5

Drawbacks identified with Z+j

• The bookkeeping becomes immediately 
cumbersome  large number of subtraction terms. 


• Calculating all subtraction terms separately may 
hide a number of simplifications that can occur 
before explicit evaluation.

→
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Summary of the talk
1

2

3

4

5

1

αs

αew

αs αs

q

q̄ l+

l−

q

q̄

q̄

q

l−

l−

l+

l+

...

...

2

3

“Asymmetry”: VV very simple pole structure, RR 
structure obscured by energy ordering, partitioning…

[Catani ’98]
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14

Summary of the talk

Case of study: qq̄ → X + Ng

Main idea: look at the pole structure of the virtual corrections to infer similar structures for the subtraction terms


 by product: get rid of color correlations and reduce the rest to a sum over external-leg contributions.→

Can we identify structures early on in the 
calculations so that cancellation of 

divergences can be seen “by eye”, even for 
a generic process?


Work in progress: gq → X + (N − 1)g + q
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Warm up @NLO: qq̄ → X + Ng

15

Virtual corrections:             
color-correlations, elastic terms

Real corrections:          hard-collinear: no color-correlations, elastic terms+boosts soft: color-correlations, elastic terms
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Warm up @NLO: qq̄ → X + Ng

16

Virtual corrections:             
color-correlations, elastic terms

Real corrections:          hard-collinear: no color-correlations, elastic terms+boosts soft: color-correlations, elastic terms

• Highest pole trivially cancels


• Color correlations cancel ⏟Remnant elastic single pole
 “generalised anomalous dimensions”
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Warm up @NLO: qq̄ → X + Ng

17

Virtual corrections:             
color-correlations, elastic terms

Real corrections:          hard-collinear: no color-correlations, elastic terms+boosts soft: color-correlations, elastic terms

• Highest pole trivially cancels


• Color correlations cancel ⏟Remnant elastic single pole
 “generalised anomalous dimensions”

⟹ FINITE!
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Lesson from NLO

18

Simple interplay between   and  [V + Si R + (I − Si)Cij R]elastic [(1 − Si)Cij R]boost + PDFs

New approach at NNLO:
Starting from IR poles of double-virtual [Catani ’98]  we want to find subtraction terms that can “complete” it:


• identify structures similar to those encountered at NLO  ideally the result will be  as much as possible→ ∼ NLO2

single structure


(already encountered at NLO)

   specific pattern of cancellation. →
- different powers/arguments/prefactors 

- different type of color-correlations
Ti ⋅ Tj

(Ti ⋅ Tj) ⋅ (Tk ⋅ Tl)
Ti ⋅ Tj ⋅ Tk

⏟
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Follow the (colored) crumbs

19

Color correlations can only arise from soft real emissions and loop corrections
...

ki

kj

ki kj

...

+ +

ki

kj

...

+

ki

kj

...

k5

k4

k5 k5k4
k4

Double soft 

[Catani, Grazzini ’99]

(Ti ⋅ Tj) ⋅ (Tk ⋅ Tl)
Factorised term

Non-factorised term

Ti ⋅ Tj

 takes care of 
“quartic” color-correlated poles

I2
S(ϵ) + I2

V(ϵ)

Iterations of NLO!

Chiara Signorile-Signorile                                                                                                                                                                                                                        Subtraction                                                       



Follow the (colored) crumbs

20

Color correlations can only arise from soft real emissions and loop corrections
...

ki

kj

ki kj

...

+ +

ki

kj

...

+

ki

kj

...

k5

k4

k5 k5k4
k4

[Catani, Grazzini ’99]

(Ti ⋅ Tj) ⋅ (Tk ⋅ Tl)
Factorised term

⟹

δ =
δ12

2
, s = sin

δ12

2
, c = cos

δ12

2
Cin(z) =

Lin(eiz) + Lin(e−iz)
2

, Sin(z) =
Lin(eiz) − Lin(e−iz)

2i

[Caola, Delto, Frellesvig, Melnikov ’18] 

Non-factorised term

Ti ⋅ Tj

 takes care of 
“quartic” color-correlated poles

I2
S(ϵ) + I2

V(ϵ)

Iterations of NLO!

Double soft 
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Follow the (colored) crumbs

21

Color correlations can only arise from soft real emissions and loop corrections
...

ki

kj

ki kj

...

+ +

ki

kj

...

+

ki

kj

...

k5

k4

k5 k5k4
k4

[Catani, Grazzini ’99]

(Ti ⋅ Tj) ⋅ (Tk ⋅ Tl)
Factorised term

Non-factorised term

Ti ⋅ Tj

 takes care of 
“quartic” color-correlated poles

I2
S(ϵ) + I2

V(ϵ)

Iterations of NLO!

New structure, but pole content 
reducible to “variants” of NLO

Double soft 
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Triple-color correlations:


• Vanish for 


• Non-trivial phase space integral  

• Finite after integration for FSR


Np ≥ 4

Follow the (colored) crumbs

22

Color correlations can only arise from soft real emissions and loop corrections

[Catani, Grazzini ‘00]

αs

αs

l−

l+

.

.

.

.

.

.

The integrated subtraction term can be almost fully written in terms of NLO-like operators 

Soft real-virtual 
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Triple-color correlations:


• Vanish for 


• Non-trivial phase space integral  

• Finite after integration for FSR


Np ≥ 4

Follow the (colored) crumbs

23

Color correlations can only arise from soft real emissions and loop corrections

[Catani, Grazzini ‘00]

αs

αs

l−

l+

.

.

.

.

.

.

The integrated subtraction term can be almost fully written in terms of NLO-like operators 

Structures and color coefficients already 
encountered in double-virtual and double-soft. 


A pattern begins to arise…

Soft real-virtual 
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Partial recap

24

Almost reconstruct 
 look at collinear 

I2
T(ϵ)

→ Almost reconstruct  
but with extra   

look at collinear 

IT(ϵ)
1/ϵ →

Clear interplay   


non-transparent 
cancellation

→ CA, 2ϵ

FINITE

Almost reconstruct  
but with extra    

look at collinear 

IT(2ϵ)
1/ϵ →
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Cancellation of double color-correlated poles

25

FINITE

Some relevant collinear limits have to be added. 


Here we focus on contributions that contain at least one virtual or one soft operator and feature elastic, LO-like kinematics:

= IT − IC
No singular color-correlations

= I2
T − I2

C No singular color-correlations
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∼ − IV+S(ϵ) + IV+S(2ϵ) + (c̃(ϵ) − 1)ĨS(2ϵ) + ĨS(2ϵ) − IS(2ϵ)

𝒪(ϵ2)𝒪(ϵ) 𝒪(ϵ)



Previous studies: 

Can we generalise? yes! 

❖ Introduce NLO-like universal operators that describe virtual, soft and collinear singularities, and combine into finite quantities 

❖ Reduce NNLO corrections to iterations of these operators  demonstrate cancellations prior to explicit evaluation
→

26

Graphical conclusions

[Devoto, Melnikov, Röntsch, CSS, Tagliabue ’24] New!

1

2

Np

3

⋮
WHAT 
HAPPENS 
AT NNLO?

11

DMT | QCD@LHC2023

H2(ϵ) = i fabc

384ϵ (γcusp
0 )2

Np

∑
(i, j,k)

Ta
i Tb

j Tc
k log

−sij

−sjk
log

−sjk

−ski
log −ski

−sij

− i fabc

128ϵ
γcusp
0

Np

∑
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j Tc
k ( γi

0
Cfi
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γ j

0
Cfj ) log
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k
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Y = [αs]2
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T |M0⟩ + . . .

Need to add other contributions. But where do they come from?

[Ī1, Ī†
1] ≠ 0
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i Tb
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k
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2 [IV + IS, Ī1 − Ī†

1] − 1
4 [IV, Ī1 − Ī†

1]
Combining the commutators 

Once combined with the other triples, 
this cancels out all the triple-poles

TRIPLE-POLES known in the literature (for ):Np ≥ 4
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[Ī1, ĪS] ≠ 0
[Ī†
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WHAT 
HAPPENS 
AT NNLO?

08

d ̂σNNLO = d ̂σVV + d ̂σRV + d ̂σRR + d ̂σpdf

Consider for instance   it depends quadratically on  and d ̂σVV ⇒ Ī1(ϵ) Ī†
1(ϵ)

 ⇒ Ī1, Ī†
1 ∼ Ti ⋅ Tj

 ⇒ d ̂σVV ∼ (Ti ⋅ Tj) ⋅ (Tk ⋅ Tl) double color-correlations

DMT | QCD@LHC2023

We expect the same to happen for and . Dealing with such 
double-color correlated terms (DCC) in general makes the structure of 
the poles very complicated

d ̂σRV d ̂σRR

Double-Virtual
Real-Virtual

Double-Real
PDFs Renor.

WHAT HAPPENS 
AT NNLO?

08

d̂ σNNLO
=d̂ σVV

+d̂ σRV
+d̂ σRR

+d̂ σpdf

Consider for instance 
  it d

epends quadratically on 
 and 

d̂ σVV
⇒

Ī1(ϵ)
Ī†
1(ϵ)

 ⇒Ī1,Ī†
1∼Ti⋅Tj

 ⇒d̂ σVV
∼(Ti⋅Tj)⋅(Tk⋅Tl)double color-correlations

DMT | QCD@LHC2023

We expect th
e same to happen for 

and 
. Dealing with such 

double-color correlated terms (DCC) in general makes the structure of 

the poles very complicatedd̂ σRV

d̂ σRR

Double-Virtual
Real-Virtual

Double-Real
PDFs Renor.

WHAT 

HAPPENS 

AT NNLO?

08

d̂ σ
NNLO=d̂ σ

VV+d̂ σ
RV+d̂ σ

RR+d̂ σ
pdf

Consider for instance 
 

 it depends quadratically on 
 and 

d̂ σ
VV⇒

Ī1(ϵ)
Ī†1(ϵ)

 ⇒Ī1,Ī†1∼Ti⋅Tj

 ⇒d̂ σ
VV∼(Ti⋅Tj)⋅(Tk⋅Tl)

double color-correlations

DMT | QCD@LHC2023

We expect the same to happen for 
and 

. Dealing with such 

double-color correlated terms (DCC) in general makes the structure of 

the poles very complicated

d̂ σ
RV

d̂ σ
RR

Double-Virtual
Real-Virtual

Double-Real

PDFs Renor. Free of poles 
Fully general in the number of partons

Virtual 
component

WHAT 
HAPPENS 
AT NNLO?

08

d̂ σNNLO=d̂ σVV+d̂ σRV+d̂ σRR+d̂ σpdf

Consider for instance   it depends quadratically on  and d̂ σVV⇒Ī1(ϵ)Ī†
1(ϵ)

 ⇒Ī1,Ī†
1∼Ti⋅Tj

 ⇒d̂ σVV∼(Ti⋅Tj)⋅(Tk⋅Tl)double color-correlations

DMT | QCD@LHC2023

We expect the same to happen for and . Dealing with such 
double-color correlated terms (DCC) in general makes the structure of 
the poles very complicated

d̂ σRVd̂ σRR

Double-Virtual
Real-Virtual

Double-Real
PDFs Renor.
Soft 

component Collinear  
component

[slide courtesy of DMT] 
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1. Subtraction schemes are necessary ingredients to obtain precise theoretical predictions.


2. Nested-soft collinear subtraction provides an efficient method to deal with n-parton processes:


I. combine different subtraction terms to get rid of color-correlations (and boosted contributions),


II. reduce the subtraction terms to few, recurring structures.


3. Pole cancellation proven analytically for the case-study .


 Finite remainders in agreement with the standard approach for  

qq̄ → X + Ng

→ qq̄ → X + g@NNLO

Thank you!
27

Work in progress

Generalisation to arbitrary final- and initial-state partons. 

Standard conclusions
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Backup
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Cancellation of single-color-correlated contributions

29

No singular, color-correlated contributions
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Cancellation of single-color-correlated contributions

30

finite
color-uncorrelatedSingular and color-correlated
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Cancellation of single-color-correlated contributions

31

finite
color-uncorrelatedSingular and color-correlated

finite

⟶

⟶
finite⏞
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 color-uncorrelated1/ϵ

 color-uncorrelated1/ϵ2

∝
CA(CA + 2CF)

ϵ2 ( −
131
72

+
π2

6
+

11
6

log 2) +
1
ϵ

[color − correlations]

Cancellation of single-color-correlated contributions

32

∝ −
CA(CA + 2CF)

ϵ2 ( −
131
72

+
π2

6
+

11
6

log 2) + 𝒪(ϵ−1)

Peculiar dependence in the color-correlations, that fits perfectly a contribution from triple-collinear sectors Θ(b)
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Useful relations:
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Useful definitions:
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1. Clear understanding of which singular configurations do actually contribute

k1

k1 + k2 + k3

k2

k1 + k2

k3

∼
1

(k1 + k2)2

1
(k1 + k2 + k3)2

=
1

2k1 ⋅ k2

1
2k1 ⋅ k2 + 2k1 ⋅ k3 + 2k2 ⋅ k3

⟺ k1 → 0 and k2 ∥ k3

Entangled soft-collinear limits of diagrams can not be treated in a process-independent way.

Do non-commutative limits actually contribute?

Gauge invariant amplitudes are free of entangled singularities 
thanks to color coherence: soft parton does not resolve angles of the 
collinear partons

Soft-collinear limits can be described by taking the known soft and collinear limits sequentially 

STRIPPER was implemented taking into account all the possible choices of soft and 
collinear limits order -> redundant configurations were included 

35
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2. Get to the point where the problem is well defined 

a) Identify the overlapping singularities 

b) Regulate them

k1

k1 + k2 + k3

k2

k1 + k2

k3

∼
1

E1 E2 (1 − ⃗n1 ⋅ ⃗n2)
1

E1E2(1 − ⃗n1 ⋅ ⃗n2) + E1E3(1 − ⃗n1 ⋅ ⃗n3) + E2E3(1 − ⃗n2 ⋅ ⃗n3)

 Soft origin
E1 → 0 E2 → 0 E1, E2 → 0

Collinear origin
⃗n1 ∥ ⃗n2 ⃗n1 ∥ ⃗n2 ∥ ⃗n3

Soft and collinear modes do not intertwine: soft subtraction can be done globally. Collinear singularities have still to be regulated.

Strongly ordered configurations have to be properly taken into account.  

Includes strongly 
ordered configurations

1
2

3

1

2
3

1

2

3

⃗n1 ⋅ ⃗n2 < ⃗n1 ⋅ ⃗n3 ⃗n2 ⋅ ⃗n3 < ⃗n1 ⋅ ⃗n3 ⃗n1 ⋅ ⃗n3 < ⃗n2 ⋅ ⃗n3

E1 ≪ E2 , E2 ≪ E1
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Phase space partitions
Efficient way to simplify the problem: introduce partition functions (following FKS philosophy):

• Unitary partition 

• Select a minimum number of singularities in each sector 

• Do not affect the analytic integration of the counterterms 

Definition of partition functions benefits from remarkable degree of freedom: different approaches can be implemented

η61

η51

b c
a

d

q(1) q̄(2)

l(3) l̄(4)

g(5)g(6)

g(6)

g(5)

g(5)

g(6) g(5)
g(6)

q(1) q̄(2)

l(3) l̄(4)

g(5)g(6)

g(6)

g(5)

g(5)

g(6) g(5)
g(6)

1 = ω51,61 + ω52,62 + ω51,62 + ω52,61

Examples: Nested soft-collinear subtraction  [Caola, Melnikov, Röntsch 1702.01352]qq̄ → Z → e−e+ g g

ω52,62 =
ρ15 ρ16

d5 d6
(1 +

ρ25

d5621
+

ρ26

d5612
)

ω51,61 =
ρ25 ρ26

d5 d6
(1 +

ρ15

d5621
+

ρ16

d5612
) ω51,62 =

ρ25 ρ16 ρ56

d5 d6 d5612

ω52,61 =
ρ15 ρ26 ρ56

d5 d6 d5621

1 = θ(η61 <
η51

2 ) + θ( η51

2
< η61 < η51) + θ(η51 <

η61

2 ) + θ( η61

2
< η51 < η61)

ρab = 1 − cos ϑab , ηab = ρab/2

q(1) q̄(2)

l(3) l̄(4)

g(5)g(6)

g(6)

g(5)

g(5)

g(6) g(5)
g(6)

q(1) q̄(2)

l(3) l̄(4)

g(5)g(6)

g(6)

g(5)

g(5)

g(6) g(5)
g(6)

di=5,6 = ρ1i + ρ2i = 2

d5621 = ρ56 + ρ52 + ρ61

d5612 = ρ56 + ρ51 + ρ62

= θ(a) + θ(b) + θ(c) + θ(d)
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Phase space partitions

Definition of partition functions benefits from remarkable degree of freedom: different approaches can be implemented

Disadvantages: 

1. Partition based on angular ordering -> Lorentz invariance not preserved 

-> angles defined in a given reference frame 

2. Theta function 

Advantages: 

1. Simple definition 

2. Structure of collinear singularities fully defined

3. Same strategy holds for NNLO mixed QCDxEW processes 

4. Minimum number of sector

q(1) q̄(2)

l(3) l̄(4)

g(5)g(6)

g(6)

g(5)

g(5)

g(6) g(5)
g(6)

Efficient way to simplify the problem: introduce partition functions (following FKS philosophy):

• Unitary partition 

• Select a minimum number of singularities in each sector 

• Do not affect the analytic integration of the counterterms 

Examples: Nested soft-collinear subtraction  [Caola, Melnikov, Röntsch 1702.01352]qq̄ → Z → e−e+ g g
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3. Solve the PS integrals 

The problem is now well defined:

A. Singular kernels and their nested limits have to be subtracted from the double real correction to get integrable object


B. Counterterms have to be integrated over the unresolved phase space 

∫ dΦn+2 RRn+2 = ∫ dΦn+2 [RRn+2 − Kn+2] + ∫ dΦn+2 Kn+2 Kn+2 ⊃ Cij, Ckl, Si, Sij, Cijk

I = ∫ PSunres. ⊗ Limit ⊗ Constraints

Several kinematic structures have to be integrated analytically over a 6-dim PS. 

Different approximations and techniques can be applied: the results assume different form depending on the adopted strategy  

Two main structure are the most complicated ones and affect most of the physical processes:

- Double soft 
- Triple collinear 

The ‘Limit’ component is universal and known. The phase space is well defined. Constraints may vary depending on the scheme.
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Kernels integration

Examples: Nested soft-collinear subtraction  [Caola, Delto, Frellesvig, Melnikov 1807.05835, Delto, Melnikov 1901.05213]qq̄ → Z → e−e+ g g

I(gg)
S56

= ∫ [dk5] [dk6] θ(Emax − E5) θ(E5 − E6) I(gg)(56)
12 (k1, k2, k5, k6)

Two soft parton (5,6) and two hard massless radiator (1,2): arbitrary relative angle between the three-momenta of the radiators

E5 = Emax ξ E6 = Emax ξ z

I(gg)(56)
12 =

(1 − ϵ)(s51s62 + s52s61) − 2s56s12

s2
56(s51 + s61)(s52 + s62)

+ s12
s51s62 + s52s61 − s56s12

s56s51s62s52s61
[1 −

1
2

s51s62 + s52s61

(s51 + s61)(s52 + s62) ]

0 < ξ < 1 , 0 < z < 1

Reverse unitarity: map phase space integrals onto loop integrals [Anastasiou, Melnikov 0207004] 

after defining integral families, integration-by-part identities. Differential equations w.r.t. the ratio of energies of emitted gluons at fixed angle.


 Boundary conditions for z=0, and arbitrary angle 


[ dfi ] =
ddki

(2π)d
(2π) δ+(k2

i )
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dσ
dX

=
dσLO

dX
+ αs

dσNLO

dX
+ α2

s
dσN2LO

dX
+ α3

s
dσN3LO

dX
+ …

41

 = IRC-safe, X δXi
= δ(X − Xi)

dσN2LO

dX
= ∫ dΦn VV δXn

+ ∫ dΦn+1 RV δXn+1
+ ∫ dΦn+2 RR δXn+2

Ingredients for higher-order corrections and main difficulties

Strong couplings:  
αs ∼ 0.1 𝒪(α3

s ) ∼ 0.1 %𝒪(α2
s ) ∼ 1 %𝒪(αs) ∼ 10 %

Well defined in the non-degenerate 
kinematics 

Explicit poles from virtual 
corrections 
Phase space singularities

Explicit poles

- Almost all relevant amplitudes for 
 massless processes


- First results for   amplitudes
2 → 2

2 → 3

- One-loop amplitudes in 
degenerate kinematics 

- OpenLoops, Recola 

- Real emission corrections finite in the 
bulk of the allowed PS 

- IR singularities arise upon integration over 
energies and angles of emitted partons
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Summary of the talk
1

2

3

4

5

• A subtraction scheme based of FKS was proposed.


• Singular kernels for initial- and final-state emission are known. Integration of the most complicated double-unresolved limits performed 
for arbitrary kinematics. 

• Application to simple processes worked out straightforwardly. 


• In principle, general formulas for subtraction terms and fully-resolved components for an arbitrary number of partons are available. 


• This can be done because we know how to deal with multiple radiators [partitioning, energy ordering]


• However, for non-trivial processes (e.g. V+j) several difficulties arise: partitioning, energy ordering and Casimir operators obscure 
simplifications that are suggested by the simple structure of Catani’s operator.


• This suggests that we may need to take some steps back.
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Nested soft-collinear subtraction at NNLO: generalities [Caola, Melnikov, Röntsch 1702.01352]

Extension of FKS subtraction [Frixione, Kunst, Signer 9512328] to NNLO and inspired by STRIPPER [Czakon 1005.0274] 

43

k1

k1 + k2 + k3

k2

k1 + k2

k3

∼
1

E1 E2 (1 − ⃗n1 ⋅ ⃗n2)
1

E1 E2(1 − ⃗n1 ⋅ ⃗n2) + E1 E3(1 − ⃗n1 ⋅ ⃗n3) + E2 E3(1 − ⃗n2 ⋅ ⃗n3)

Strongly-ordered configurations have also to be included:

1
2

3

1

2
3

1

2

3
⃗n1 ⋅ ⃗n2 < ⃗n1 ⋅ ⃗n3 ⃗n2 ⋅ ⃗n3 < ⃗n1 ⋅ ⃗n3 ⃗n1 ⋅ ⃗n3 < ⃗n2 ⋅ ⃗n3

E1 ≪ E2 , E2 ≪ E1

E1 → 0 E2 → 0 E1, E2 → 0
⃗n1 ∥ ⃗n2 ∥ ⃗n3

⃗n1 ∥ ⃗n2

Soft limits: 
• Non-trivial structure of double-soft eikonal 

• Strongly-ordered limits to disentangle 

1 = θ(Eg5
− Eg6) + θ(Eg6

− Eg5) Eg6

Eg5

Eg6
> Eg5

Eg5
> Eg6

q(1) q̄(2)

l(3) l̄(4)

g(5)g(6)

g(6)

g(5)

g(5)

g(6) g(5)
g(6)
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Nested soft-collinear subtraction at NNLO: generalities [Caola, Melnikov, Röntsch 1702.01352]

Extension of FKS subtraction [Frixione, Kunst, Signer 9512328] to NNLO and inspired by STRIPPER [Czakon 1005.0274] 
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- Exploit colour-coherence to discard interplay between soft and collinear 


 subtract soft limits first, then collinear


- Define subtraction terms in 3 steps:


- Globally remove double soft singularities


- Globally remove single soft singularities [using energy ordering]


- FKS partition and sectoring to treat the minimum number of                                              
collinear singularities at a time


- Integrate subtraction terms analytically using Reverse Unitarity [Anastasiou, Melnikov ‘02]: 
map phase space integrals onto loop integrals [Caola, Delto, Frellesvig, Melnikov ’18, ‘19]

→

Eg6

Eg5

Eg6
> Eg5

Eg5
> Eg6

“nested approach”

η6i

η5i

b c
a

d

1 = ∑
i,j

ωi5,j6

ω5i,6i = ω5i,6i (θa + θb + θc + θd)
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Double virtual contribution
Universal structure, regulated by Catani’s operator, valid for any number of external 
coloured partons [Catani ’98] . Features a single structure with color-correlations

45

Color-correlations inside 


(already encountered at NLO)

Finite remainders from 2-loop 
and (1-loop)  amplitudes2

Process-dependent

αs

αew

αs αs

q

q̄ l+

l−

q

q̄

q̄

q

l−

l−

l+

l+

...

...
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Hard-collinear real-virtual and single soft RR

One-loop splitting functions, 
known analytically

46

Also in this case the IR structure is know in full generality [Kosower ‘99, Bern, Del Duca et al. ‘99]. 
For  the integrated contribution readsqq̄ → V + ggg

Same structure as NLO

Single soft: different subtraction terms combined  careful with the limits order→
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Status so far

47

A term  needed to 
reconstruct 


 look at double-collinear 

I2
C(ϵ)

(I1 + I1,R + IC)2

→

reconstruct 
 

but with extra 
I1(ϵ) + I1,R(ϵ) + IC(ϵ)

1/ϵ

Clear interplay   


non-transparent 
cancellation

→ CA, 2ϵ

Suggest 
 

but with extra 
I1(2ϵ) + I1,R(2ϵ) + IC(2ϵ)

1/ϵ
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Hard-collinear real-virtual and single soft RR

48

Manipulations required to reconstruct recurring structures and match, for instance, PDFs-like corrections 

Cancellation of the double-color-correlated contributions

Same combination encountered at NLO: 
finite, and easy to be computed.
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