The dark side of precision calculations: subtractions

Chiara Signorile-Signorile

Amplitudes 2024
In collaboration with: Federica Devoto, Kirill Melnikov, Raoul Röntsch, Davide Maria Tagliabue Based on: JHEP02(2024)016

Take-home message

When the complexity of the problem increases, look at simple, recurring structures!

Rudiments of particle physics at colliders

The success of a percent level phenomenology program relies on our ability to interpret and predict the outcome of LHC measurements.
[Snowmass'2021 whitepaper]

[Phys. Proc. 51(2014)25-30]
\longrightarrow Collinear factorisation theorem [Collins, Soper, Sterman '04]: separate energy scale \rightarrow different treatment

$$
\mathrm{d} \sigma=\sum_{i j} \int \mathrm{~d} x_{1} \mathrm{~d} x_{2} f_{i / p}\left(x_{1}\right) f_{j / p}\left(x_{2}\right) \mathrm{d} \hat{\sigma}_{i j}\left(x_{1} x_{2} s\right)\left(1+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^{n}}{Q^{n}}\right)\right), \quad n \geq 1
$$

No large hierarchies of scales + no strong sensitivity to infrared physics
\rightarrow fixed order calculations provide a robust and reliable framework to obtain precision predictions at the LHC

Ingredients for higher-order corrections and main difficulties

$$
\frac{d \sigma}{d X}=\frac{d \sigma_{\mathrm{LO}}}{d X}+\alpha_{s} \frac{d \sigma_{\mathrm{NLO}}}{d X}+\alpha_{s}^{2} \frac{d \sigma_{\mathrm{N}^{2} \mathrm{LO}}}{d X}+\alpha_{s}^{3} \frac{d \sigma_{\mathrm{N}^{3} \mathrm{LO}}}{d X}+\ldots \quad X=\text { IRC-safe, } \delta_{X_{i}}=\delta\left(X-X_{i}\right)
$$

Strong coupling:

$$
\alpha_{s} \sim 0.1
$$

$$
\mathcal{O}\left(\alpha_{s}\right) \sim 10 \% \quad \mathcal{O}\left(\alpha_{s}^{2}\right) \sim 1 \% \quad \mathcal{O}\left(\alpha_{s}^{3}\right) \sim 0.1 \%
$$

Ingredients for higher-order corrections and main difficulties

$$
\frac{d \sigma}{d X}=\frac{d \sigma_{\mathrm{LO}}}{d X}+\alpha_{s} \frac{d \sigma_{\mathrm{NLO}}}{d X}+\alpha_{s}^{2} \frac{d \sigma_{\mathrm{N}^{2} \mathrm{LO}}}{d X}+\alpha_{s}^{3} \frac{d \sigma_{\mathrm{N}^{3} \mathrm{LO}}}{d X}+\ldots \quad X=\operatorname{IRC} \text {-safe, } \delta_{X_{i}}=\delta\left(X-X_{i}\right)
$$

Strong coupling:

$$
\begin{aligned}
& \mathscr{O}\left(\alpha_{s}\right) \sim 10 \% \\
& \alpha_{s} \sim 0.1 \\
& d X \\
& \\
& \frac{O}{\mathrm{~N}^{2} \mathrm{LO}} \\
&
\end{aligned}=\int d \Phi_{n}^{2} V V \delta_{X_{n}} \sim 1 \% \quad \mathcal{O}\left(\alpha_{s}^{3}\right) \sim 0.1 \%
$$

Each ingredient presents significant technical challenges. Overcoming these issues requires profound insight from QFT

Virtual amplitudes:

- Multi-loop integrals involving multiple scales, arising from different masses and many legs

Real radiation singularities

- Extraction of soft and collinear singularities

IR singularities

Real corrections:

- Singularities arising from unresolved radiation after integration over full phase space of radiated parton
- Goal: extract IR singularities without integrating over the resolved phase space \rightarrow obtain fully differential prediction

\longrightarrow Unresolved limits are universal and known (even at N3LO) \rightarrow a general procedure is in principle feasible

Subtraction: conceptually non-trivial, but if local and analytic then extremely versatile and numerically stable

Subtractions: status

NLO:
 solved conceptually in the 90s and now implemented in automatic frameworks

NNLO:

still looking for the optimal scheme \rightarrow the problem is highly non-trivial and a simple generalisation of NLO not doable due to overlapping singularities

Example: di-jet two-loop amplitudes ~ 20 years ago [Anastasiou et al. '01]
di-jet production at NNLO ~ 5 years ago [Currie et al. '17]

Antenna [Gehrmann-De Ridder et al. '05], ColorfullNNLO [Del Duca et al. '16], STRIPPER [Czakon '10], Nested soft-collinear [Caola et al. '17], Local analytic sector [Magnea, CSS et al. '18], Geometric IR subtraction [Herzog '18], Unsubtraction [Sborlini et al. '16], FDR [Pittau '12], Universal Factorisation [Sterman et al. '20], ...

Most of them feature a relevant degree of complexity, and are not ready to tackle multi-patron scattering.

Simplifications and recurring patterns seem to be elusive!

Why is NNLO so difficult?

1. Clear understanding of which singular configurations do actually contribute
2. Get to the point where the problem is well defined
3. Solve the phase space integrals of the relevant limits

$$
\sim \frac{1}{E_{1} E_{2}\left(1-\vec{n}_{1} \cdot \vec{n}_{2}\right)} \frac{1}{E_{1} E_{2}\left(1-\vec{n}_{1} \cdot \vec{n}_{2}\right)+E_{1} E_{3}\left(1-\vec{n}_{1} \cdot \vec{n}_{3}\right)+E_{2} E_{3}\left(1-\vec{n}_{2} \cdot \vec{n}_{3}\right)}
$$

$$
\begin{array}{ll}
E_{1} \rightarrow 0 & E_{2} \rightarrow 0 \\
E_{1}, E_{2} \rightarrow 0 \\
\vec{n}_{1}\left\|\vec{n}_{2}\right\| \vec{n}_{3} & \vec{n}_{1} \| \vec{n}_{2}
\end{array}
$$

Strongly-ordered configurations have also to be included:

$$
E_{1} \ll E_{2}, \quad E_{2} \ll E_{1}
$$

Non-trivial structures to integrate \rightarrow double-soft and triple-collinear kernels

$$
\begin{array}{ll}
I_{12}^{(g)(56)}=\frac{(1-\epsilon)\left(s_{51} s_{62}+s_{52} s_{61}\right)-2 s_{56} s_{12}}{s_{56}^{2}\left(s_{51}+s_{61}\right)\left(s_{52}+s_{62}\right)}+s_{12} \frac{s_{51} s_{62}+s_{52} s_{61}-s_{56} s_{12}}{s_{56} s_{51} s_{62} s_{52} s_{61}}\left[1-\frac{1}{2} \frac{s_{51} s_{62}+s_{52} s_{61}}{\left(s_{51}+s_{61}\right)\left(s_{52}+s_{62}\right)}\right] & \quad s_{a b}=2 p_{a} \cdot p_{b} \\
I_{S_{56}}^{(g g)}=\int\left[\mathrm{d} f_{i}\right]=\frac{\mathrm{d}^{d} k_{i}}{(2 \pi)^{d}}(2 \pi)\left[\mathrm{d} k_{6}\right] \theta\left(E_{\max }-E_{5}\right) \theta\left(k_{i}^{2}\right)
\end{array}
$$

Nested soft-collinear subtraction at NNLO: generalities [Caooa, Melnikov, Röntsch ‘17]

Example: DIS [Asteriadis, Caola, Melnikov, Röntsch '19]

- Extract double soft singularities first

$$
\begin{aligned}
& \left(E_{5} \sim E_{6} \rightarrow 0\right) \\
& \quad I=\left(I-S^{\prime}\right)+\mathbb{S}^{\prime}
\end{aligned}
$$

- Gluons ordered in energy \rightarrow only one single soft singularity

$$
I=\left(I-S_{6}\right)+S_{6}
$$

Double-soft singularity regularized but still contains single soft and collinear singularities. lo

Subtraction term; soft gluons decouple; integrate analytically over phase space of gluons 5 and 6

- Collinear singularities: partition function + sectoring [separate overlapping singularities]

- Integrate subtraction terms analytically using Reverse Unitarity [Anastasiou, Melnikov '02]: map phase space integrals onto loop integrals [Caola, Delto, Frellesvig, Melnikov '18, '19]

State of the art:

Separation of complex $p p \rightarrow N$ processes into simpler building blocks

QCD corrections to Drell-Yan
Both initial state momenta [Caola, Melnikov, Röntsch '19]

Higgs decay
Both final state momenta [Caola, Melnikov, Röntsch '19]

Deep Inelastic Scattering
One initial and one final state momentum [Asteriadis, Calola, Melnikov Röntsch '19]

Focus on simple processes \rightarrow full control of the procedure, check against analytic results sometime possible.

Application to Z+j production

New!

Application to Z+j production

$$
\frac{1}{3!}\left\langle F_{\mathrm{LM}}\left(1_{q}, 2_{\bar{q}} ; 3_{g}, 4_{g}, 5_{g}\right)\right\rangle=\left\langle S_{45} \Delta^{(45)} F_{\mathrm{LM}}^{4>5}\right\rangle+\left\langle\left(I-S_{4}\right) S_{5} \Delta^{(45)} F_{\mathrm{LM}}^{4>5}\right\rangle
$$

In principle generalisable to \mathbf{n}-partons

Implemented numerically \rightarrow no issues in increasing the number of partons

Fully regulated contribution

$$
\begin{aligned}
& +\left\langle(I - S _ { 4 5 }) (I - S _ { 5 }) \left\{\sum _ { i \in \mathrm { TC } } \left[\Theta^{(a)} C_{45, i}\left(I-C_{5 i}\right)+\Theta^{(b)} C_{45, i}\left(I-C_{45}\right)\right.\right.\right. \\
& \left.\left.\left.\quad+\Theta^{(c)} C_{45, i}\left(I-C_{4 i}\right)+\Theta^{(d)} C_{45, i}\left(I-C_{45}\right)\right] \omega_{4 i 5 i}\right\} \Delta^{(45)} F_{\mathrm{LM}}^{4>5}\right\rangle \\
& -\left\langle\left(I-S_{45}\right)\left(I-S_{5}\right) \sum_{(i j) \in \mathrm{DC}} C_{4 i} C_{5 j} \omega_{4 i 5 j} \Delta^{(45)} F_{\mathrm{LM}}^{4>5}\right\rangle \\
& +\left\langle(I - S _ { 4 5 }) (I - S _ { 5 }) \left\{\sum_{i \in \mathrm{TC}}\left[\Theta^{(a)} C_{5 i}+\Theta^{(b)} C_{45}+\Theta^{(c)} C_{4 i}+\Theta^{(d)} C_{45}\right] \omega_{4 i 5 i}\right.\right. \\
& \left.\left.\quad+\sum_{(i j) \in \mathrm{DC}}\left[C_{4 i}+C_{5 j}\right] \omega_{4 i 5 j}\right\} \Delta^{(45)} F_{\mathrm{LM}}^{4>5}\right\rangle \\
& +\left\langle(I - S _ { 4 5 }) (I - S _ { 5 }) \left\{\sum _ { i \in \mathrm { TC } } \left[\Theta^{(a)}\left(I-C_{45, i}\right)\left(I-C_{5 i}\right)+\Theta^{(b)}\left(I-C_{45, i}\right)\left(I-C_{45}\right)\right.\right.\right. \\
& \left.\quad+\Theta^{(c)}\left(I-C_{45, i}\right)\left(I-C_{4 i}\right)+\Theta^{(d)}\left(I-C_{45, i}\right)\left(I-C_{45}\right)\right] \omega_{4 i 5 i} \\
& \left.\left.\quad+\sum_{(i j) \in \mathrm{DC}}\left(I-C_{4 i}\right)\left(I-C_{5 j}\right) \omega_{4 i 5 j}\right\} \Delta^{(45)} F_{\mathrm{LM}}^{4>5}\right\rangle
\end{aligned}
$$

$(i j) \in \mathrm{DC} \longrightarrow(i j) \in\{(12),(13),(21),(23),(31),(32)\}$ $i \in \mathrm{TC} \longrightarrow i \in\{1,2,3\}$.

Application to Z+j production

$$
\frac{1}{3!}\left\langle F_{\mathrm{LM}}\left(1_{q}, 2_{\bar{q}} ; 3_{g}, 4_{g}, 5_{g}\right)\right\rangle=\left\langle S_{45} \Delta^{(45)} F_{\mathrm{LM}}^{4>5}\right\rangle+\left\langle\left(I-S_{4}\right) S_{5} \Delta^{(45)} F_{\mathrm{LM}}^{4>5}\right\rangle
$$

$$
\begin{aligned}
& +\left\langle(I - S _ { 4 5 }) (I - S _ { 5 }) \left\{\sum _ { i \in \mathrm { TC } } \left[\Theta^{(a)} C_{45, i}\left(I-C_{5 i}\right)+\Theta^{(b)} C_{45, i}\left(I-C_{45}\right)\right.\right.\right. \\
& \left.\left.\left.\quad+\Theta^{(c)} C_{45, i}\left(I-C_{4 i}\right)+\Theta^{(d)} C_{45, i}\left(I-C_{45}\right)\right] \omega_{4 i 5 i}\right\} \Delta^{(45)} F_{\mathrm{LM}}^{4>5}\right\rangle \\
& -\left\langle\left(I-S_{45}\right)\left(I-S_{5}\right) \sum_{(i j) \in \mathrm{DC}} C_{4 i} C_{5 j} \omega_{4 i 5 j} \Delta^{(45)} F_{\mathrm{LM}}^{4>5}\right\rangle \\
& +\left\langle(I - S _ { 4 5 }) (I - S _ { 5 }) \left\{\sum_{i \in \mathrm{TC}}\left[\Theta^{(a)} C_{5 i}+\Theta^{(b)} C_{45}+\Theta^{(c)} C_{4 i}+\Theta^{(d)} C_{45}\right] \omega_{4 i 5 i}\right.\right. \\
& \left.\left.\quad+\sum_{(i j) \in \mathrm{DC}}\left[C_{4 i}+C_{5 j}\right] \omega_{4 i 5 j}\right\} \Delta^{(45)} F_{\mathrm{LM}}^{4>5}\right\rangle \\
& +\left\langle(I - S _ { 4 5 }) (I - S _ { 5 }) \left\{\sum _ { i \in \mathrm { TC } } \left[\Theta^{(a)}\left(I-C_{45, i}\right)\left(I-C_{5 i}\right)+\Theta^{(b)}\left(I-C_{45, i}\right)\left(I-C_{45}\right)\right.\right.\right. \\
& \left.\quad+\Theta^{(c)}\left(I-C_{45, i}\right)\left(I-C_{4 i}\right)+\Theta^{(d)}\left(I-C_{45, i}\right)\left(I-C_{45}\right)\right] \omega_{4 i 5 i} \\
& \left.\left.+\quad \sum_{(i j) \in \mathrm{DC}}\left(I-C_{4 i}\right)\left(I-C_{5 j}\right) \omega_{4 i 5 j}\right\} \Delta^{(45)} F_{\mathrm{LM}}^{4>5}\right\rangle
\end{aligned}
$$

$(i j) \in \mathrm{DC} \longrightarrow(i j) \in\{(12),(13),(21),(23),(31),(32)\}$ $i \in \mathrm{TC} \longrightarrow i \in\{1,2,3\}$

Summary of the talk

Series[RRpoles, $\{\epsilon, 0,-1\}]$
$\frac{1}{4 e^{4}}$ (3 asontwopi ${ }^{2}$ CA 2 FLM $\left[\mathrm{p} 1_{\mathrm{q}}, \mathrm{p} 2_{\mathrm{q}}, \mathrm{p} 3_{\mathrm{g}}\right]+10$ asontwopi $^{2} \mathrm{CACFFLM}\left[\mathrm{p} 1_{\mathrm{q}}, \mathrm{p} 2_{\mathrm{q}}, \mathrm{p} 3_{\mathrm{g}}\right]+2$ asontwopi ${ }^{2} \mathrm{CF}^{2} \mathrm{FLM}^{2}\left[\mathrm{p} 1_{\mathrm{q}}, \mathrm{p} 2_{\mathrm{q}}, \mathrm{p} 3_{\mathrm{g}}\right]+$ 5 asontwopi ${ }^{2}$ CF 2 delta $[1-z] \times \operatorname{FLM}\left[p 1_{q}, z p 2_{q}, p 3_{g}, z\right]+5$ asontwopi 2 CF 2 delta $[1-z] \times F L M\left[z p 1_{q}, p 2_{q}, p 3_{g}, z\right]-$
4 asontwopi ${ }^{2} \mathrm{CF}^{2}$ delta $\left.[1-z 1] \times \operatorname{delta}[1-z 2] \times \mathrm{FLM}\left[z 1 \mathrm{p} 1_{\mathrm{q}}, z 2 \mathrm{p} 2_{\mathrm{q}}, \mathrm{p} 3_{\mathrm{g}}, \mathrm{z} 1, \mathrm{z} 2\right]\right)+$
out $(\cdot)=$

large output show less	show more	show all	set size limit...

$$
\begin{aligned}
& \langle\mathcal{M} \mid \mathcal{M}\rangle_{\alpha_{s}^{2}}=\left\langle\mathcal{M}_{0}\right| \frac{1}{2} I_{1}^{2}(\epsilon)+\frac{1}{2}\left(I_{1}^{\dagger}(\epsilon)\right)^{2}+I_{1}^{\dagger}(\epsilon) I_{1}(\epsilon)+\left(\mathcal{H}_{2}+\mathcal{H}_{2}^{\dagger}\right)\left|\mathcal{M}_{0}\right\rangle \\
& +\left\langle\mathcal{M}_{0}\right|-\frac{\beta_{0}}{\epsilon}\left(I_{1}(\epsilon)+I_{1}^{\dagger}(\epsilon)\right)+c_{\epsilon}\left(\frac{\beta_{0}}{\epsilon}+K\right)\left(I_{1}(2 \epsilon)+I_{1}^{\dagger}(2 \epsilon)\right)\left|\mathcal{M}_{0}\right\rangle \\
& +2 \operatorname{Re}\left[\left\langle\mathcal{M}_{0}\right| I_{1}(\epsilon)+I_{1}^{\dagger}(\epsilon)\left|\mathcal{M}_{1}^{\mathrm{fin}}\right\rangle\right]+2 \operatorname{Re}\left[\left\langle\mathcal{M}_{0} \mid \mathcal{M}_{2}^{\mathrm{fin}}\right\rangle\right]+\left\langle\mathcal{M}_{1}^{\mathrm{fin}} \mid \mathcal{M}_{1}^{\mathrm{fin}}\right\rangle .
\end{aligned}
$$

"Asymmetry": VV very simple pole structure, RR structure obscured by energy ordering, partitioning..

```
Series[Vvpoles, {\epsilon, 0, -1}}
```



```
    9CF \beta0
```



```
    \frac{1}{864 FLM[P1q}, P2 [q, P3 g] (3CA 
```



```
        2 Log[\frac{s13}{mu2}] [CA (-67 CA + 81 CF +3 (5CA - 16CF) \pi
```


Summary of the talk

> Can we identify structures early on in the calculations so that cancellation of divergences can be seen "by eye", even for a generic process?

Main idea: look at the pole structure of the virtual corrections to infer similar structures for the subtraction terms
\rightarrow by product: get rid of color correlations and reduce the rest to a sum over external-leg contributions.

$$
\text { Case of study: } q \bar{q} \rightarrow X+N g
$$

	Published for SISSA by Springer
,	Received: November 3, 2023 Accepted: January 3, 2024 Published: February 2, 2024

A fresh look at the nested soft-collinear subtraction scheme: NNLO QCD corrections to N-gluon final states in $q \bar{q}$ annihilation

Federica Devoto ©, ${ }^{a}$ Kirill Melnikov, ${ }^{b}$ Raoul Röntsch ${ }^{\bullet}{ }^{c}{ }^{c}$ Chiara Signorile-Signorile ${ }^{b, d, e}$ and Davide Maria Tagliabue ${ }^{c}$

$$
\text { Work in progress: } g q \rightarrow X+(N-1) g+q
$$

NLO and NNLO QCD contributions to the channel $g q \rightarrow X+(N-1) g+q$

Federica Devoto, ${ }^{a}$ Kirill Melnikov, ${ }^{b}$ Raoul Röntsch, ${ }^{c}$ Chiara Signorile-Signorile, ${ }^{d}$ Davide Maria Tagliabue ${ }^{c}$

Warm up @NLO: $q \bar{q} \rightarrow X+N g$

$$
2 s \mathrm{~d} \hat{\sigma}_{a b}^{\mathrm{NLO}}=\mathrm{d} \hat{\sigma}_{a b}^{\mathrm{V}}+\mathrm{d} \hat{\sigma}_{a b}^{\mathrm{R}}+\mathrm{d} \hat{\sigma}_{a b}^{\mathrm{pdf}}
$$

Virtual corrections:
color-correlations, elastic terms

$$
I_{\mathrm{V}}(\epsilon)=\bar{I}_{1}(\epsilon)+\bar{I}_{1}^{\dagger}(\epsilon)
$$

Real corrections:
soft: color-correlations, elastic terms

$$
I_{\mathrm{S}}(\epsilon)=-\frac{\left(2 E_{\max } / \mu\right)^{-2 \epsilon}}{\epsilon^{2}} \sum_{(i j)}^{N_{p}} \eta_{i j}^{-\epsilon} K_{i j}\left(\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j}\right)
$$

$$
\bar{I}_{1}(\epsilon)=\frac{1}{2} \sum_{(i j)}^{N_{p}} \frac{\mathcal{V}_{i}^{\text {sing }}(\epsilon)}{\boldsymbol{T}_{i}^{2}}\left(\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j}\right)\left(\frac{\mu^{2}}{2 p_{i} \cdot p_{j}}\right)^{\epsilon} e^{i \pi \lambda_{i j} \epsilon}
$$

$$
\mathcal{V}_{i}^{\text {sing }}(\epsilon)=\frac{\boldsymbol{T}_{i}^{2}}{\epsilon^{2}}+\frac{\gamma_{i}}{\epsilon} .
$$

hard-collinear: no color-correlations, elastic terms+boosts

$$
I_{\mathrm{C}}(\epsilon)=\sum_{i=1}^{N_{p}} \frac{\Gamma_{i, f_{i}}}{\epsilon}
$$

$\mathcal{P}_{a a}^{\mathrm{gen}} \otimes F_{\mathrm{LM}}$

Warm up @NLO: $q \bar{q} \rightarrow X+N g$

$$
2 s \mathrm{~d} \hat{\sigma}_{a b}^{\mathrm{NLO}}=\mathrm{d} \hat{\sigma}_{a b}^{\mathrm{V}}+\mathrm{d} \hat{\sigma}_{a b}^{\mathrm{R}}+\mathrm{d} \hat{\sigma}_{a b}^{\mathrm{pdf}}
$$

Virtual corrections:
color-correlations, elastic terms

$$
I_{\mathrm{V}}(\epsilon)=\bar{I}_{1}(\epsilon)+\bar{I}_{1}^{\dagger}(\epsilon)
$$

$$
I_{\mathrm{V}}(\epsilon)+I_{\mathrm{S}}(\epsilon) \quad \text { • Highest pole trivially cancels }
$$

Real corrections:
soft: color-correlations, elastic terms

$$
I_{\mathrm{S}}(\epsilon)=-\frac{\left(2 E_{\max } / \mu\right)^{-2 \epsilon}}{\epsilon^{2}} \sum_{(i j)}^{N_{p}} \eta_{i j}^{-\epsilon} K_{i j}\left(\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j}\right)
$$

Remnant elastic single pole

$$
\bar{I}_{1}(\epsilon)=\frac{1}{2} \sum_{(i j)}^{N_{p}} \frac{\mathcal{V}_{i}^{\text {sing }}(\epsilon)}{\boldsymbol{T}_{i}^{2}}\left(\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j}\right)\left(\frac{\mu^{2}}{2 p_{i} \cdot p_{j}}\right)^{\epsilon} e^{i \pi \lambda_{i j} \epsilon}
$$

$$
\mathcal{V}_{i}^{\operatorname{sing}}(\epsilon)=\frac{\boldsymbol{T}_{i}^{2}}{\epsilon^{2}}, \frac{\gamma_{i}}{\epsilon} .
$$

hard-collinear: no color-correlations, elastic terms+boosts

$$
I_{\mathrm{C}}(\epsilon)=\sum_{i=1}^{N_{p}} \frac{\Gamma_{i, f_{i}}}{\epsilon}
$$

"generalised anomalous dimensions" $\Gamma_{i, f_{i}}=\gamma_{i}+2 \boldsymbol{T}_{i}^{2} L_{i}+\mathcal{O}(\epsilon)$

Warm up @NLO: $q \bar{q} \rightarrow X+N g$

$$
2 s \mathrm{~d} \hat{\sigma}_{a b}^{\mathrm{NLO}}=\mathrm{d} \hat{\sigma}_{a b}^{\mathrm{V}}+\mathrm{d} \hat{\sigma}_{a b}^{\mathrm{R}}+\mathrm{d} \hat{\sigma}_{a b}^{\mathrm{pdf}}
$$

Virtual corrections:
color-correlations, elastic terms

$$
I_{\mathrm{V}}(\epsilon)=\bar{I}_{1}(\epsilon)+\bar{I}_{1}^{\dagger}(\epsilon)
$$

$$
\bar{I}_{1}(\epsilon)=\frac{1}{2} \sum_{(i j)}^{N_{p}} \frac{\mathcal{V}_{i}^{\text {sing }}(\epsilon)}{\boldsymbol{T}_{i}^{2}}\left(\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j}\right)\left(\frac{\mu^{2}}{2 p_{i} \cdot p_{j}}\right)^{\epsilon} e^{i \pi \lambda_{i j} \epsilon}
$$

$\mathcal{V}_{i}^{\text {sing }}(\epsilon)=\frac{\boldsymbol{T}_{i}^{2}}{\epsilon^{2}}, \frac{\gamma_{i}}{\epsilon}$.

Real corrections:
soft: color-correlations, elastic terms

$$
I_{\mathrm{S}}(\epsilon)=-\frac{\left(2 E_{\max } / \mu\right)^{-2 \epsilon}}{\epsilon^{2}} \sum_{(i j)}^{N_{p}} \eta_{i j}^{-\epsilon} K_{i j}\left(\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j}\right)
$$

$$
I_{\mathrm{V}}(\epsilon)+I_{\mathrm{S}}(\epsilon) \quad \text { • Highest pole trivially cancels }
$$

Remnant elastic single pole

"generalised anomalous dimensions" $\Gamma_{i, f_{i}}=\gamma_{i}+2 \boldsymbol{T}_{i}^{2} L_{i}+\mathcal{O}(\epsilon)$

$$
\Longrightarrow \quad I_{\mathrm{T}}(\epsilon)=I_{\mathrm{V}}(\epsilon)+I_{\mathrm{S}}(\epsilon)+I_{\mathrm{C}}(\epsilon) \quad \text { FINITE! }
$$

$$
2 s \mathrm{~d} \hat{\sigma}_{a b}^{\mathrm{NLO}}=\frac{\alpha_{s}(\mu)}{2 \pi}\left\langle I_{\mathrm{T}}^{(0)} \cdot F_{\mathrm{LM}}\right\rangle+\frac{\alpha_{s}(\mu)}{2 \pi}\left[\left\langle\mathcal{P}_{a a}^{\mathrm{NLO}} \otimes F_{\mathrm{LM}}\right\rangle+\left\langle F_{\mathrm{LM}} \otimes \mathcal{P}_{b b}^{\mathrm{NLO}}\right\rangle\right]+\left\langle F_{\mathrm{LV}}^{\mathrm{fin}}\right\rangle+\left\langle\mathcal{O}_{\mathrm{NLO}} \Delta^{(\mathfrak{m})} F_{\mathrm{LM}}(\mathfrak{m})\right\rangle
$$

Lesson from NLO

Simple interplay between $\underbrace{\left[V+S_{i} R+\left(I-S_{i}\right) C_{i j} R\right.}]_{\text {elastic }}$ and $[\underbrace{\left.\left(1-S_{i}\right) C_{i j} R\right]_{\text {boost }}+\text { PDFs }}$

$$
I_{\mathrm{T}}(\epsilon)=I_{\mathrm{V}}(\epsilon)+I_{\mathrm{S}}(\epsilon)+I_{\mathrm{C}}(\epsilon) \quad\left\langle\mathcal{P}_{a a}^{\mathrm{NLO}} \otimes F_{\mathrm{LM}}\right\rangle+\left\langle F_{\mathrm{LM}} \otimes \mathcal{P}_{b b}^{\mathrm{NLO}}\right\rangle
$$

New approach at NNLO:

Starting from IR poles of double-virtual [Catani '98] we want to find subtraction terms that can "complete" it:

- identify structures similar to those encountered at NLO \rightarrow ideally the result will be $\sim \mathrm{NLO}^{2}$ as much as possible

$$
\begin{aligned}
\left\langle F_{\mathrm{VV}}\right\rangle & \left.\left.=\left[\alpha_{s}\right]^{2}\left\langle\left[\frac{1}{2} I_{\mathrm{V}}^{2}(\epsilon)\right)-\frac{\Gamma(1-\epsilon)}{e^{\epsilon \gamma_{\mathrm{E}}}}\left(\frac{\beta_{0}}{\epsilon} I_{\mathrm{V}(\epsilon)}\right)-\left(\frac{\beta_{0}}{\epsilon}+K\right) I_{\mathrm{V}}(2 \epsilon)\right)\right] \cdot F_{\mathrm{LM}}\right\rangle \\
& +\left[\alpha_{s}\right]^{2}\left\langle\left[-\frac{1}{2}\left(\bar{I}_{1}(\epsilon), \bar{I}_{1}^{\dagger}(\epsilon)\right]+\mathcal{H}_{2, \mathrm{tc}}+\mathcal{H}_{2, \mathrm{tc}}^{\dagger}+\mathcal{H}_{2, \mathrm{~cd}}+\mathcal{H}_{2, \mathrm{~cd}}^{\dagger}\right] \cdot F_{\mathrm{LM}}\right\rangle \\
& \left.+\left[\alpha_{s}\right]\left\langle I_{\mathrm{V}}(\epsilon)\right) \cdot F_{\mathrm{LV}}^{\mathrm{fin}}\right\rangle+\left\langle F_{\mathrm{LV}^{2}}^{\mathrm{fn}}\right\rangle+\left\langle F_{\mathrm{VV}}^{\mathrm{fin}}\right\rangle .
\end{aligned}
$$

- different powers/arguments/prefactors
- different type of color-correlations

$$
\left\{\begin{array}{ll}
T_{i} \cdot T_{j} \\
T_{i} \cdot T_{j} \cdot T_{k} \\
\left(T_{i} \cdot T_{j}\right) \cdot\left(T_{k} \cdot T_{l}\right)
\end{array} \quad \rightarrow\right. \text { specific pattern of cancellation. }
$$

Follow the (colored) crumbs

Color correlations can only arise from soft real emissions and loop corrections

Double soft

[Catani, Grazzini '99]
\square

$$
T_{i} \cdot T_{j}
$$

Factorised term

$$
\left(T_{i} \cdot T_{j}\right) \cdot\left(T_{k} \cdot T_{l}\right)
$$

$\left.\left\langle S_{\mathfrak{m n}} \Theta_{\mathfrak{m} \mathfrak{n}} F_{\mathrm{LM}}(\mathfrak{m}, \mathfrak{n})\right\rangle_{T^{4}}=\left[\alpha_{s}\right]^{2} \frac{1}{2}\left\langle{I_{\mathrm{S}}^{2}}_{2}(\epsilon)\right) \cdot F_{\mathrm{LM}}\right\rangle$

$$
\begin{aligned}
& I_{S}^{2}(\epsilon)+I_{V}^{2}(\epsilon) \text { takes care of } \\
& \text { "quartic" color-correlated poles }
\end{aligned}
$$

Iterations of NLO!

Follow the (colored) crumbs

Color correlations can only arise from soft real emissions and loop corrections

Double soft

[Catani, Grazzini '99]
Non-factorised term

$$
T_{i} \cdot T_{j}
$$

Factorised term

$$
\left(T_{i} \cdot T_{j}\right) \cdot\left(T_{k} \cdot T_{l}\right)
$$

$\left.\left\langle S_{\mathfrak{m n}} \Theta_{\mathfrak{m} \mathfrak{n}} F_{\mathrm{LM}}(\mathfrak{m}, \mathfrak{n})\right\rangle_{T^{4}}=\left[\alpha_{s}\right]^{2} \frac{1}{2}\left\langle\underline{I}_{\mathrm{S}}^{2}(\epsilon)\right) \cdot F_{\mathrm{LM}}\right\rangle$

$$
\begin{aligned}
& I_{S}^{2}(\epsilon)+I_{V}^{2}(\epsilon) \text { takes care of } \\
& \text { "quartic" color-correlated poles }
\end{aligned}
$$

$$
\left\langle S_{\mathfrak{m n}} \Theta_{\mathfrak{m} \mathfrak{n}} F_{\mathrm{LM}}(\mathfrak{m}, \mathfrak{n})\right\rangle_{T^{2}}
$$

$\left.-\ln ^{2}\left(s^{2}\right)-\frac{5}{2} \pi^{2}+\frac{22}{3} \ln 2-\frac{131}{18}\right] \operatorname{Li}_{2}\left(c^{2}\right)+\left[\frac{2}{3} \pi^{2}-4 \ln \left(c^{2}\right) \ln \left(s^{2}\right)\right] \times$ $\mathrm{Li}_{2}\left(-s^{2}\right)+\frac{\ln ^{4}\left(s^{2}\right)}{3}+\frac{\ln ^{4}\left(1+s^{2}\right)}{6}-\ln ^{3}\left(s^{2}\right)\left[\frac{4}{3} \ln \left(c^{2}\right)+\frac{11}{9}\right]$ $+\ln ^{2}\left(s^{2}\right)\left[7 \ln ^{2}\left(c^{2}\right)+\frac{11}{3} \ln \left(c^{2}\right)+\frac{\pi^{2}}{3}+\frac{22}{3} \ln 2-\frac{32}{9}\right]-\frac{\pi^{2}}{6} \ln ^{2}\left(1+s^{2}\right)$ $+\zeta_{3}\left[\frac{17}{2} \ln \left(s^{2}\right)-11 \ln \left(c^{2}\right)+\frac{7}{2} \ln \left(1+s^{2}\right)-\frac{21}{2} \ln 2-\frac{99}{4}\right]+\ln \left(s^{2}\right) \times$ $\left[-\frac{7 \pi^{2}}{2} \ln \left(c^{2}\right)+\frac{22}{3} \ln ^{2} 2-\frac{11}{18} \pi^{2}+\frac{137}{9} \ln 2-\frac{208}{27}\right]-12 \operatorname{Li}_{4}\left(\frac{1}{2}\right)$
$+\frac{143}{720} \pi^{4}-\frac{\ln ^{4} 2}{2}+\frac{\pi^{2}}{2} \ln ^{2} 2-\frac{11}{6} \pi^{2} \ln 2+\frac{125}{216} \pi^{2}+\frac{22}{9} \ln ^{3} 2$ $\left.+\frac{137}{18} \ln ^{2} 2+\frac{434}{27} \ln 2-\frac{649}{81}+\mathcal{O}(\epsilon)\right\}$,
[Caola, Delto, Frellesvig, Melnikov '18]

Iterations of NLO!

$$
\delta=\frac{\delta_{12}}{2}, s=\sin \frac{\delta_{12}}{2}, c=\cos \frac{\delta_{12}}{2} \quad \mathrm{Ci}_{n}(z)=\frac{\mathrm{Li}_{n}\left(e^{(i)}\right)+\mathrm{Li}_{n}\left(e^{-i z}\right)}{2}, \mathrm{Si}_{n}(z)=\frac{\mathrm{Li}_{n}\left(e^{i z}\right)-\mathrm{Li}_{n}\left(e^{-i z}\right)}{2 i}
$$

Follow the (colored) crumbs

Color correlations can only arise from soft real emissions and loop corrections

Double soft

[Catani, Grazzini '99]

Non-factorised term

$$
T_{i} \cdot T_{j}
$$

$$
\left\langle S_{\mathfrak{m n}} \Theta_{\mathfrak{m n}} F_{\mathrm{LM}}(\mathfrak{m}, \mathfrak{n})\right\rangle_{T^{2}}
$$

$$
\left.\left.\left.=\left[\alpha_{s}\right]^{2}\left[\frac{C_{A}}{\epsilon^{2}}\right) c_{1}(\epsilon)+\frac{\beta_{0}}{\epsilon} c_{2}(\epsilon)+\beta_{0}\right) c_{3}(\epsilon)\right]\left\langle\widetilde{I}_{\mathrm{S}}(2 \epsilon)\right) \cdot F_{\mathrm{LM}}\right\rangle+\left\langle S_{\mathfrak{m n}} \Theta_{\mathfrak{m n}} F_{\mathrm{LM}}(\mathfrak{m}, \mathfrak{n})\right\rangle_{T^{2}}^{\mathrm{fin}}
$$

Factorised term

$$
\left(T_{i} \cdot T_{j}\right) \cdot\left(T_{k} \cdot T_{l}\right)
$$

$$
\left.\left\langle S_{\mathfrak{m n}} \Theta_{\mathfrak{m n}} F_{\mathrm{LM}}(\mathfrak{m}, \mathfrak{n})\right\rangle_{T^{4}}=\left[\alpha_{s}\right]^{2} \frac{1}{2}\left\langle\overline{\mathrm{~S}}_{\mathrm{S}}^{2}(\epsilon)\right) \cdot F_{\mathrm{LM}}\right\rangle
$$

$$
I_{S}^{2}(\epsilon)+I_{V}^{2}(\epsilon) \text { takes care of }
$$

"quartic" color-correlated poles

Iterations of NLO!

Follow the (colored) crumbs

Color correlations can only arise from soft real emissions and loop corrections

Soft real-virtual

$$
S_{\mathfrak{m}} F_{\mathrm{RV}}(\mathfrak{m})
$$

[Catani, Grazzini ‘00]

$$
\begin{aligned}
= & -g_{s, b}^{2} \sum_{(i j)}^{N_{p}}\left\{2 S_{i j}\left(p_{\mathfrak{m}}\right)\left(\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j}\right) \cdot F_{\mathrm{LV}}-\frac{\alpha_{s}(\mu)}{2 \pi} \frac{\beta_{0}}{\epsilon} 2 S_{i j}\left(p_{\mathfrak{m}}\right)\left(\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j}\right) \cdot F_{\mathrm{LM}}\right. \\
& -2 \frac{\left[\alpha_{s}\right]}{\epsilon^{2}} C_{A} A_{K}(\epsilon)\left(S_{i j}\left(p_{\mathfrak{m}}\right)\right)^{1+\epsilon}\left(\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j}\right) \cdot F_{\mathrm{LM}} \\
& \left.-\left[\alpha_{s}\right] \frac{4 \pi \Gamma(1+\epsilon) \Gamma^{3}(1-\epsilon)}{\epsilon \Gamma(1-2 \epsilon)} \sum_{\substack{k=1, k \neq i, j}}^{N_{p}} \kappa_{i j} S_{k i}\left(p_{\mathfrak{m}}\right)\left(S_{i j}\left(p_{\mathfrak{m}}\right)\right)^{\epsilon} f_{a b c} T_{k}^{a} T_{i}^{b} T_{j}^{c} F_{\mathrm{LM}}\right\}
\end{aligned}
$$

$$
A_{K}=\frac{\Gamma^{3}(1+\epsilon) \Gamma^{5}(1-\epsilon)}{\epsilon^{2} \Gamma(1+2 \epsilon) \Gamma^{2}(1-2 \epsilon)}
$$

Triple-color correlations:

- Vanish for $N_{p} \geq 4$

The integrated subtraction term can be almost fully written in terms of NLO-like operators

- Non-trivial phase space integral
- Finite after integration for FSR

$$
\begin{aligned}
\left\langle S_{\mathfrak{m}} F_{\mathrm{RV}}(\mathfrak{m})\right\rangle= & {\left[\alpha_{s}\right]^{2}\left\langle\frac{1}{2}\left[I_{\mathrm{S}}(\epsilon) \cdot I_{\mathrm{V}}(\epsilon)+I_{\mathrm{V}}(\epsilon) \cdot I_{\mathrm{S}}(\epsilon)\right] \cdot F_{\mathrm{LM}}\right\rangle } \\
& +\left[\alpha_{s}\right]\left\langle I_{\mathrm{S}}(\epsilon) \cdot F_{\mathrm{LV}}^{\mathrm{fin}}\right\rangle-\left[\alpha_{s}\right]^{2} \frac{\Gamma(1-\epsilon)}{e^{\epsilon \gamma_{E}}} \frac{\beta_{0}}{\epsilon}\left\langle I_{\mathrm{S}}(\epsilon) F_{\mathrm{LM}}\right\rangle \\
& -\frac{\left[\alpha_{s}\right]^{2}}{\epsilon^{2}} C_{A} A_{K}(\epsilon)\left\langle\widetilde{I}_{\mathrm{S}}(2 \epsilon) \cdot F_{\mathrm{LM}}\right\rangle \\
& +\left[\alpha_{s}\right]^{2}\left\langle\left(\frac{1}{2}\left[I_{\mathrm{S}}(\epsilon), \bar{I}_{1}(\epsilon)-\bar{I}_{1}^{\dagger}(\epsilon)\right]+I_{\mathrm{tri}}^{\mathrm{RV}}(\epsilon)\right) \cdot F_{\mathrm{LM}}\right\rangle
\end{aligned}
$$

Follow the (colored) crumbs

Color correlations can only arise from soft real emissions and loop corrections

Soft real-virtual

$$
S_{\mathfrak{m}} F_{\mathrm{RV}}(\mathfrak{m})
$$

[Catani, Grazzini ‘00]

$$
\begin{array}{rlr}
= & -g_{s, b}^{2} \sum_{(i j)}^{N_{p}}\left\{2 S_{i j}\left(p_{\mathfrak{m}}\right)\left(\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j}\right) \cdot F_{\mathrm{LV}}-\frac{\alpha_{s}(\mu)}{2 \pi} \frac{\beta_{0}}{\epsilon} 2 S_{i j}\left(p_{\mathfrak{m}}\right)\left(\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j}\right) \cdot F_{\mathrm{LM}}\right. & \\
& -2 \frac{\left[\alpha_{s}\right]}{\epsilon^{2}} C_{A} A_{K}(\epsilon)\left(S_{i j}\left(p_{\mathfrak{m}}\right)\right)^{1+\epsilon}\left(\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j}\right) \cdot F_{\mathrm{LM}} & A_{K}=\frac{\Gamma^{3}(1+\epsilon) \Gamma^{5}(1-\epsilon)}{\epsilon^{2} \Gamma(1+2 \epsilon)^{2}(1-2 \epsilon)} \\
& \left.-\left[\alpha_{s}\right] \frac{4 \pi \Gamma(1+\epsilon) \Gamma^{3}(1-\epsilon)}{\epsilon \Gamma(1-2 \epsilon)} \sum_{\substack{k=1 \\
k \neq i, j}}^{N_{p}} \kappa_{i j} S_{k i}\left(p_{\mathfrak{m}}\right)\left(S_{i j}\left(p_{\mathfrak{m}}\right)\right)^{\epsilon} f_{a b c} T_{k}^{a} T_{i}^{b} T_{j}^{c} F_{\mathrm{LM}}\right\} & \text { Triple-color correlations: } \\
& \text { - Vanish for } N_{n} \geq 4
\end{array}
$$

Triple-color correlations:

- Vanish for $N_{p} \geq 4$

The integrated subtraction term can be almost fully written in terms of NLO-like operators

- Non-trivial phase space integral
- Finite after integration for FSR

$$
\begin{aligned}
\left\langle S_{\mathfrak{m}} F_{\mathrm{RV}}(\mathfrak{m})\right\rangle= & {\left[\alpha_{s}\right]^{2}\left\langle\frac{1}{2}\left[I_{\mathrm{I}}(\epsilon) \cdot I_{\mathrm{V}}(\epsilon)+I_{\mathrm{V}}(\epsilon) \cdot I_{\mathrm{S}}(\epsilon)\right] \cdot F_{\mathrm{LM}}\right\rangle } \\
& +\left[\alpha_{s}\right]\left\langle I_{\mathrm{S}}(\epsilon) \cdot F_{\mathrm{LV}}^{\mathrm{fin}}\right\rangle-\left[\alpha_{s}\right]^{2} \frac{\Gamma(1-\epsilon)}{e^{\epsilon \gamma_{E}}}\left(\frac{\beta_{0}}{\epsilon}\left\langle I_{\mathrm{S}}(\epsilon) \bar{H}_{\mathrm{LM}}\right\rangle\right. \\
& \left.-\frac{\left[\alpha_{s}\right]^{2}}{\epsilon^{2}} C_{C_{A}} A_{K}(\epsilon)\left\langle\widetilde{I}_{\mathrm{S}}(2 \epsilon)\right) F_{\mathrm{LM}}\right\rangle \\
& +\left[\alpha_{s}\right]^{2}\left\langle\left(\frac{1}{2}\left[I_{\mathrm{S}}(\epsilon), \bar{I}_{1}(\epsilon)-\bar{I}_{1}^{\dagger}(\epsilon)\right]+I_{\mathrm{tri}}^{\mathrm{RV}}(\epsilon)\right) \cdot F_{\mathrm{LM}}\right\rangle
\end{aligned}
$$

Structures and color coefficients already encountered in double-virtual and double-soft.

A pattern begins to arise...

$$
I_{\mathrm{T}}(\epsilon)=I_{\mathrm{V}}(\epsilon)+I_{\mathrm{S}}(\epsilon)+I_{\mathrm{C}}(\epsilon) \quad \text { FINITE }
$$

$$
K=\left(\frac{67}{18}-\frac{\pi^{2}}{6}\right) C_{A}-\frac{10}{9} T_{R} n_{f} .
$$

$\left\langle F_{\mathrm{LVV}}\right\rangle$	$\frac{1}{2} I_{\mathrm{V}}^{2}(\epsilon)$	$\frac{\beta_{0}}{\epsilon} I_{\mathrm{V}}(\epsilon)$	$K I_{\mathrm{V}}(2 \epsilon)$	$\frac{\beta_{0}}{\epsilon} I_{\mathrm{V}}(2 \epsilon)$
$\left\langle S_{\mathfrak{m} \mathfrak{n}} \Theta_{\mathfrak{m n}} F_{\mathrm{LM}}(\mathfrak{m}, \mathfrak{n})\right\rangle$	$\frac{1}{2} I_{1, R}^{2}(\epsilon)$	$\frac{C_{A}}{\epsilon^{2}} c_{1}(\epsilon) \widetilde{I}_{\mathrm{S}}(2 \epsilon)$	$\frac{\beta_{0}}{\epsilon} \widetilde{I}_{1, R}(2 \epsilon)$	
$\left\langle S_{\mathfrak{m}} F_{\mathrm{RV}}(\mathfrak{m})\right\rangle$	$\frac{1}{2}\left[I_{\mathrm{S}}(\epsilon) \cdot I_{\mathrm{V}}(\epsilon)+I_{\mathrm{V}}(\epsilon) \cdot I_{\mathrm{S}}(\epsilon)\right]$	$\frac{\beta_{0}}{\epsilon} I_{\mathrm{S}}(\epsilon)$	$-\frac{C_{A}}{\epsilon^{2}} A_{K}(\epsilon) \widetilde{I}_{\mathrm{S}}(2 \epsilon)$	

non-transparent

cancellation

Cancellation of double color-correlated poles

$$
I_{\mathrm{T}}(\epsilon)=I_{\mathrm{V}}(\epsilon)+I_{\mathrm{S}}(\epsilon)+I_{\mathrm{C}}(\epsilon) \quad \text { FINITE }
$$

Some relevant collinear limits have to be added.
Here we focus on contributions that contain at least one virtual or one soft operator and feature elastic, LO-like kinematics:

$$
\begin{aligned}
& =I_{\mathrm{T}}^{2}-I_{\mathrm{C}}^{2} \text { No singular color-correlations } \\
& \Sigma_{N}^{(\mathrm{V}+\mathrm{S}), \mathrm{el}}=\left[\alpha_{s}\right]^{2} \frac{1}{2}\langle[\overbrace{\left.I_{\mathrm{V}}^{2}+I_{\mathrm{V}} I_{\mathrm{S}}+I_{\mathrm{S}} I_{\mathrm{V}}+I_{\mathrm{S}}^{2}+2 I_{\mathrm{C}} I_{\mathrm{V}}+2 I_{\mathrm{C}} I_{\mathrm{S}}\right]} \cdot F_{\mathrm{LM}}\rangle \\
& \left.+\left[\alpha_{s}\right]^{2} \frac{\beta_{0}}{\epsilon} \frac{\Gamma(1-\epsilon)}{e^{\epsilon \gamma_{\mathrm{E}}}}\left\langle\left[I_{\mathrm{S}}(\epsilon)+I_{\mathrm{V}}(\epsilon)\right]+I_{\mathrm{V}}(2 \epsilon)+\tilde{c}(\epsilon) \widetilde{I}_{\mathrm{S}}(2 \epsilon)\right] \cdot F_{\mathrm{LM}}\right\rangle \\
& +\left[\alpha_{s}\right]^{2}\left\langle\left[K \frac{\Gamma(1-\epsilon)}{e^{\epsilon \gamma_{\mathrm{E}}}} I_{\mathrm{V}}(2 \epsilon)+C_{A}\left(\frac{c_{1}(\epsilon)}{\epsilon^{2}}-\frac{A_{K}(\epsilon)}{\epsilon^{2}}-2^{2+2 \epsilon} \delta_{g}^{C_{A}}(\epsilon)\right) \widetilde{I}_{\mathrm{S}}(2 \epsilon)\right] \cdot F_{\mathrm{LM}}\right\rangle \\
& +\left[\alpha_{s}\right]\left\langle\left[I_{\mathrm{V}}(\epsilon)+I_{\mathrm{S}}(\epsilon)\right] \cdot F_{\mathrm{LV}}^{\mathrm{fin}}\right\rangle, \\
& =I_{\mathrm{T}}-I_{\mathrm{C}} \\
& \text { No singular color-correlations }
\end{aligned}
$$

Graphical conclusions

Previous studies:

Can we generalise? yes!
[Devoto, Melnikov, Röntsch, CSS, Tagliabue '24] New!

* Introduce NLO-like universal operators that describe virtual, soft and collinear singularities, and combine into finite quantities

Free of poles
Fully general in the number of partons

* Reduce NNLO corrections to iterations of these operators \rightarrow demonstrate cancellations prior to explicit evaluation

$$
\mathrm{d} \hat{\sigma}^{\mathrm{NNLO}}=\mathrm{d} \hat{\sigma}^{\mathrm{VV}}+\mathrm{d} \hat{\sigma}^{\mathrm{RV}}+\mathrm{d} \hat{\sigma}^{\mathrm{RR}}+\mathrm{d} \hat{\sigma}^{\text {Rdf }}=\frac{\left[\alpha_{s}\right]^{2}}{2}\left\langle M_{0}\right|\left[I_{\mathrm{V}}+I_{\mathrm{S}}+I_{\mathrm{C}}\right]^{2}\left|M_{0}\right\rangle+\ldots \equiv\left\langle M_{0}\right| I_{\mathrm{T}}^{2}\left|M_{0}\right\rangle+\ldots
$$

Standard conclusions

1. Subtraction schemes are necessary ingredients to obtain precise theoretical predictions.
2. Nested-soft collinear subtraction provides an efficient method to deal with n-parton processes:
I. combine different subtraction terms to get rid of color-correlations (and boosted contributions),
II. reduce the subtraction terms to few, recurring structures.
3. Pole cancellation proven analytically for the case-study $q \bar{q} \rightarrow X+N g$.
\rightarrow Finite remainders in agreement with the standard approach for $q \bar{q} \rightarrow X+g @ N N L O$

Work in progress

Generalisation to arbitrary final- and initial-state partons.
Thank you!

Backup

Cancellation of single-color-correlated contributions

$$
\begin{aligned}
& \left.-\frac{\alpha_{s}}{2 \pi} \frac{\beta_{0}}{\epsilon}\left\langle\left[\left[\alpha_{s}\right] I_{1, R}(\epsilon)+\frac{\alpha_{s}}{2 \pi} 2 \Re\left(\mathcal{I}_{1}(\epsilon)\right)+I_{C}(\epsilon)\right]\right] F_{\mathrm{LM}}\right\rangle \\
& +\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} \frac{\beta_{0}}{\epsilon} c_{\epsilon}\left\langle 2 \Re\left(\mathcal{I}_{1}(2 \epsilon)\right) F_{\mathrm{LM}}\right\rangle+\left[\alpha_{s}\right]^{2} \frac{\beta_{0}}{\epsilon} c_{2}(\epsilon)\left\langle\widetilde{I}_{1, R}(2 \epsilon) F_{\mathrm{LM}}\right\rangle+\left[\alpha_{s}\right]^{2} \beta_{0} c_{3}(\epsilon)\left\langle\widetilde{I}_{1, R}(2 \epsilon) F_{\mathrm{LM}}\right\rangle \\
& +\left\langle\left[-\left[\alpha_{s}\right]^{2} C_{A} A_{K} \widetilde{I}_{1, R}(2 \epsilon)+\left[\alpha_{s}\right]^{2} \frac{C_{A}}{\epsilon^{2}} c_{1}(\epsilon) \widetilde{I}_{1, R}(2 \epsilon)+\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} c_{\epsilon} K 2 \Re\left(\mathcal{I}_{1}(2 \epsilon)\right)\right] F_{\mathrm{LM}}\right\rangle
\end{aligned}
$$

$$
\frac{\alpha_{s}}{2 \pi}\left[\alpha_{s}\right] \frac{\beta_{0}}{\epsilon}\left\langle I_{1, T}(2 \epsilon) F_{\mathrm{LM}}\right\rangle-\frac{\alpha_{s}}{2 \pi}\left[\alpha_{s}\right] \frac{\beta_{0}}{\epsilon}\left\langle I_{C}(2 \epsilon) F_{\mathrm{LM}}\right\rangle+\Sigma_{T_{i} \cdot T_{j}, \text { fin }}^{(1)}
$$

No singular, color-correlated contributions

Cancellation of single-color-correlated contributions

$$
\begin{aligned}
& -\frac{\alpha_{s}}{2 \pi} \frac{\beta_{0}}{\epsilon}\left\langle\left[\left[\alpha_{s}\right] I_{1, R}(\epsilon)+\frac{\alpha_{s}}{2 \pi} 2 \Re\left(\mathcal{I}_{1}(\epsilon)\right)+I_{C}(\epsilon)\right] F_{\mathrm{LM}}\right\rangle \\
& +\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} \frac{\beta_{0}}{\epsilon} c_{\epsilon}\left\langle 2 \Re\left(\mathcal{I}_{1}(2 \epsilon)\right) F_{\mathrm{LM}}\right\rangle+\left[\alpha_{s}\right]^{2} \frac{\beta_{0}}{\epsilon} c_{2}(\epsilon)\left\langle\widetilde{I}_{1, R}(2 \epsilon) F_{\mathrm{LM}}\right\rangle+\left[\alpha_{s}\right]^{2} \beta_{0} c_{3}(\epsilon)\left\langle\widetilde{I}_{1, R}(2 \epsilon) \stackrel{\mathrm{LM}}{\mathrm{LM}}\right\rangle \\
& +\left\langle\left[-\left[\alpha_{s}\right]^{2} C_{A} A_{K}\left(\widetilde{I}_{1, R}(2 \epsilon)+\left[\alpha_{s}\right]^{2} \frac{C_{A}}{\epsilon^{2}} c_{1}(\epsilon)\left(\widetilde{I}_{1, R}(2 \epsilon)+\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} c_{\epsilon} K 2 \Re\left(\mathcal{I}_{1}(2 \epsilon)\right)\right] F_{\mathrm{LM}}\right\rangle\right.\right.
\end{aligned}
$$

$$
\frac{\alpha_{s}}{2 \pi}\left[\alpha_{s}\right]\langle\underbrace{\left\langle c_{\epsilon} K I_{1, T}(2 \epsilon)\right.}_{\text {finite }} F_{\mathrm{LM}}\rangle-\underbrace{\frac{\alpha_{s}}{2 \pi}\left[\alpha_{s}\right]\left\langle c_{\epsilon} K\left(I_{1, R}(2 \epsilon)\right) F_{\mathrm{LM}}\right\rangle}_{\text {Singular and color-correlated }}-\frac{\alpha_{s}}{2 \pi} \underbrace{\left[\alpha_{s}\right]\left\langle c_{\epsilon} K I_{C}(2 \epsilon) F_{\mathrm{LM}}\right\rangle}_{\text {color-uncorrelated }}
$$

Cancellation of single-color-correlated contributions

$$
\begin{aligned}
& -\frac{\alpha_{s}}{2 \pi} \frac{\beta_{0}}{\epsilon}\left\langle\left[\left[\alpha_{s}\right] I_{1, R}(\epsilon)+\frac{\alpha_{s}}{2 \pi} 2 \Re\left(\mathcal{I}_{1}(\epsilon)\right)+I_{C}(\epsilon)\right] F_{\mathrm{LM}}\right\rangle \\
& \widetilde{I}_{1, R}(2 \epsilon) \longrightarrow I_{1, R}(2 \epsilon) \\
& \text { finite } \\
& +\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} \frac{\beta_{0}}{\epsilon} c_{\epsilon}\left\langle 2 \Re\left(\mathcal{I}_{1}(2 \epsilon)\right) F_{\mathrm{LM}}\right\rangle+\left[\alpha_{s}\right]^{2} \frac{\beta_{0}}{\epsilon} c_{2}(\epsilon)\left\langle\widetilde{I}_{1, R}(2 \epsilon) F_{\mathrm{LM}}\right\rangle+\left[\alpha_{s}\right]^{2} \overbrace{\beta_{0} c_{3}(\epsilon)}\left\langle\widetilde{I}_{1, R}(2 \epsilon) F_{\mathrm{LM}}\right\rangle \\
& +\left\langle\left[-\left[\alpha_{s}\right]^{2} C_{A} A_{K} \widetilde{I}_{1, R}(2 \epsilon)+\left[\alpha_{s}\right]^{2} \frac{C_{A}}{\epsilon^{2}} c_{1}(\epsilon) \widetilde{I}_{1, R}(2 \epsilon)+\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} c_{\epsilon} K 2 \Re\left(\mathcal{I}_{1}(2 \epsilon)\right)\right] F_{\mathrm{LM}}\right\rangle \\
& \frac{\alpha_{s}}{2 \pi}\left[\alpha_{s}\right]\left\langle c_{\epsilon} K I_{1, T}(2 \epsilon) F_{\text {LM }}\right\rangle-\underbrace{\frac{\alpha_{s}}{2 \pi}\left[\alpha_{s}\right]\left\langle c_{\epsilon} K\left(I_{1, R}(2 \epsilon)\right) F_{\mathrm{LM}}\right\rangle}_{\text {Sinite }}-\frac{\alpha_{s}}{2 \pi} \underbrace{\left[\alpha_{s}\right]\left\langle c_{\epsilon} K I_{C}(2 \epsilon) F_{\mathrm{LM}}\right\rangle}_{\text {color-uncorrelated }} \\
& \widetilde{I}_{1, R}(2 \epsilon) \longrightarrow I_{1, R}(2 \epsilon)
\end{aligned}
$$

Cancellation of single-color-correlated contributions

$$
\begin{aligned}
& -\frac{\alpha_{s}}{2 \pi} \frac{\beta_{0}}{\epsilon}\left\langle\left[\left[\alpha_{s}\right] I_{1, R}(\epsilon)+\frac{\alpha_{s}}{2 \pi} 2 \Re\left(\mathcal{I}_{1}(\epsilon)\right)+I_{C}(\epsilon)\right] F_{\mathrm{LM}}\right\rangle \\
& +\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} \frac{\beta_{0}}{\epsilon} c_{\epsilon}\left\langle 2 \Re\left(\mathcal{I}_{1}(2 \epsilon)\right) F_{\mathrm{LM}}\right\rangle+\left[\alpha_{s}\right]^{2} \frac{\beta_{0}}{\epsilon} c_{2}(\epsilon)\left\langle\widetilde{I}_{1, R}(2 \epsilon) F_{\mathrm{LM}}\right\rangle+\left[\alpha_{s}\right]^{2} \beta_{0} c_{3}(\epsilon)\left\langle\widetilde{I}_{1, R}(2 \epsilon) F_{\mathrm{LM}}\right\rangle \\
& +\left\langle\left[-\left[\alpha_{s}\right]^{2} C_{A} A_{K} \widetilde{I}_{1, R}(2 \epsilon)+\left[\alpha_{s}\right]^{2} \frac{C_{A}}{\epsilon^{2}} c_{1}(\epsilon) \widetilde{I}_{1, R}(2 \epsilon)+\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} c_{\epsilon} K 2 \Re\left(\mathcal{I}_{1}(2 \epsilon)\right)\right] F_{\mathrm{LM}}\right\rangle
\end{aligned}
$$

$$
\left[\alpha_{s}\right] \frac{\alpha_{s}}{2 \pi} \overbrace{\frac{\beta_{0}}{\epsilon}\left\langle\left(I_{1, T}(2 \epsilon)-I_{1, T}(\epsilon)\right) F_{\mathrm{LM}}\right\rangle}^{1 / \epsilon \text { color-uncorrelated }} \overbrace{\overbrace{0}}^{\left.\left.+\left[\alpha_{s}\right]^{2}\left(-C_{A} A_{K}+\frac{C_{A}}{\epsilon^{2}} c_{1}(\epsilon)+\beta_{0} c_{3}(\epsilon)\right)-\frac{\alpha_{s}}{2 \pi}\left[\alpha_{s}\right] c_{\epsilon} K\right] I_{1, R}(2 \epsilon) F_{\mathrm{LM}}\right\rangle}<\frac{C_{A}\left(C_{A}+2 C_{F}\right)}{\epsilon^{2}}\left(-\frac{131}{72}+\frac{\pi^{2}}{6}+\frac{11}{6} \log 2\right)+\frac{1}{\epsilon} \text { [color - correlations] })
$$

$$
-\frac{\alpha_{s}}{2 \pi}\left[\alpha_{s}\right] \underbrace{\left\langle\left\langle\left(c_{\epsilon} K+\frac{\beta_{0}}{\epsilon}\right) I_{C}(2 \epsilon) F_{\mathrm{LM}}\right\rangle\right.}_{1 / \epsilon^{2} \text { color-uncorrelated }}
$$

Peculiar dependence in the color-correlations, that fits perfectly a contribution from triple-collinear sectors $\Theta^{(b)}$

$$
\begin{aligned}
&\left\langle\sum_{i \in \mathrm{TC}}\left(I-S_{45}\right) C_{45} \Theta^{(b)}\left(F_{\mathrm{LM}}-2 S_{5} F_{\mathrm{LM}}^{4>5}\right) \omega_{4 i 5 i} \Delta^{(45)}\right\rangle \\
&-4\left[\alpha_{s}\right]^{2} C_{A} 2^{-2 \epsilon} \delta_{g}(\epsilon)\left\langle I_{1, R}(2 \epsilon) F_{\mathrm{LM}}\right\rangle+\Sigma_{T_{i} \cdot T_{j}, \text { fin }}^{(2)} \propto-\frac{C_{A}\left(C_{A}+2 C_{F}\right)}{\epsilon^{2}}\left(-\frac{131}{72}+\frac{\pi^{2}}{6}+\frac{11}{6} \log 2\right)+\mathcal{O}\left(\epsilon^{-1}\right)
\end{aligned}
$$

Useful relations:

$$
\begin{gathered}
I_{1, R}(\epsilon)=-\frac{\left(2 E_{\max } / \mu\right)^{-2 \epsilon}}{\epsilon^{2}} \sum_{i \neq j}^{n} \eta_{i j}^{-\epsilon} K_{i j} \mathbf{T}_{i} \cdot \mathbf{T}_{j}, \\
K_{i j}
\end{gathered}=\frac{\Gamma^{2}(1-\epsilon)}{\Gamma(1-2 \epsilon)} \eta_{i j}^{1+\epsilon}{ }_{2} F_{1}\left(1,1,1-\epsilon, 1-\eta_{i j}\right) .
$$

Useful definitions:

$$
\begin{aligned}
& \hat{\Gamma}_{q}=\frac{1}{\epsilon} \frac{\Gamma^{2}(1-\epsilon)}{\Gamma(1-2 \epsilon)}\left(\frac{2 E_{1}}{\mu}\right)^{-2 \epsilon}\left[\gamma_{q}+\frac{C_{F}}{\epsilon}\left(1-e^{-2 \epsilon L_{1}}\right)\right] F_{\mathrm{LM}}(1 \ldots N) \sim \frac{1}{\epsilon}\left(\gamma_{q}+2 C_{F} L_{1}\right)+\mathcal{O}\left(\epsilon^{0}\right) \\
& \hat{\Gamma}_{g}=\frac{1}{\epsilon} C_{A}\left(\frac{2 E_{n}}{\mu}\right)^{-2 \epsilon} \frac{\Gamma^{2}(1-\epsilon)}{\Gamma(1-2 \epsilon)}\left[\gamma_{z, g \rightarrow g g}^{22}+\frac{1}{\epsilon}\left(1-e^{-2 \epsilon L_{n}}\right)\right] \quad \gamma_{z, g \rightarrow g g}^{22} \sim \frac{11}{6}+\frac{1}{9}\left(67-6 \pi^{2}\right) \epsilon+\ldots \\
& \hat{\Gamma}_{g}(2 \epsilon)=\frac{1}{2 \epsilon} C_{A}\left(\frac{2 E_{n}}{\mu}\right)^{-4 \epsilon} \frac{\Gamma^{2}(1-2 \epsilon)}{\Gamma(1-4 \epsilon)}\left[\gamma_{z, g \rightarrow g g}^{44}+\frac{1}{2 \epsilon}\left(1-e^{-4 \epsilon L_{n}}\right)\right] \\
& P_{q q}^{\mathrm{gen}}(z)=-\frac{1}{\epsilon} \hat{P}_{q q}^{\mathrm{AP}, 0}(z)+P_{\text {fin, qq }}^{\prime}(z) \\
& G^{(1)}(z) F_{\mathrm{LM}}^{(1)}=\frac{1}{2}\left[\alpha_{s}\right]^{2}\left[-P_{q q}^{\mathrm{gen}} \otimes \Gamma_{q}^{(1)}(z) F_{\mathrm{LM}}^{(1)}\left(1_{q}, 2_{\bar{q}} ; 3_{g} \mid z\right)+\Gamma_{q}^{(1)} P_{q q}^{\mathrm{gen}} \otimes F_{\mathrm{LM}}^{(1)}\left(1_{q}, 2_{\bar{q}} ; 3_{g} \mid z\right)\right] \\
& G^{(3)}\left(L_{3}\right)=\frac{1}{2} \frac{\left[\alpha_{s}\right]^{2}}{\epsilon^{2}} C_{A}^{2}\left(\frac{2 E_{3}}{\mu}\right)^{-4 \epsilon}\left(\frac{\Gamma^{2}(1-\epsilon)}{\Gamma(1-2 \epsilon)}\right)^{2}\left(\gamma_{z, g \rightarrow g g}^{22}+\frac{1}{\epsilon}\right)\left(\gamma_{z, g \rightarrow g g}^{42}-\gamma_{z, g \rightarrow g g}^{22}\right)
\end{aligned}
$$

1. Clear understanding of which singular configurations do actually contribute

$$
\sim \frac{1}{\left(k_{1}+k_{2}\right)^{2}} \frac{1}{\left(k_{1}+k_{2}+k_{3}\right)^{2}}=\frac{1}{2 k_{1} \cdot k_{2}} \frac{1}{2 k_{1} \cdot k_{2}+2 k_{1} \cdot k_{3}+2 k_{2} \cdot k_{3}} \Longleftrightarrow k_{1} \rightarrow 0 \text { and } k_{2} \| k_{3}
$$

Entangled soft-collinear limits of diagrams can not be treated in a process-independent way.

Do non-commutative limits actually contribute?

STRIPPER was implemented taking into account all the possible choices of soft and collinear limits order -> redundant configurations were included

Gauge invariant amplitudes are free of entangled singularities

 thanks to color coherence: soft parton does not resolve angles of the collinear partonsSoft-collinear limits can be described by taking the known soft and collinear limits sequentially

[Czakon 1005.0274]
2. Get to the point where the problem is well defined
a) Identify the overlapping singularities
b) Regulate them

$$
\sim \frac{1}{E_{1} E_{2}\left(1-\vec{n}_{1} \cdot \vec{n}_{2}\right)} \frac{1}{E_{1} E_{2}\left(1-\vec{n}_{1} \cdot \vec{n}_{2}\right)+E_{1} E_{3}\left(1-\vec{n}_{1} \cdot \vec{n}_{3}\right)+E_{2} E_{3}\left(1-\vec{n}_{2} \cdot \vec{n}_{3}\right)}
$$

$$
\overbrace{E_{1} \rightarrow 0 \quad E_{2} \rightarrow 0 \quad E_{1}, E_{2} \rightarrow 0}^{\text {Soft origin }} \quad \overbrace{\vec{n}_{1}\left\|\vec{n}_{2} \quad \vec{n}_{1}\right\| \vec{n}_{2} \| \vec{n}_{3}}^{\text {Collinear origin }} \begin{gathered}
\text { Includes strongly }
\end{gathered}
$$

$\vec{n}_{1} \cdot \vec{n}_{2}<\vec{n}_{1} \cdot \vec{n}_{3}$

$\vec{n}_{2} \cdot \vec{n}_{3}<\vec{n}_{1} \cdot \vec{n}_{3}$

$\vec{n}_{1} \cdot \vec{n}_{3}<\vec{n}_{2} \cdot \vec{n}_{3}$

Soft and collinear modes do not intertwine: soft subtraction can be done globally. Collinear singularities have still to be regulated. Strongly ordered configurations have to be properly taken into account.

Phase space partitions

Efficient way to simplify the problem: introduce partition functions (following FKS philosophy):

- Unitary partition
- Select a minimum number of singularities in each sector
- Do not affect the analytic integration of the counterterms

Definition of partition functions benefits from remarkable degree of freedom: different approaches can be implemented

Examples: Nested soft-collinear subtraction $q \bar{q} \rightarrow Z \rightarrow e^{-} e^{+} g g$ [Caola, Melnikov, Röntsch 1702.01352]

$$
1=\omega^{51,61}+\omega^{52,62}+\omega^{51,62}+\omega^{52,61}
$$

$$
\begin{array}{ll}
\omega^{51,61}=\frac{\rho_{25} \rho_{26}}{d_{5} d_{6}}\left(1+\frac{\rho_{15}}{d_{5621}}+\frac{\rho_{16}}{d_{5612}}\right) & \omega^{51,62}=\frac{\rho_{25} \rho_{16} \rho_{56}}{d_{5} d_{6} d_{5612}} \\
\omega^{52,62}=\frac{\rho_{15} \rho_{16}}{d_{5} d_{6}}\left(1+\frac{\rho_{25}}{d_{5621}}+\frac{\rho_{26}}{d_{5612}}\right) & \omega^{52,61}=\frac{\rho_{15} \rho_{26} \rho_{56}}{d_{5} d_{6} d_{5621}}
\end{array}
$$

$$
\begin{array}{r}
\rho_{a b}=1-\cos \vartheta_{a b}, \eta_{a b}=\rho_{a b} / 2 \\
d_{i=5,6}=\rho_{1 i}+\rho_{2 i}=2 \\
d_{5621}=\rho_{56}+\rho_{52}+\rho_{61} \\
d_{5612}=\rho_{56}+\rho_{51}+\rho_{62}
\end{array}
$$

$$
\begin{aligned}
\overbrace{51} \uparrow_{\text {a }}^{1} & =\theta\left(\eta_{61}<\frac{\eta_{51}}{2}\right)+\theta\left(\frac{\eta_{51}}{2}<\eta_{61}<\eta_{51}\right)+\theta\left(\eta_{51}<\frac{\eta_{61}}{2}\right)+\theta\left(\frac{\eta_{61}}{2}<\eta_{51}<\eta_{61}\right) \\
\eta_{61} & =\theta^{(a)}+\theta^{(b)}+\theta^{(c)}+\theta^{(d)}
\end{aligned}
$$

Phase space partitions

Efficient way to simplify the problem: introduce partition functions (following FKS philosophy):

- Unitary partition

- Select a minimum number of singularities in each sector
- Do not affect the analytic integration of the counterterms

Definition of partition functions benefits from remarkable degree of freedom: different approaches can be implemented

Examples: Nested soft-collinear subtraction $q \bar{q} \rightarrow Z \rightarrow e^{-} e^{+} g g$ [Caola, Melnikov, Röntsch 1702.01352]

Advantages:

1. Simple definition
2. Structure of collinear singularities fully defined
3. Same strategy holds for NNLO mixed QCDxEW processes
4. Minimum number of sector

Disadvantages:

1. Partition based on angular ordering -> Lorentz invariance not preserved
-> angles defined in a given reference frame
2. Theta function

3. Solve the PS integrals

The problem is now well defined:
A. Singular kernels and their nested limits have to be subtracted from the double real correction to get integrable object

$$
\int d \Phi_{n+2} R R_{n+2}=\int d \Phi_{n+2}\left[R R_{n+2}-K_{n+2}\right]+\int d \Phi_{n+2} K_{n+2} \quad K_{n+2} \supset C_{i j}, C_{k l}, S_{i}, S_{i j}, C_{i j k}
$$

B. Counterterms have to be integrated over the unresolved phase space

$$
I=\int \mathrm{PS}_{\text {unres. }} \otimes \text { Limit } \otimes \text { Constraints }
$$

The 'Limit' component is universal and known. The phase space is well defined. Constraints may vary depending on the scheme.
Several kinematic structures have to be integrated analytically over a 6-dim PS.
Different approximations and techniques can be applied: the results assume different form depending on the adopted strategy

Two main structure are the most complicated ones and affect most of the physical processes:

- Double soft

- Triple collinear

Kernels integration

Examples: Nested soft-collinear subtraction $q \bar{q} \rightarrow Z \rightarrow e^{-} e^{+} g$ [Caola, Delto, Frellesvig, Melnikov 1807.05835, Delto, Melnikov 1901.05213]

Two soft parton (5,6) and two hard massless radiator (1,2): arbitrary relative angle between the three-momenta of the radiators

$$
I_{12}^{(g g)(56)}=\frac{(1-\epsilon)\left(s_{51} s_{62}+s_{52} s_{61}\right)-2 s_{56} s_{12}}{s_{56}^{2}\left(s_{51}+s_{61}\right)\left(s_{52}+s_{62}\right)}+s_{12} \frac{s_{51} s_{62}+s_{52} s_{61}-s_{56} s_{12}}{s_{56} s_{51} s_{62} s_{52} s_{61}}\left[1-\frac{1}{2} \frac{s_{51} s_{62}+s_{52} s_{61}}{\left(s_{51}+s_{61}\right)\left(s_{52}+s_{62}\right)}\right]
$$

$$
\begin{gathered}
I_{S_{56}}^{(g g)}=\int\left[\mathrm{d} k_{5}\right]\left[\mathrm{d} k_{6}\right] \theta\left(E_{\max }-E_{5}\right) \theta\left(E_{5}-E_{6}\right) I_{12}^{(g g)(56)}\left(k_{1}, k_{2}, k_{5}, k_{6}\right) \quad\left[\mathrm{d} f_{i}\right]=\frac{\mathrm{d}^{d} k_{i}}{(2 \pi)^{d}}(2 \pi) \delta_{+}\left(k_{i}^{2}\right) \\
E_{5}=E_{\max } \xi \quad E_{6}=E_{\max } \xi z \quad 0<\xi<1,0<z<1
\end{gathered}
$$

Reverse unitarity: map phase space integrals onto loop integrals [Anastasiou, Melnikov 0207004]
after defining integral families, integration-by-part identities. Differential equations w.r.t. the ratio of energies of emitted gluons at fixed angle. Boundary conditions for $\mathrm{z}=0$, and arbitrary angle

Ingredients for higher-order corrections and main difficulties

$$
\frac{d \sigma}{d X}=\frac{d \sigma_{\mathrm{LO}}}{d X}+\alpha_{s} \frac{d \sigma_{\mathrm{NLO}}}{d X}+\alpha_{s}^{2} \frac{d \sigma_{\mathrm{N}^{2} \mathrm{LO}}}{d X}+\alpha_{s}^{3} \frac{d \sigma_{\mathrm{N}^{3} \mathrm{LO}}}{d X}+\ldots \quad X=\text { IRC-safe, } \delta_{X_{i}}=\delta\left(X-X_{i}\right)
$$

Strong couplings:

$$
\alpha_{s} \sim 0.1
$$

$$
\mathcal{O}\left(\alpha_{s}\right) \sim 10 \% \quad \mathcal{O}\left(\alpha_{s}^{2}\right) \sim 1 \% \quad \mathcal{O}\left(\alpha_{s}^{3}\right) \sim 0.1 \%
$$

$$
\frac{d \sigma_{\mathrm{N}^{2} \mathrm{LO}}}{d X}=\int d \Phi_{n} V V \delta_{X_{n}}+\int d \Phi_{n+1} R V \delta_{X_{n+1}} \quad+\quad \int d \Phi_{n+2} R R \delta_{X_{n+2}}
$$

Explicit poles

- Almost all relevant amplitudes for $2 \rightarrow 2$ massless processes
- First results for $2 \rightarrow 3$ amplitudes
- One-loop amplitudes in degenerate kinematics
- OpenLoops, Recola

Well defined in the non-degenerate kinematics

- Real emission corrections finite in the bulk of the allowed PS
- IR singularities arise upon integration over energies and angles of emitted partons

Summary of the talk

- A subtraction scheme based of FKS was proposed.
- Singular kernels for initial- and final-state emission are known. Integration of the most complicated double-unresolved limits performed for arbitrary kinematics.
- Application to simple processes worked out straightforwardly.
- In principle, general formulas for subtraction terms and fully-resolved components for an arbitrary number of partons are available.
- This can be done because we know how to deal with multiple radiators [partitioning, energy ordering]
- However, for non-trivial processes (e.g. $\mathrm{V}+\mathrm{j}$) several difficulties arise: partitioning, energy ordering and Casimir operators obscure simplifications that are suggested by the simple structure of Catani's operator.
- This suggests that we may need to take some steps back.

Nested soft-collinear subtraction at NNLO: generalities [Caool, Menikov, RBintsch 1702.0135z]

Extension of FKS subtraction [Frixione, Kunst, Signer 9512328] to NNLO and inspired by STRIPPER [Czakon 1005.0274]

$$
\sim \frac{1}{E_{1} E_{2}\left(1-\vec{n}_{1} \cdot \vec{n}_{2}\right)} \frac{1}{E_{1} E_{2}\left(1-\vec{n}_{1} \cdot \vec{n}_{2}\right)+E_{1} E_{3}\left(1-\vec{n}_{1} \cdot \vec{n}_{3}\right)+E_{2} E_{3}\left(1-\vec{n}_{2} \cdot \vec{n}_{3}\right)}
$$

$$
E_{1} \rightarrow 0 \quad E_{2} \rightarrow 0 \quad E_{1}, E_{2} \rightarrow 0
$$

$$
\vec{n}_{1}\left\|\vec{n}_{2}\right\| \vec{n}_{3}
$$

Strongly-ordered configurations have also to be included: $\quad E_{1} \ll E_{2}, \quad E_{2} \ll E_{1}$

$$
\vec{n}_{1} \| \vec{n}_{2}
$$

Soft limits:

- Non-trivial structure of double-soft eikonal
- Strongly-ordered limits to disentangle

$$
1=\theta\left(E_{g_{5}}-E_{g_{6}}\right)+\theta\left(E_{g_{6}}-E_{g_{5}}\right)
$$

$\vec{n}_{1} \cdot \vec{n}_{2}<\vec{n}_{1} \cdot \vec{n}_{3}$

$\vec{n}_{2} \cdot \vec{n}_{3}<\vec{n}_{1} \cdot \vec{n}_{3}$

Nested soft-collinear subtraction at NNLO: generalities [Caola, Melnikov, Röntsch 1702.01352]

Extension of FKS subtraction [Frixione, Kunst, Signer 9512328] to NNLO and inspired by STRIPPER [Czakon 1005.0274]

- Exploit colour-coherence to discard interplay between soft and collinear

"nested approach"

\rightarrow subtract soft limits first, then collinear

- Define subtraction terms in 3 steps:
- Globally remove double soft singularities
- Globally remove single soft singularities [using energy ordering]
- FKS partition and sectoring to treat the minimum number of collinear singularities at a time

$$
\begin{aligned}
& 1=\sum_{i, j} \omega^{i 5, j 6} \\
& \omega^{5 i, 6 i}=\omega^{5 i, 6 i}\left(\theta_{a}+\theta_{b}+\theta_{c}+\theta_{d}\right)
\end{aligned}
$$

- Integrate subtraction terms analytically using Reverse Unitarity [Anastasiou, Melnikov '02]: map phase space integrals onto loop integrals [Caola, Delto, Frellesvig, Melnikov '18, '19]

Double virtual contribution

Universal structure, regulated by Catani's operator, valid for any number of external coloured partons [Catani '98]. Features a single structure with color-correlations

Color-correlations inside

$$
\mathcal{I}_{1}(\epsilon)
$$

$$
\begin{aligned}
\left\langle F_{\mathrm{LVV}}\right\rangle= & \left(\frac{\alpha_{s}}{2 \pi}\right)^{2}\left\langle\frac{1}{2}\left[2 \Re\left(\mathcal{I}_{1}(\epsilon)\right)\right]^{2} F_{\mathrm{LM}}-\frac{\beta_{0}}{\epsilon} 2 \Re\left(\mathcal{I}_{1}(\epsilon)\right)\right) F_{\mathrm{LM}} \\
& +\frac{e^{-\epsilon \gamma_{\mathrm{E}}} \Gamma(1-2 \epsilon)}{\Gamma(1-\epsilon)} \frac{\beta_{0}}{\epsilon} \underbrace{\left(2 \Re\left(\mathcal{I}_{1}(2 \epsilon)\right)\right) F_{\mathrm{LM}}+\frac{e^{-\epsilon \gamma_{\mathrm{E}}} \Gamma(1-2 \epsilon)}{\Gamma(1-\epsilon)} K\left(2 \Re\left(\mathcal{I}_{1}(2 \epsilon)\right)\right) F_{\mathrm{LM}}} \\
& \left.+2 \frac{e^{\epsilon \gamma_{\mathrm{E}}}}{4 \epsilon \Gamma(1-\epsilon)} \mathcal{H}_{2}(\epsilon) F_{\mathrm{LM}}+2 \Re\left(\mathcal{I}_{1}(\epsilon)\right) F_{\mathrm{LV}}^{\mathrm{fin}}+F_{\mathrm{LVV}}^{\mathrm{fin}}+F_{\mathrm{LV}} \mathrm{fin}^{2}\right\rangle
\end{aligned}
$$

Finite remainders from 2-loop and (1-loop) ${ }^{2}$ amplitudes
(already encountered at NLO)

$$
K=\left(\frac{67}{18}-\frac{\pi^{2}}{6}\right) C_{A}-\frac{10}{9} T_{R} n_{f}
$$

Hard-collinear real-virtual and single soft RR

Also in this case the IR structure is know in full generality [Kosower '99, Bern, Del Duca et al. '99]. For $q \bar{q} \rightarrow V+g g g$ the integrated contribution reads

$$
\begin{aligned}
\sum_{i=1}^{3}\left\langle\left(I-S_{4}\right) C_{4 i} \Delta^{(4)} F_{\mathrm{LV}}(4)\right\rangle= & {\left.\left[\alpha_{s}\right]^{2}\left\langle I_{C}(\epsilon) 2 \Re\left(\overline{\mathcal{I}}_{1}(\epsilon)\right) F_{\mathrm{LM}}\right\rangle+\frac{\alpha_{s}}{2 \pi}\left[\alpha_{s}\right]\left\langle I_{C}(\epsilon)\right) F_{\mathrm{LV}}^{\mathrm{fin}}\right\rangle } \\
& \left.\left.-\left[\alpha_{s}\right] \frac{\alpha_{s}}{2 \pi} \frac{\beta_{0}}{\epsilon}\right\rangle\left\langle I_{C}(\epsilon)\right) F_{\mathrm{LM}}+\sum_{k=1}^{2} P_{q q}^{\mathrm{gen}}(z) \otimes F_{\mathrm{LM}}^{(k)}(z)\right\rangle \\
& +\left[\alpha_{s}\right]^{2}\left\langle\Gamma_{g}^{1 \mathrm{loop}} F_{\mathrm{LM}}\right\rangle+\frac{\left[\alpha_{s}\right]^{2}}{\epsilon} \sum_{i=k}^{2}\left\langle P_{q q}^{1 \mathrm{loop}} \otimes F_{\mathrm{LM}}^{(k)}(z)\right\rangle \\
\begin{array}{c}
\text { One-loop splitting functions, } \\
\text { known analytically }
\end{array} & +\left[\alpha_{s}\right]^{2} \sum_{k=1}^{2}\left\langle P_{q q}^{\mathrm{gen}}(z) \otimes 2 \operatorname{Re}\left(\overline{\mathcal{I}}_{1}(z, \epsilon)\right) F_{\mathrm{LM}}^{(k)}(z)\right\rangle+\left[\alpha_{s}\right] \frac{\alpha_{s}}{2 \pi} \sum_{k=1}^{2}\left\langle P_{q q}^{\mathrm{gen}}(z) \otimes F_{\mathrm{LV}}^{\mathrm{fin},(k)}(z)\right\rangle
\end{aligned}
$$

Single soft: different subtraction terms combined \rightarrow careful with the limits order

$$
\begin{aligned}
\sum_{i=1}^{3}\left\langle\left(I-S_{4}\right) C_{4 i}[\right. & \left.\left.\left\langle S_{5} \Delta^{(45)} F_{\mathrm{LM}}^{4>5}(4,5)\right\rangle\right]+S_{5}\left(I-S_{4}\right) C_{4 i} \Delta^{(45)} F_{\mathrm{LM}}^{5>4}(4,5)\right\rangle= \\
& \left.+\left[\alpha_{s}\right]^{2} \sum_{k=1}^{2}\left\langle I_{1 R}(\epsilon) P_{q q}^{\mathrm{gen}}(z) \otimes F_{\mathrm{LM}}^{(k)}(z)\right\rangle+\left[\alpha_{s}\right]^{2}\left\langle I_{1 R}(\epsilon) I_{C}(\epsilon)\right) F_{\mathrm{LM}}\right\rangle \\
& +\frac{\left[\alpha_{s}\right]^{2}}{\epsilon^{2}} N_{s} C_{A}\left[\sum_{k=1}^{2}\left\langle\left(\frac{2 E_{k}}{\mu}\right)^{-2 \epsilon} \tilde{P}_{q q}^{\text {gen }}(z) \otimes F_{\mathrm{LM}}^{(k)}(z)\right\rangle+\sum_{k=1}^{3}\left\langle\left(\frac{2 E_{k}}{\mu}\right)^{-2 \epsilon} \hat{\Gamma}^{(k) \text { e.o. }} F_{\mathrm{LM}}\right\rangle\right]
\end{aligned}
$$

Status so far

$$
K=\left(\frac{67}{18}-\frac{\pi^{2}}{6}\right) C_{A}-\frac{10}{9} T_{R} n_{f}
$$

$\left\langle F_{\mathrm{LVV}}\right\rangle$	$\frac{1}{2}\left[2 \Re\left(\mathcal{I}_{1}(\epsilon)\right)\right]^{2}$	$\frac{\beta_{0}}{\epsilon} 2 \Re\left(\mathcal{I}_{1}(\epsilon)\right)$	$K 2 \Re\left(\mathcal{I}_{1}(2 \epsilon)\right)$	$\frac{\beta_{0}}{\epsilon} 2 \Re\left(\mathcal{I}_{1}(2 \epsilon)\right)$	
$\left\langle S_{45} F_{\mathrm{LM}}^{4>5}(4,5)\right\rangle$	$\frac{1}{2} I_{1, R}^{2}(\epsilon)$		$\frac{C_{A}}{\epsilon^{2}} \widetilde{I}_{1, R}(2 \epsilon)$	$\frac{\beta_{0}}{\epsilon} \widetilde{I}_{1, R}(2 \epsilon)$	$\beta_{0} \widetilde{I}_{1, R}(2 \epsilon)$
$\left\langle S_{4} F_{\text {LRV }}(4)\right\rangle$	$I_{1, R}(\epsilon) 2 \Re\left(\mathcal{I}_{1}(\epsilon)\right)$	$\frac{\beta_{0}}{\epsilon} I_{1, R}(\epsilon)$	$C_{A} A_{K} \widetilde{I}_{1, R}(2 \epsilon)$		
$\left\langle\left(I-S_{4}\right) C_{4 i} \Delta^{(4)} F_{\mathrm{LV}}(4)\right\rangle$	$I_{C}(\epsilon) 2 \Re\left(\overline{\mathcal{I}}_{1}(\epsilon)\right)$	$\frac{\beta_{0}}{\epsilon} I_{C}(\epsilon)$			
$\begin{aligned} & \left\langle\left(I-S_{4}\right) C_{4 i}\left[\left\langle S_{5} \Delta^{(45)} F_{\mathrm{LM}}^{4>5}(4,5)\right\rangle\right]\right. \\ & \left.\quad+S_{5}\left(I-S_{4}\right) C_{4 i} \Delta^{(45)} F_{\mathrm{LM}}^{5>4}(4,5)\right\rangle \end{aligned}$	$I_{1 R}(\epsilon) I_{C}(\epsilon)$ $I_{C}^{2}(\epsilon)$ needed to truct $\left(I_{1}+I_{1, R}+I_{C}\right)^{2}$ k at double-collinear	reconstruct $I_{1}(\epsilon)+I_{1, R}(\epsilon)+I_{C}(\epsilon)$ but with extra $1 / \epsilon$	Clear interplay $\rightarrow C_{A}$ non-transparent cancellation	Suggest $I_{1}(2 \epsilon)+I_{1, R}(2 \epsilon)+I_{C}(2 \epsilon$ but with extra $1 / \epsilon$ $, 2 \epsilon$	

Hard-collinear real-virtual and single soft RR

Manipulations required to reconstruct recurring structures and match, for instance, PDFs-like corrections

$$
\begin{aligned}
\frac{1}{2}\left\langle\sum_{i, j}\left(I-S_{4}\right)\left(I-S_{5}\right) C_{4 i} C_{5 j} \Delta^{(45)} F_{\mathrm{LM}}(4,5)\right\rangle= & \left\langle\frac{1}{2}\left[\alpha_{s}\right]^{2} I_{C}(\epsilon)\right)^{2} F_{\mathrm{LM}}+\sum_{k=1}^{2} G^{(k)}(z) F_{\mathrm{LM}}^{(k)}(z)+G^{(3)} F_{\mathrm{LM}} \\
& +\frac{1}{2}\left[\alpha_{s}\right]^{2} \sum_{k=1}^{2}\left[P_{q q}^{\mathrm{gen}} \otimes P_{q q}^{\mathrm{gen}}(z)\right]_{\mathrm{pdf}} F_{\mathrm{LM}}^{(k)}(z)+\left[\alpha_{s}\right]^{2} \sum_{k=1}^{2} P_{q q}^{\mathrm{gen}} \otimes I_{C}(z, \epsilon) F_{\mathrm{LM}}^{(k)}(z) \\
& \left.+\left[\alpha_{s}\right]^{2} P_{q q}^{\mathrm{gen}}\left(z_{1}\right) \otimes F_{\mathrm{LM}}\left(z_{1}, z_{2}\right) \otimes P_{q q}^{\mathrm{gen}}\left(z_{2}\right)\right\rangle
\end{aligned}
$$

Cancellation of the double-color-correlated contributions

$$
\frac{1}{2}\left\langle\left(\frac{\alpha_{s}}{2 \pi} 2 \Re\left(\mathcal{I}_{1}(\epsilon)\right)+\left[\alpha_{s}\right] I_{1, R}(\epsilon)+\left[\alpha_{s}\right] I_{C}(\epsilon)\right)^{2} F_{\mathrm{LM}}\right\rangle=\frac{1}{2}\left[\alpha_{s}\right]^{2}\left\langle I_{1, T}^{2}(\epsilon) F_{\mathrm{LM}}\right\rangle
$$

\longrightarrow finite

Same combination encountered at NLO:

finite, and easy to be computed.

