The dark side of precision calculations: subtractions

Chiara Signorile-Signorile

Amplitudes 2024

In collaboration with: Federica Devoto, Kirill Melnikov, Raoul Röntsch, Davide Maria Tagliabue Based on: JHEP02(2024)016

Take-home message

When the complexity of the problem increases, look at simple, recurring structures!

Chiara Signorile-Signorile

Rudiments of particle physics at colliders

The success of a percent level phenomenology program relies on our ability to interpret and predict the outcome of LHC [Snowmass'2021 whitepaper] measurements.

Collinear factorisation theorem [Collins, Soper, Sterman '04]: separate energy scale \rightarrow different treatment

$$d\sigma = \sum_{ij} \int dx_1 \, dx_2 \, f_{i/p}(x_1) f_{j/p}(x_2) \, d\hat{\sigma}_{ij}(x_1 x_2 s) \, \left(1 + \mathcal{O}\left(-\frac{1}{2}\right) \right) \, d\hat{\sigma}_{ij}(x_1 x_2 s) \, d\hat{\sigma}_{ij}(x_1 x$$

No large hierarchies of scales + no strong sensitivity to infrared physics \rightarrow fixed order calculations provide a robust and reliable framework to obtain precision predictions at the LHC

Ingredients for higher-order corrections and main difficulties

Strong coupling:

 $\alpha_{\rm s} \sim 0.1$

 $\mathcal{O}(\alpha_s) \sim 10\%$ $\mathcal{O}(\alpha_s^2) \sim 1\%$ $\mathcal{O}(\alpha_s^3) \sim 0.1\%$

Ingredients for higher-order corrections and main difficulties

Strong coupling: $\alpha_{\rm s} \sim 0.1$

Virtual amplitudes:

 Multi-loop integrals involving multiple scales, arising from different masses and many legs

Real radiation singularities

• Extraction of **soft and collinear** singularities

IR singularities

Real corrections:

- Singularities arising from unresolved radiation after integration over full phase space of radiated parton

Unresolved limits are universal and known (even at N3LO) \rightarrow a general procedure is in principle feasible

• Goal: extract IR singularities without integrating over the resolved phase space \rightarrow obtain fully differential prediction

$$\int rac{\mathrm{d}^{d-1}k}{(2\pi)^{d-1}2E_k} |M(\{p\},k)|^2 \sim \int rac{\mathrm{d}E_k}{E_k o 0} rac{\mathrm{d}E_k}{ heta o 0} agenreft rac{\mathrm{d} heta}{ heta^{1+2\epsilon}} rac{\mathrm{d} heta}{ heta^{1+2\epsilon}} imes |M(\{p\})|^2 \sim rac{1}{4\epsilon^2}$$

Subtraction: conceptually non-trivial, but if local and analytic then extremely versatile and numerically stable

 $\overline{.2}$.

Subtractions: status

NLO:

solved conceptually in the 90s and now implemented in automatic frameworks

NNLO:

still looking for the optimal scheme \rightarrow the problem is highly non-trivial and a simple generalisation of NLO not doable due to overlapping singularities

<u>Example</u>: di-jet two-loop amplitudes ~ 20 years ago [Anastasiou et al. '01] di-jet production at NNLO ~ 5 years ago [Currie et al. '17]

Antenna [Gehrmann-De Ridder et al. '05], ColorfulINNLO [Del Duca et al. '16], STRIPPER [Czakon '10], Nested soft-collinear [Caola et al. '17], Local analytic sector [Magnea, CSS et al. '18], Geometric IR subtraction [Herzog '18], Unsubtraction [Sborlini et al. '16], FDR [Pittau '12], Universal Factorisation [Sterman et al. '20], ...

Most of them feature a relevant degree of complexity, and are not ready to tackle multi-patron scattering.

Simplifications and recurring patterns seem to be elusive!

Why is NNLO so difficult?

- 2. Get to the point where the problem is well defined
- 3. Solve the phase space integrals of the relevant limits

Strongly-ordered configurations have also to be included:

Non-trivial structures to integrate \rightarrow double-soft and triple-collinear kernels

$$I_{12}^{(gg)(56)} = \frac{(1-\epsilon)(s_{51}s_{62} + s_{52}s_{61}) - 2s_{56}s_{12}}{s_{56}^2(s_{51} + s_{61})(s_{52} + s_{62})} + s_{12} \frac{s_{51}s_{62} + s_{52}s_{61} - s_{56}s_{12}}{s_{56}s_{51}s_{62}s_{52}s_{61}} \left[1 - \frac{1}{2} \frac{s_{51}s_{62} + s_{52}s_{61}}{(s_{51} + s_{61})(s_{52} + s_{62})}\right]$$

$$s_{ab} = 2p_a \cdot p_b$$

$$I_s^{(gg)} = \int [dk_5] [dk_6] \theta(E_{max} - E_5) \theta(E_5 - E_6) I_{12}^{(gg)(56)}(k_1, k_2, k_5, k_6)$$

$$[df_i] = \frac{d^d k_i}{(2\pi)^d} (2\pi) \delta_+(k_i^2)$$

$$I_{12}^{(gg)(56)} = \frac{(1-\epsilon)(s_{51}s_{62} + s_{52}s_{61}) - 2s_{56}s_{12}}{s_{56}^2(s_{51} + s_{61})(s_{52} + s_{62})} + s_{12} \frac{s_{51}s_{62} + s_{52}s_{61} - s_{56}s_{12}}{s_{56}s_{51}s_{62}s_{52}s_{61}} \left[1 - \frac{1}{2} \frac{s_{51}s_{62} + s_{52}s_{61}}{(s_{51} + s_{61})(s_{52} + s_{62})}\right]$$

$$I_{S_{56}}^{(gg)} = \int [dk_5] [dk_6] \,\theta(E_{\text{max}} - E_5) \,\theta(E_5 - E_6) I_{12}^{(gg)(56)}(k_1, k_2, k_5, k_6)$$

$$[df_i] = \frac{d^d k_i}{(2\pi)^d} (2\pi) \delta_+(k_i^2)$$

1. Clear understanding of which singular configurations do actually contribute

$$\frac{1}{-\vec{n}_1 \cdot \vec{n}_3) + E_2 E_3 (1 - \vec{n}_2 \cdot \vec{n}_3)}$$

 $E_1 \rightarrow 0 \quad E_2 \rightarrow 0 \quad E_1, E_2 \rightarrow 0$ $\vec{n}_1 \parallel \vec{n}_2 \parallel \vec{n}_3 \qquad \vec{n}_1 \parallel \vec{n}_2$

Nested soft-collinear subtraction at NNLO: generalities [Caola, Melnikov, Röntsch '17]

Example: DIS [Asteriadis, Caola, Melnikov, Röntsch '19]

Extract double soft singularities first $(E_5 \sim E_6 \rightarrow 0)$

$$I = (I - \mathcal{S}) + \mathcal{S}$$

• Gluons ordered in energy \rightarrow only one single soft singularity

$$I = (I - S_6) + S_6$$

 Collinear singularities: partition function + sectoring [separate overlapping singularities]

[Caola, Delto, Frellesvig, Melnikov '18, '19]

Chiara Signorile-Signorile

[figures curtsy of K. Asteriadis]

Double-soft singularity regularized but still contains single soft and collinear singularities.

Subtraction term; soft gluons decouple; integrate analytically over phase space of gluons 5 and 6

Integrate subtraction terms analytically using Reverse Unitarity [Anastasiou, Melnikov '02]: map phase space integrals onto loop integrals

State of the art:

Separation of complex $pp \rightarrow N$ processes into simpler building blocks

QCD corrections to Drell-Yan Both initial state momenta [Caola, Melnikov, Röntsch '19]

Focus on simple processes \rightarrow full control of the procedure, check against analytic results sometime possible.

Application to Z+j production

New!

Higgs decay Both final state momenta [Caola, Melnikov, Röntsch '19]

Deep Inelastic Scattering

One initial and **one final** state momentum [Asteriadis, Calola, Melnikov Röntsch '19]

Application to Z+j production

$$\begin{split} &P_{\rm LM}^{4>5} \rangle + \langle (I-S_4)S_5 \,\Delta^{(45)}F_{\rm LM}^{4>5} \rangle \\ &S_{45})(I-S_5) \Big\{ \sum_{i\in{\rm TC}} \Big[\Theta^{(a)}C_{45,i}(I-C_{5i}) + \Theta^{(b)}C_{45,i}(I-C_{45}) \\ &\Theta^{(c)}C_{45,i}(I-C_{4i}) + \Theta^{(d)}C_{45,i}(I-C_{45}) \Big] \omega_{4i5i} \Big\} \,\Delta^{(45)}F_{\rm LM}^{4>5} \rangle \\ &S_{45})(I-S_5) \sum_{(ij)\in{\rm DC}} C_{4i}C_{5j} \,\omega_{4i5j} \,\Delta^{(45)}F_{\rm LM}^{4>5} \rangle \\ &S_{45})(I-S_5) \Big\{ \sum_{i\in{\rm TC}} \Big[\Theta^{(a)}C_{5i} + \Theta^{(b)}C_{45} + \Theta^{(c)}C_{4i} + \Theta^{(d)}C_{45} \Big] \,\omega_{4i5i} \\ &\sum_{j)\in{\rm DC}} \Big[C_{4i} + C_{5j} \Big] \,\omega_{4i5j} \Big\} \,\Delta^{(45)}F_{\rm LM}^{4>5} \rangle \\ &S_{45})(I-S_5) \Big\{ \sum_{i\in{\rm TC}} \Big[\Theta^{(a)}(I-C_{45,i})(I-C_{5i}) + \Theta^{(b)}(I-C_{45,i})(I-C_{45,i})(I-C_{45,i}) \\ &- \Theta^{(c)}(I-C_{45,i})(I-C_{4i}) + \Theta^{(d)}(I-C_{45,i})(I-C_{45}) \Big] \omega_{4i5i} \\ &\sum_{\rm DC} \Big[(I-C_{4i})(I-C_{5j}) \,\omega_{4i5j} \Big\} \,\Delta^{(45)}F_{\rm LM}^{4>5} \rangle \end{split}$$

 $(ij) \in DC \longrightarrow (ij) \in \{(12), (13), (21), (23), (31), (32)\}$ $i \in \mathrm{TC} \longrightarrow i \in \{1, 2, 3\}.$

Application to Z+j production

$$\frac{1}{3!} \langle F_{LM}(1_q, 2_{\bar{q}}; 3_g, 4_g, 5_g) \rangle = \langle S_{45} \Delta^{(45)} F_{LM}^{4>5} \rangle + \langle (I - S_4) S_5 \Delta^{(45)} F_{LM}^{4>5} \rangle \\
+ \langle (I - S_{45}) (I - S_5) \Big\{ \sum_{i \in TC} \left[\Theta^{(a)} C_{45,i} (I - C_{5i}) + \Theta^{(b)} C_{45,i} (I - C_{45}) \right] \\
+ \Theta^{(c)} C_{45,i} (I - C_{4i}) + \Theta^{(d)} C_{45,i} (I - C_{45}) \Big] \omega_{4i5i} \Big\} \Delta^{(45)} F_{LM}^{4>5} \rangle \\
- \langle (I - S_{45}) (I - S_5) \sum_{(ij) \in DC} C_{4i} C_{5j} \omega_{4i5j} \Delta^{(45)} F_{LM}^{4>5} \rangle \\
+ \langle (I - S_{45}) (I - S_5) \Big\{ \sum_{i \in TC} \left[\Theta^{(a)} C_{5i} + \Theta^{(b)} C_{45} + \Theta^{(c)} C_{4i} + \Theta^{(d)} C_{45} \right] \omega_{4i5i} \\
+ \sum_{(ij) \in DC} \left[C_{4i} + C_{5j} \right] \omega_{4i5j} \Big\} \Delta^{(45)} F_{LM}^{4>5} \rangle \\
+ \langle (I - S_{45}) (I - S_5) \Big\{ \sum_{i \in TC} \left[\Theta^{(a)} (I - C_{45,i}) (I - C_{5i}) + \Theta^{(b)} (I - C_{45,i}) (I - C_{45,i}) (I - C_{45,i}) (I - C_{45,i}) \right] \omega_{4i5i} \\
+ \sum_{(ij) \in DC} \left[(I - C_{45,i}) (I - C_{4i}) + \Theta^{(d)} (I - C_{45,i}) (I - C_{45,i}) \right] \omega_{4i5i} \\
+ \sum_{(ij) \in DC} \left[(I - C_{4i}) (I - C_{5j}) \omega_{4i5j} \Big\} \Delta^{(45)} F_{LM}^{4>5} \rangle$$

Drawbacks identified v

- The **bookkeeping** becomes **cumbersome** \rightarrow large numbersome
- Calculating all subtraction t hide a number of simplifica before explicit evaluation.

 $(ij) \in DC \longrightarrow (ij) \in \{(12), (13), (21), (23), (31), (32)\}$ $i \in \mathrm{TC} \longrightarrow i \in \{1, 2, 3\}.$

[Catani '98]

$$\begin{split} \langle \mathcal{M} | \mathcal{M} \rangle_{\alpha_s^2} &= \left\langle \mathcal{M}_0 \left| \frac{1}{2} I_1^2(\epsilon) + \frac{1}{2} \left(I_1^{\dagger}(\epsilon) \right)^2 + I_1^{\dagger}(\epsilon) I_1(\epsilon) + \left(\mathcal{H}_2 + \mathcal{H}_2^{\dagger} \right) \right| \mathcal{M}_0 \right\rangle \\ &+ \left\langle \mathcal{M}_0 \left| -\frac{\beta_0}{\epsilon} \left(I_1(\epsilon) + I_1^{\dagger}(\epsilon) \right) + c_\epsilon \left(\frac{\beta_0}{\epsilon} + K \right) \left(I_1(2\epsilon) + I_1^{\dagger}(2\epsilon) \right) \right| \mathcal{M}_0 \right\rangle \\ &+ 2 \mathrm{Re} \Big[\langle \mathcal{M}_0 | I_1(\epsilon) + I_1^{\dagger}(\epsilon) | \mathcal{M}_1^{\mathrm{fin}} \rangle \Big] + 2 \mathrm{Re} \big[\langle \mathcal{M}_0 | \mathcal{M}_2^{\mathrm{fin}} \rangle \big] + \langle \mathcal{M}_1^{\mathrm{fin}} | \mathcal{M}_1^{\mathrm{fin}} \rangle \,. \end{split}$$

"Asymmetry": VV very simple pole structure, RR structure obscured by energy ordering, partitioning...

$$\begin{array}{c} q_{q}, p2_{q}, p3_{g} \end{bmatrix} + 10 \text{ asontwopi}^{2} \text{ CA CF FLM} \begin{bmatrix} p1_{q}, p2_{q}, p3_{g} \end{bmatrix} + 2 \text{ asontwopi}^{2} \text{ CF}^{2} \text{ FLM} \begin{bmatrix} p1_{q}, p2_{q}, p3_{g} \end{bmatrix} + \\ = z \end{bmatrix} \times \text{FLM} \begin{bmatrix} p1_{q}, z p2_{q}, p3_{g}, z \end{bmatrix} + 5 \text{ asontwopi}^{2} \text{ CF}^{2} \text{ delta} \begin{bmatrix} 1 - z \end{bmatrix} \times \text{FLM} \begin{bmatrix} z p1_{q}, p2_{q}, p3_{g}, z \end{bmatrix} - \\ = z1 \end{bmatrix} \times \text{delta} \begin{bmatrix} 1 - z2 \end{bmatrix} \times \text{FLM} \begin{bmatrix} z1 p1_{q}, z2 p2_{q}, p3_{g}, z1, z2 \end{bmatrix}) + \\ 110 \text{ asontwopi}^{2} \text{ CA CF FLM} \begin{bmatrix} p1_{q}, p2_{q}, p3_{g} \end{bmatrix} + 72 \text{ asontwopi}^{2} \text{ CA}^{2} \text{ L3 FLM} \begin{bmatrix} p1_{q}, p2_{q}, p3_{g} \end{bmatrix} + 36 \text{ asontwopi}^{2} \text{ CA CF FLM} \begin{bmatrix} p1_{q}, z p2_{q}, p3_{g}, z \end{bmatrix} + \underbrace{\bullet 100 \text{ or }} 24 \varepsilon^{3} \\ \frac{1}{\varepsilon^{2}} + \frac{67}{4} \text{ asontwopi}^{2} \text{ CA CF FLM} \begin{bmatrix} p1_{q}, p2_{q}, p3_{g} \end{bmatrix} + \underbrace{\bullet 509 \text{ or }} + \frac{1}{2} \text{ asontwopi}^{2} \text{ CA CF delta} \begin{bmatrix} 1 - z \end{bmatrix} \times \text{FLM} \begin{bmatrix} z p1_{q}, p2_{q}, p3_{g}, z \end{bmatrix} \text{ PolyLog} \begin{bmatrix} 2, 1 - \text{eta} \begin{bmatrix} 2, 3 \end{bmatrix} \end{bmatrix} \\ \frac{\varepsilon^{2}}{\varepsilon^{2}} + \frac{12813}{36} \text{ asontwopi}^{2} \text{ CA CF FLM} \begin{bmatrix} p1_{q}, p2_{q}, p3_{g} \end{bmatrix} + \underbrace{\bullet 265}{18} \text{ asontwopi}^{2} \text{ CA}^{2} \text{ L3 FLM} \begin{bmatrix} p1_{q}, p2_{q}, p3_{g} \end{bmatrix} - \underbrace{\bullet 11}{2} \underbrace{\bullet 2016 \text{ or }} \\ \frac{\varepsilon}{\varepsilon} + 0 \end{bmatrix} \\ \end{array}$$

Summary of the talk

Can we identify structures early on in the calculations so that cancellation of divergences can be seen "by eye", even for a generic process?

Main idea: look at the pole structure of the virtual corrections to infer similar structures for the subtraction terms

 \rightarrow by product: get rid of color correlations and reduce the rest to a sum over external-leg contributions.

<u>Case of study: $q\bar{q} \rightarrow X + Ng$ </u>

Published for SISSA by 2 Springer

RECEIVED: November 3, 2023 ACCEPTED: January 3, 2024 PUBLISHED: February 2, 2024

A fresh look at the nested soft-collinear subtraction scheme: NNLO QCD corrections to N-gluon final states in $q\bar{q}$ annihilation

Federica Devoto¹,^a Kirill Melnikov,^b Raoul Röntsch¹,^c Chiara Signorile-Signorile^{b,d,e} and Davide Maria Tagliabue^c

Work in progress:
$$gq \rightarrow X + (N-1)g + q$$

NLO and NNLO QCD contributions to the channel $gq \rightarrow X + (N-1)g + q$

Federica Devoto,^a Kirill Melnikov,^b Raoul Röntsch,^c Chiara Signorile-Signorile,^d **Davide Maria Tagliabue**^c

Warm up @NLO: $q\bar{q} \rightarrow X + Ng$

Virtual corrections: color-correlations, elastic terms

Real corrections:

soft: color-correlations, elastic terms

$$I_{
m S}(\epsilon) = -rac{(2E_{
m max}/\mu)^{-2\epsilon}}{\epsilon^2} \sum_{(ij)}^{N_p} \eta_{ij}^{-\epsilon} K_{ij} \left(oldsymbol{T}_i {\cdot} oldsymbol{T}_j
ight)$$

hard-collinear: no color-correlations, elastic terms+boosts

$$I_{\rm C}(\epsilon) = \sum_{i=1}^{N_p} \frac{\Gamma_{i,f_i}}{\epsilon} \qquad \qquad \mathcal{P}_{aa}^{
m gen} \otimes F_{
m LM}$$

Warm up @NLO: $q\bar{q} \rightarrow X + Ng$

Virtual corrections: color-correlations, elas

Real corrections:

$$2s \, d\hat{\sigma}_{ab}^{\text{NLO}} = d\hat{\sigma}_{ab}^{\text{V}} + d\hat{\sigma}_{ab}^{\text{R}} + d\hat{\sigma}_{ab}^{\text{pdf}}$$
stic terms
$$I_{V}(\epsilon) = \overline{I}_{1}(\epsilon) + \overline{I}_{1}^{\dagger}(\epsilon)$$

$$\overline{I}_{1}(\epsilon) = \frac{1}{2} \sum_{(ij)}^{N_{p}} \frac{\mathcal{V}_{i}^{\text{sing}}(\epsilon)}{T_{i}^{2}} \underbrace{(\mathbf{T}_{i} \cdot \mathbf{T}_{j})}_{\mathbf{T}_{i}^{2}} \underbrace{(\mathbf{T}_{i} \cdot \mathbf{T}_{j})}_{\epsilon^{2}} \underbrace{(\frac{\mu^{2}}{2p_{i} \cdot p_{j}})^{\epsilon} e^{i\pi\lambda_{ij}\epsilon}}_{\text{hard-collinear: no color-correlations, elastic terms+boosts}}$$

$$I_{S}(\epsilon) = -\frac{(2E_{\text{max}}/\mu)^{-2\epsilon}}{\epsilon^{2}} \sum_{(ij)}^{N_{p}} \eta_{ij}^{-\epsilon} K_{ij} \underbrace{(\mathbf{T}_{i} \cdot \mathbf{T}_{j})}_{\mathbf{T}_{i}^{2}}$$

$$I_{C}(\epsilon) = \sum_{i=1}^{N_{p}} \frac{\Gamma_{i,f_{i}}}{\epsilon}$$

$$\mathcal{P}_{aa}^{\text{gen}} \otimes F_{\text{LM}}$$
ighest pole trivially cancels olor correlations cancel
$$\mathcal{P}_{i,f_{i}} = \underbrace{(\gamma_{i})^{+} 2T_{i}^{2}L_{i} + \mathcal{O}(\epsilon)}_{\Gamma_{i}}$$

- $I_{
 m V}(\epsilon) + I_{
 m S}(\epsilon)$ Hig Col

nsions"

Warm up @NLO: $q\bar{q} \rightarrow X + Ng$

$$2s \, d\hat{\sigma}_{ab}^{\text{NLO}} = d\hat{\sigma}_{ab}^{\text{V}} + d\hat{\sigma}_{ab}^{\text{R}} + d\hat{\sigma}_{ab}^{\text{pdf}}$$
stic terms
$$I_{V}(\epsilon) = \overline{I}_{1}(\epsilon) + \overline{I}_{1}^{\dagger}(\epsilon)$$

$$I_{1}(\epsilon) = \frac{1}{2} \sum_{(ij)}^{N_{r}} \frac{\mathcal{V}_{i}^{\text{sing}}(\epsilon)}{T_{i}^{2}} (T_{i} \cdot T_{j}) \left(\frac{\mu^{2}}{2p_{i} \cdot p_{j}}\right)^{\epsilon} e^{i\pi\lambda_{ij}\epsilon}$$

$$V_{i}^{\text{sing}}(\epsilon) = \frac{T_{i}^{2}}{\epsilon^{2}}$$
soft: color-correlations, elastic terms
hard-collinear: no color-correlations, elastic terms+boosts
$$I_{S}(\epsilon) = -\frac{(2E_{\max}/\mu)^{-2\epsilon}}{\epsilon^{2}} \sum_{(ij)}^{N_{r}} \eta_{ij}^{-\epsilon} K_{ij} (T_{i} \cdot T_{j})$$

$$I_{C}(\epsilon) = \sum_{i=1}^{N_{r}} \frac{\Gamma_{i,f_{i}}}{\epsilon}$$

$$\mathcal{P}_{aa}^{\text{gen}} \otimes F_{\text{LM}}$$
ighest pole trivially cancels
olor correlations cancel
$$F_{i,f_{i}} = \eta_{i} + 2T_{i}^{2}L_{i} + \mathcal{O}(\epsilon)$$

$$\implies I_{T}(\epsilon) = I_{V}(\epsilon) + I_{S}(\epsilon) + I_{C}(\epsilon)$$
FINITE!
$$\frac{s(\mu)}{2\pi} \langle I_{T}^{(0)} \cdot F_{\text{LM}} \rangle + \frac{\alpha_{s}(\mu)}{2\pi} \left[\langle \mathcal{P}_{aa}^{\text{NLO}} \otimes F_{\text{LM}} \rangle + \langle F_{\text{LM}} \otimes \mathcal{P}_{bb}^{\text{NLO}} \rangle \right] + \langle F_{\text{LV}}^{\text{fin}} \rangle + \langle \mathcal{O}_{\text{NLO}} \Delta^{(\mathfrak{m})} F_{\text{LM}}(\mathfrak{m}) \rangle$$

$$2s \, d\hat{\sigma}_{ab}^{\text{NLO}} = d\hat{\sigma}_{ab}^{\text{V}} + d\hat{\sigma}_{ab}^{\text{R}} + d\hat{\sigma}_{ab}^{\text{pdf}}$$
Virtual corrections:
color-correlations, elastic terms
$$I_{V}(\epsilon) = \bar{I}_{1}(\epsilon) + \bar{I}_{1}^{\dagger}(\epsilon)$$

$$\overline{I_{1}(\epsilon)} = \frac{1}{2} \sum_{(ij)}^{N_{i}} \frac{V_{i}^{\text{sing}}(\epsilon)}{T_{i}^{2}} (T_{i} \cdot T_{j}) \left(\frac{\mu^{2}}{2p_{i} \cdot p_{j}}\right)^{\epsilon} e^{i\pi\lambda_{i}\epsilon}$$

$$V_{i}^{\text{sing}}(\epsilon) = \frac{T_{i}(\epsilon)}{\epsilon}$$
Real corrections:

$$Soft: \text{ color-correlations, elastic terms}$$
hard-collinear: no color-correlations, elastic terms+boosts

$$I_{S}(\epsilon) = -\frac{(2E_{\max}/\mu)^{-2\epsilon}}{\epsilon^{2}} \sum_{(ij)}^{N_{i}} \eta_{ij}^{-\epsilon} K_{ij} (T_{i} \cdot T_{j})$$

$$I_{C}(\epsilon) = \sum_{i=1}^{N_{i}} \frac{\Gamma_{i}f_{i}}{\epsilon}$$

$$\mathcal{P}_{aa}^{\text{gen}} \otimes F_{LM}$$

$$I_{V}(\epsilon) + I_{S}(\epsilon)$$
· Highest pole trivially cancels
· Color correlations cancel
$$I_{T}(\epsilon) = I_{V}(\epsilon) + I_{S}(\epsilon) + I_{C}(\epsilon)$$
FINITE!
$$2s \, d\hat{\sigma}_{ab}^{\text{NLO}} = \frac{\alpha_{s}(\mu)}{2\pi} \langle I_{T}^{(0)} \cdot F_{LM} \rangle + \frac{\alpha_{s}(\mu)}{2\pi} \left[\langle \mathcal{P}_{aa}^{\text{NLO}} \otimes F_{LM} \rangle + \langle F_{LM} \otimes \mathcal{P}_{bb}^{\text{NLO}} \rangle \right] + \langle F_{LW}^{\text{fin}} \rangle + \langle \mathcal{O}_{\text{NLO}} \Delta^{(\mathfrak{m})} F_{LM}(\mathfrak{m}) \rangle$$

nsions"

Lesson from NLO

Simple interplay betwee

$$\underbrace{\left[V + S_{i}R + (I - S_{i})C_{ij}R\right]_{\text{elastic}}}_{I_{\mathrm{T}}(\epsilon) = I_{\mathrm{V}}(\epsilon) + I_{\mathrm{S}}(\epsilon) + I_{\mathrm{C}}(\epsilon) \quad \text{and } \underbrace{\left[\left(1 - S_{i}\right)C_{ij}R\right]_{\text{boost}} + \mathrm{PDFs}}_{\left\langle\mathcal{P}_{aa}^{\mathrm{NLO}}\otimes F_{\mathrm{LM}}\right\rangle + \left\langle F_{\mathrm{LM}}\otimes\mathcal{P}_{bb}^{\mathrm{NLO}}\right\rangle }$$

New approach at NNLO:

Starting from IR poles of double-virtual [Catani '98] we want to find subtraction terms that can "complete" it:

• identify structures similar to those encountered at NLO \rightarrow ideally the result will be \sim NLO² as much as possible

 $T_i \cdot T_j$

 $T_i \cdot T_j \cdot$

 $(T_i \cdot T_j)$

$$\begin{split} \left\langle F_{\rm VV} \right\rangle &= [\alpha_s]^2 \left\langle \begin{bmatrix} 1 \\ \overline{2} I_{\rm V}^2(\epsilon) - \frac{\Gamma(1-\epsilon)}{e^{\epsilon \gamma_{\rm E}}} \left(\frac{\beta_0}{\epsilon} I_{\rm V}(\epsilon) - \left(\frac{\beta_0}{\epsilon} + K \right) I_{\rm V}(2\epsilon) \right) \end{bmatrix} \cdot F_{\rm LM} \right\rangle & \text{single structure} \\ &+ [\alpha_s]^2 \left\langle \begin{bmatrix} -1 \\ \overline{2} \left(\overline{I}_1(\epsilon), \overline{I}_1^{\dagger}(\epsilon) \right) + \mathcal{H}_{2,\rm tc} + \mathcal{H}_{2,\rm tc}^{\dagger} + \mathcal{H}_{2,\rm cd} + \mathcal{H}_{2,\rm cd}^{\dagger} \end{bmatrix} \cdot F_{\rm LM} \right\rangle & \overline{I}_1 \\ &+ [\alpha_s] \left(I_{\rm V}(\epsilon) \cdot F_{\rm LV}^{\rm fin} \right) + \left\langle F_{\rm LV}^{\rm fin} \right\rangle + \left\langle F_{\rm VV}^{\rm fin} \right\rangle . \end{split}$$

- different powers/arguments/prefactors
- different type of **color-correlations**

specific pattern of cancellation.

$$T_k \cdot (T_k \cdot T_l)$$

Color correlations can only arise from soft real emissions and loop corrections

Iterations of NLO!

Chiara Signorile-Signorile

 $\langle S_{\mathfrak{mn}}\Theta_{\mathfrak{mn}}F_{\mathrm{LM}}(\mathfrak{m},\mathfrak{n})\rangle_{T^2}$

Color correlations can only arise from soft real emissions and loop corrections

Iterations of NLO!

 $\langle S_{\mathfrak{mn}}\Theta_{\mathfrak{mn}}F_{\mathrm{LM}}(\mathfrak{m},\mathfrak{n})\rangle_{T^2}$

$$\begin{aligned} & \max^{-4\epsilon} \left[\frac{1}{8\pi^2} \frac{(4\pi)^{\epsilon}}{\Gamma(1-\epsilon)} \right]^2 \left\{ \frac{1}{2\epsilon^4} + \frac{1}{\epsilon^3} \left[\frac{11}{12} - \ln(s^2) \right] \\ & e^2 + \ln^2(s^2) - \frac{11}{6} \ln(s^2) + \frac{11}{3} \ln 2 - \frac{\pi^2}{4} - \frac{16}{9} \right] \\ & + 2\operatorname{Li}_3(c^2) + \left(2\ln(s^2) + \frac{11}{3} \right) \operatorname{Li}_2(c^2) - \frac{2}{3} \ln^3(s^2) \\ & (c^2) + \frac{11}{6} \right) \ln^2(s^2) - \left(\frac{22}{3} \ln 2 + \frac{\pi^2}{2} - \frac{32}{9} \right) \ln(s^2) \\ & - \frac{11}{3} \ln^2 2 - \frac{11}{36} \pi^2 - \frac{137}{18} \ln 2 + \frac{217}{54} \right] \\ & s^2) - 7\operatorname{G}_{0,1,0,1}(s^2) + \frac{22}{3}\operatorname{Ci}_3(2\delta) + \frac{1}{3} \tan(\delta) \operatorname{Si}_2(2\delta) \\ & + 4\operatorname{Li}_4(s^2) + 4\operatorname{Li}_4\left(\frac{1}{1+s^2}\right) - 2\operatorname{Li}_4\left(\frac{1-s^2}{1+s^2}\right) \\ & - \frac{1}{s^2}\right) + \operatorname{Li}_4(1-s^4) + \left[10\ln(s^2) - 4\ln(1+s^2) \right] \\ & + \left[14\ln(c^2) + 2\ln(s^2) + 4\ln(1+s^2) + \frac{22}{3} \right] \operatorname{Li}_3(s^2) \\ & + (-s^2) + \frac{9}{2}\operatorname{Li}_2^2(c^2) - 4\operatorname{Li}_2(c^2)\operatorname{Li}_2(-s^2) + \left[7\ln(c^2)\ln(s^2) \right] \end{aligned}$$

$$-\ln^{2}(s^{2}) - \frac{5}{2}\pi^{2} + \frac{22}{3}\ln 2 - \frac{131}{18} \Big] \operatorname{Li}_{2}(c^{2}) + \Big[\frac{2}{3}\pi^{2} - 4\ln(4\pi) \Big] \\ \operatorname{Li}_{2}(-s^{2}) + \frac{\ln^{4}(s^{2})}{3} + \frac{\ln^{4}(1+s^{2})}{6} - \ln^{3}(s^{2}) \Big[\frac{4}{3}\ln(c^{2}) + \frac{1}{6} \Big] \\ + \ln^{2}(s^{2}) \Big[7\ln^{2}(c^{2}) + \frac{11}{3}\ln(c^{2}) + \frac{\pi^{2}}{3} + \frac{22}{3}\ln 2 - \frac{32}{9} \Big] - \frac{4}{3} \Big] \\ + \zeta_{3} \Big[\frac{17}{2}\ln(s^{2}) - 11\ln(c^{2}) + \frac{7}{2}\ln(1+s^{2}) - \frac{21}{2}\ln 2 - \frac{99}{4} \Big] \\ \Big[-\frac{7\pi^{2}}{2}\ln(c^{2}) + \frac{22}{3}\ln^{2}2 - \frac{11}{18}\pi^{2} + \frac{137}{9}\ln 2 - \frac{208}{27} \Big] - 12 \\ + \frac{143}{720}\pi^{4} - \frac{\ln^{4}2}{2} + \frac{\pi^{2}}{2}\ln^{2}2 - \frac{11}{6}\pi^{2}\ln 2 + \frac{125}{216}\pi^{2} + \frac{22}{9}\ln 4 \\ + \frac{137}{18}\ln^{2}2 + \frac{434}{27}\ln 2 - \frac{649}{81} + \mathcal{O}(\epsilon) \Big\},$$

[Caola, Delto, Frellesvig, Melnikov '18]

$$\delta = \frac{\delta_{12}}{2}, \ s = \sin \frac{\delta_{12}}{2}, \ c = \cos \frac{\delta_{12}}{2} \qquad \text{Ci}_n(z) = \frac{\text{Li}_n(e^{iz}) + \text{Li}_n(e^{-iz})}{2}, \ \text{Si}_n(z) = \frac{\text{Li}_n(e^{iz}) - \frac{1}{2}}{2}$$

Color correlations can only arise from soft real emissions and loo

Iterations of NLO!

pp corrections

$$\begin{array}{c} \overbrace{f_{LM}(\mathfrak{m},\mathfrak{n})}{F_{LM}(\mathfrak{m},\mathfrak{n})} \\ F_{LM}(\mathfrak{m},\mathfrak{n}) \\ T^{2} \\ F_{LM}(\mathfrak{m},\mathfrak{n}) \\ F_{LM}(\mathfrak{m},$$

reducible to "variants" of NLO

$$\widetilde{I}_{\mathrm{S}}(2\epsilon) = I_{\mathrm{S}}(2\epsilon) + \mathcal{O}(\epsilon)$$

Color correlations can only arise from soft real emissions and loop corrections

Soft real-virtual

[Catani, Grazzini '00]

$$\begin{split} S_{\mathfrak{m}} F_{\mathrm{RV}}(\mathfrak{m}) \\ &= -g_{s,b}^{2} \sum_{(ij)}^{N_{p}} \left\{ 2 \, S_{ij}(p_{\mathfrak{m}}) \, \left(\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j} \right) \cdot F_{\mathrm{LV}} - \frac{\alpha_{s}(\mu)}{2\pi} \, \frac{\beta_{0}}{\epsilon} \, 2 \, S_{ij}(p_{\mathfrak{m}}) \, \left(\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j} \right) \cdot F_{\mathrm{LM}} \right. \\ &- 2 \, \frac{[\alpha_{s}]}{\epsilon^{2}} \, C_{A} \, A_{K}(\epsilon) \left(S_{ij}(p_{\mathfrak{m}}) \right)^{1+\epsilon} \, \left(\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j} \right) \cdot F_{\mathrm{LM}} \\ &- \left[\alpha_{s} \right] \frac{4\pi \, \Gamma(1+\epsilon) \Gamma^{3}(1-\epsilon)}{\epsilon \, \Gamma(1-2\epsilon)} \, \sum_{\substack{k=1\\k \neq i,j}}^{N_{p}} \, \kappa_{ij} \, S_{ki}(p_{\mathfrak{m}}) \left(S_{ij}(p_{\mathfrak{m}}) \right)^{\epsilon} f_{abc} \, T_{k}^{a} \, T_{i}^{b} \, T_{j}^{c} \, F_{\mathrm{LM}} \right\} \end{split}$$

The integrated subtraction term can be almost fully written in terms of NLO-like operators

$$\begin{split} \left\langle S_{\mathfrak{m}} F_{\mathrm{RV}}(\mathfrak{m}) \right\rangle &= [\alpha_{s}]^{2} \left\langle \frac{1}{2} \Big[I_{\mathrm{S}}(\epsilon) \cdot I_{\mathrm{V}}(\epsilon) + I_{\mathrm{V}}(\epsilon) \cdot I_{\mathrm{S}}(\epsilon) \Big] \cdot F_{\mathrm{LM}} \right\rangle \\ &+ [\alpha_{s}] \left\langle I_{\mathrm{S}}(\epsilon) \cdot F_{\mathrm{LV}}^{\mathrm{fin}} \right\rangle - [\alpha_{s}]^{2} \frac{\Gamma(1-\epsilon)}{e^{\epsilon \gamma_{E}}} \frac{\beta_{0}}{\epsilon} \left\langle I_{\mathrm{S}}(\epsilon) \right\rangle \\ &- \frac{[\alpha_{s}]^{2}}{\epsilon^{2}} C_{A} A_{K}(\epsilon) \left\langle \widetilde{I}_{\mathrm{S}}(2\epsilon) \cdot F_{\mathrm{LM}} \right\rangle \\ &+ [\alpha_{s}]^{2} \left\langle \left(\frac{1}{2} \Big[I_{\mathrm{S}}(\epsilon) , \overline{I}_{1}(\epsilon) - \overline{I}_{1}^{\dagger}(\epsilon) \Big] + I_{\mathrm{tri}}^{\mathrm{RV}}(\epsilon) \right\rangle \right] \end{split}$$

Chiara Signorile-Signorile

 $A_K = \frac{\Gamma^3(1+\epsilon)\,\Gamma^5(1-\epsilon)}{\epsilon^2\,\Gamma(1+2\epsilon)\,\Gamma^2(1-2\epsilon)}$

Triple-color correlations:

- Vanish for $N_p \ge 4$
- Non-trivial phase space integral
- Finite after integration for FSR

$$F_{\rm LM}
angle$$

$$\cdot F_{\rm LM}
ightarrow$$

Color correlations can only arise from soft real emissions and loop corrections

Soft real-virtual

[Catani, Grazzini '00]

$$\begin{split} S_{\mathfrak{m}} F_{\mathrm{RV}}(\mathfrak{m}) \\ &= -g_{s,b}^{2} \sum_{(ij)}^{N_{p}} \left\{ 2 \, S_{ij}(p_{\mathfrak{m}}) \, \left(\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j} \right) \cdot F_{\mathrm{LV}} - \frac{\alpha_{s}(\mu)}{2\pi} \, \frac{\beta_{0}}{\epsilon} \, 2 \, S_{ij}(p_{\mathfrak{m}}) \, \left(\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j} \right) \cdot F_{\mathrm{LM}} \right. \\ &\left. - 2 \, \frac{[\alpha_{s}]}{\epsilon^{2}} \, C_{A} \, A_{K}(\epsilon) \left(S_{ij}(p_{\mathfrak{m}}) \right)^{1+\epsilon} \, \left(\boldsymbol{T}_{i} \cdot \boldsymbol{T}_{j} \right) \cdot F_{\mathrm{LM}} \right. \\ &\left. - \left[\alpha_{s} \right] \frac{4\pi \, \Gamma(1+\epsilon) \Gamma^{3}(1-\epsilon)}{\epsilon \, \Gamma(1-2\epsilon)} \, \sum_{\substack{k=1 \\ k \neq i,j}}^{N_{p}} \, \kappa_{ij} \, S_{ki}(p_{\mathfrak{m}}) \left(S_{ij}(p_{\mathfrak{m}}) \right)^{\epsilon} f_{abc} \, T_{k}^{a} \, T_{i}^{b} \, T_{j}^{c} \, F_{\mathrm{LM}} \right\} \end{split}$$

The integrated subtraction term can be almost fully written in terms of NLO-like operators

$$\begin{split} \left\langle S_{\mathfrak{m}} F_{\mathrm{RV}}(\mathfrak{m}) \right\rangle &= [\alpha_{s}]^{2} \left\langle \frac{1}{2} \left[I_{\mathrm{S}}(\epsilon) \cdot I_{\mathrm{V}}(\epsilon) + I_{\mathrm{V}}(\epsilon) \cdot I_{\mathrm{S}}(\epsilon) \right] \cdot F_{\mathrm{LM}} \right\rangle \\ &+ [\alpha_{s}] \left\langle \left(I_{\mathrm{S}}(\epsilon) \cdot F_{\mathrm{LV}}^{\mathrm{fin}} \right) - [\alpha_{s}]^{2} \frac{\Gamma(1-\epsilon)}{e^{\epsilon \gamma_{E}}} \right| \frac{\beta_{0}}{\epsilon} \right\rangle \left\langle I_{\mathrm{S}}(\epsilon) \right\rangle \\ &- \frac{[\alpha_{s}]^{2}}{\epsilon^{2}} C_{A} \mathcal{A}_{K}(\epsilon) \left(\widetilde{I}_{\mathrm{S}}(2\epsilon) \right) F_{\mathrm{LM}} \right\rangle \\ &+ [\alpha_{s}]^{2} \left\langle \left(\frac{1}{2} \left[I_{\mathrm{S}}(\epsilon) , \overline{I}_{1}(\epsilon) - \overline{I}_{1}^{\dagger}(\epsilon) \right] + I_{\mathrm{tri}}^{\mathrm{RV}}(\epsilon) \right\rangle \right\rangle \end{split}$$

$$A_{K} = \frac{\Gamma^{3}(1+\epsilon) \Gamma^{5}(1+\epsilon)}{\epsilon^{2} \Gamma(1+2\epsilon) \Gamma^{2}(1+\epsilon)}$$

Triple-color correlations:

- Vanish for $N_p \ge 4$
- Non-trivial phase space integral
- Finite after integration for FSR

Partial recap

Chiara Signorile-Signorile

$$I_{\rm T}(\epsilon) = I_{\rm V}(\epsilon) + I_{\rm S}(\epsilon) + I_{\rm C}(\epsilon)$$
 F
 $K = \left(\frac{67}{18} - \frac{\pi^2}{6}\right)C_A - K$

$$\frac{\beta_0}{\epsilon} I_V(\epsilon) \qquad K \ I_V(2\epsilon) \qquad \frac{\beta_0}{\epsilon} I_V(2\epsilon)$$

$$\frac{C_A}{\epsilon^2} c_1(\epsilon) \ \tilde{I}_S(2\epsilon) \qquad \frac{\beta_0}{\epsilon} \ \tilde{I}_{1,R}(2\epsilon)$$

$$\frac{1}{\epsilon^2} I_S(\epsilon) \qquad -\frac{C_A}{\epsilon^2} A_K(\epsilon) \ \tilde{I}_S(2\epsilon)$$

$$Almost reconstruct \ I_T(\epsilon)$$

$$h \ extra \ 1/\epsilon \rightarrow$$

$$I \ at \ collinear$$

$$Clear \ interplay \rightarrow C_A, 2\epsilon$$

$$non-transparent$$

cancellation

Cancellation of double color-correlated poles

Some relevant collinear limits have to be added.

Here we focus on contributions that contain at least one virtual or one soft operator and feature elastic, LO-like kinematics:

$$I_{\rm T}(\epsilon) = I_{\rm V}(\epsilon) + I_{\rm S}(\epsilon) + I_{\rm C}(\epsilon)$$

Graphical conclusions

$$\begin{array}{c} \geq 4 \\ T_{i}^{a} T_{j}^{b} T_{k}^{c} \log \\ H_{2}(\epsilon) = \frac{if_{abc}}{384c} (r_{0}^{cusp})^{2} \sum_{(i,j,k)}^{N_{p}} T_{i}^{a} T_{j}^{b} T_{k}^{c} \log \frac{-s_{ij}}{-s_{jk}} \log \frac{-s_{ij}}{-s_{ij}} \log \frac{-s_{ij}}{-s_{ij}} \int_{s_{km}}^{\epsilon} T_{i}^{a} T_{j}^{c} T_{k}^{a} T_{k}^{c} \sum_{(i,j,k)}^{r} T_{k}^{a} T_{j}^{b} T_{k}^{c} \log \frac{-s_{ij}}{-s_{jk}} \log \frac{-s_{ij}}{-s_{ij}} \int_{s_{km}}^{\epsilon} T_{i}^{a} T_{j}^{c} \sum_{(i,j,k)}^{r} T_{k}^{a} T_{j}^{b} T_{k}^{c} \left(\frac{\gamma_{0}^{i}}{C_{f_{i}}} - \frac{\gamma_{0}^{i}}{-s_{jk}} \right) \log \frac{-s_{ij}}{-s_{ij}} \log \frac{-s_{ij}}{-s_{ij}} \\ \begin{array}{c} -\frac{if_{abc}}{128c} \gamma_{0}^{cusp} \sum_{(i,j,k)}^{N_{p}} T_{i}^{a} T_{j}^{b} T_{k}^{c} \left(\frac{\gamma_{0}^{i}}{C_{f_{i}}} - \frac{\gamma_{0}^{i}}{C_{f_{i}}} \right) \log \frac{-s_{ij}}{-s_{jk}} \log \frac{-s_{ij}}{-s_{ij}} \\ \end{array} \right) \\ \begin{array}{c} \sigma \text{ finite quantity} \\ \frac{\pi^{2}\beta_{0}\Gamma_{0}^{i}}{128c} \text{ component} \\ \end{array} \right) \\ \begin{array}{c} T_{1}^{i} T_{0} \sum_{i=1}^{r} T_{0}^{i} T_{0}^{i} T_{0}^{i} T_{0}^{i} \\ T_{0}^{i} T_{0}^{i} T_{0}^{i} T_{0}^{i} T_{0}^{i} T_{0}^{i} \\ T_{0}^{i} T_{0}^{i} \\ T_{0}^{i} \\ T_{0}^{i} T_{0}^{i} \\ T_{0}^{i$$

$$I_0 \left| \left[I_{\rm V} + I_{\rm S} + I_{\rm C} \right]^2 \right| M_0 \right\rangle + \ldots \equiv \langle M_0 | I_{\rm T}^2 | M_0 \rangle + \ldots \equiv \langle$$

[slide courtesy of DMT]

$$)^{26} \quad \bar{I}_{1}^{\dagger}(\epsilon)$$

Standard conclusions

- 1. Subtraction schemes are necessary ingredients to obtain precise theoretical predictions.
- 2. Nested-soft collinear subtraction provides an efficient method to deal with n-parton processes:
 - I. combine different subtraction terms to get rid of color-correlations (and boosted contributions),
 - II. reduce the subtraction terms to few, recurring structures.
- 3. Pole cancellation proven analytically for the case-study $\underline{q\bar{q}} \rightarrow X + Ng$.
 - \rightarrow Finite remainders in agreement with the standard approach for $\underline{q\bar{q}} \rightarrow X + \underline{g@NNLO}$

Work in progress

Generalisation to arbitrary final- and initial-state partons.

Thank you!

Chiara Signorile-Signorile

$$-\frac{\alpha_{s}}{2\pi} \frac{\beta_{0}}{\epsilon} \left\langle \left[[\alpha_{s}] I_{1,R}(\epsilon) + \frac{\alpha_{s}}{2\pi} 2\Re \left(\mathcal{I}_{1}(\epsilon) \right) + I_{C}(\epsilon) \right] F_{\mathrm{LM}} \right\rangle$$

$$+ \left(\frac{\alpha_{s}}{2\pi} \right)^{2} \frac{\beta_{0}}{\epsilon} c_{\epsilon} \left\langle 2\Re \left(\mathcal{I}_{1}(2\epsilon) \right) F_{\mathrm{LM}} \right\rangle + [\alpha_{s}]^{2} \frac{\beta_{0}}{\epsilon} c_{2}(\epsilon) \left\langle \widetilde{I}_{1,R}(2\epsilon) F_{\mathrm{LM}} \right\rangle + [\alpha_{s}]^{2} \beta_{0} c_{3}(\epsilon) \left\langle \widetilde{I}_{1,R}(2\epsilon) F_{\mathrm{LM}} \right\rangle$$

$$+ \left\langle \left[- [\alpha_{s}]^{2} C_{A} A_{K} \widetilde{I}_{1,R}(2\epsilon) + [\alpha_{s}]^{2} \frac{C_{A}}{\epsilon^{2}} c_{1}(\epsilon) \widetilde{I}_{1,R}(2\epsilon) + \left(\frac{\alpha_{s}}{2\pi} \right)^{2} c_{\epsilon} K 2\Re \left(\mathcal{I}_{1}(2\epsilon) \right) \right] F_{\mathrm{LM}} \right\rangle$$

$$\frac{\alpha_{s}}{2\pi} [\alpha_{s}] \frac{\beta_{0}}{\epsilon} \left\langle I_{1,T}(2\epsilon) F_{\mathrm{LM}} \right\rangle - \frac{\alpha_{s}}{2\pi} [\alpha_{s}] \frac{\beta_{0}}{\epsilon} \left\langle I_{C}(2\epsilon) F_{\mathrm{LM}} \right\rangle + \Sigma_{T_{i} \cdot T_{j}, \mathrm{fin}}^{(1)}$$

No singular, color-correlated contributions

$$rac{eta_0}{\epsilon} \, [lpha_s] I_{1,T}(\epsilon)$$

$$-\frac{\alpha_{s}}{2\pi}\frac{\beta_{0}}{\epsilon}\left\langle \left[\left[\alpha_{s}\right]I_{1,R}(\epsilon)+\frac{\alpha_{s}}{2\pi}2\Re\left(\mathcal{I}_{1}(\epsilon)\right)+I_{C}(\epsilon)\right]F_{\mathrm{LM}}\right\rangle +\left(\frac{\alpha_{s}}{2\pi}\right)^{2}\frac{\beta_{0}}{\epsilon}c_{\epsilon}\left\langle 2\Re\left(\mathcal{I}_{1}(2\epsilon)\right)F_{\mathrm{LM}}\right\rangle +\left[\alpha_{s}\right]^{2}\frac{\beta_{0}}{\epsilon}c_{2}(\epsilon)\left\langle \widetilde{I}_{1,R}(2\epsilon)F_{\mathrm{LM}}\right\rangle +\left[\alpha_{s}\right]^{2}\beta_{0}c_{3}(\epsilon)\left(\widetilde{I}_{1,R}(2\epsilon)F_{\mathrm{LM}}\right) +\left\langle \left[-\left[\alpha_{s}\right]^{2}C_{A}A_{K}\left(\widetilde{I}_{1,R}(2\epsilon)\right)+\left[\alpha_{s}\right]^{2}\frac{C_{A}}{\epsilon^{2}}c_{1}(\epsilon)\left(\widetilde{I}_{1,R}(2\epsilon)\right)+\left(\frac{\alpha_{s}}{2\pi}\right)^{2}c_{\epsilon}K2\Re\left(\mathcal{I}_{1}(2\epsilon)\right)\right]F_{\mathrm{LM}}\right\rangle +\left\langle \left[-\left[\alpha_{s}\right]^{2}C_{A}A_{K}\left(\widetilde{I}_{1,R}(2\epsilon)\right)+\left[\alpha_{s}\right]^{2}\frac{C_{A}}{\epsilon^{2}}c_{1}(\epsilon)\left(\widetilde{I}_{1,R}(2\epsilon)\right)+\left(\frac{\alpha_{s}}{2\pi}\right)^{2}c_{\epsilon}K2\Re\left(\mathcal{I}_{1}(2\epsilon)\right)\right]F_{\mathrm{LM}}\right\rangle -\frac{\alpha_{s}}{2\pi}\left[\alpha_{s}\right]\left\langle c_{\epsilon}KI_{C}(2\epsilon)F_{\mathrm{LM}}\right\rangle -\frac{\alpha_{s}}{2\pi}\left[\alpha_{s}\right]\left\langle c_{$$

$$+ [\alpha_{s}]^{2} \frac{\beta_{0}}{\epsilon} c_{2}(\epsilon) \left\langle \tilde{I}_{1,R}(2\epsilon) F_{\mathrm{LM}} \right\rangle + [\alpha_{s}]^{2} \beta_{0} c_{3}(\epsilon) \left\langle \tilde{I}_{1,R}(2\epsilon) F_{\mathrm{LM}} \right\rangle$$

$$s_{1}^{2} \frac{C_{A}}{\epsilon^{2}} c_{1}(\epsilon) \left(\tilde{I}_{1,R}(2\epsilon) + \left(\frac{\alpha_{s}}{2\pi} \right)^{2} c_{\epsilon} K 2 \Re \left(\mathcal{I}_{1}(2\epsilon) \right) \right] F_{\mathrm{LM}} \right)$$

$$s_{2}^{2} \frac{\alpha_{s}}{\epsilon^{2}} [\alpha_{s}] \left\langle c_{\epsilon} K I_{1,T}(2\epsilon) F_{\mathrm{LM}} \right\rangle - \frac{\alpha_{s}}{2\pi} [\alpha_{s}] \left\langle c_{\epsilon} K (I_{1,R}(2\epsilon)) F_{\mathrm{LM}} \right\rangle - \frac{\alpha_{s}}{2\pi} [\alpha_{s}] \left\langle c_{\epsilon} K I_{C}(2\epsilon) F_{\mathrm{LM}} \right\rangle$$

$$finite$$

Singular and color-correlated

color-uncorrelated

$$-\frac{\alpha_{s}}{2\pi}\frac{\beta_{0}}{\epsilon}\left\langle \left[[\alpha_{s}]I_{1,R}(\epsilon) + \frac{\alpha_{s}}{2\pi}2\Re\left(\mathcal{I}_{1}(\epsilon)\right) + I_{C}(\epsilon)\right]F_{\mathrm{LM}}\right\rangle$$

$$+\left(\frac{\alpha_{s}}{2\pi}\right)^{2}\frac{\beta_{0}}{\epsilon}c_{\epsilon}\left\langle 2\Re\left(\mathcal{I}_{1}(2\epsilon)\right)F_{\mathrm{LM}}\right\rangle + [\alpha_{s}]^{2}\frac{\beta_{0}}{\epsilon}c_{2}(\epsilon)\left\langle \widetilde{I}_{1,R}(2\epsilon)F_{\mathrm{LM}}\right\rangle + [\alpha_{s}]^{2}\beta_{0}c_{3}(\epsilon)\left\langle \widetilde{I}_{1,R}(2\epsilon)F_{\mathrm{LM}}\right\rangle + \left\langle \left[-\left[\alpha_{s}\right]^{2}C_{A}A_{K}\widetilde{I}_{1,R}(2\epsilon) + \left[\alpha_{s}\right]^{2}\frac{C_{A}}{\epsilon^{2}}c_{1}(\epsilon)\widetilde{I}_{1,R}(2\epsilon) + \left(\frac{\alpha_{s}}{2\pi}\right)^{2}c_{\epsilon}K2\Re\left(\mathcal{I}_{1}(2\epsilon)\right)\right]F_{\mathrm{LM}}\right\rangle + \left\langle \left[-\left[\alpha_{s}\right]^{2}C_{A}A_{K}\widetilde{I}_{1,R}(2\epsilon) + \left[\alpha_{s}\right]^{2}\frac{C_{A}}{\epsilon^{2}}c_{1}(\epsilon)\widetilde{I}_{1,R}(2\epsilon) + \left(\frac{\alpha_{s}}{2\pi}\right)^{2}c_{\epsilon}K2\Re\left(\mathcal{I}_{1}(2\epsilon)\right)\right]F_{\mathrm{LM}}\right\rangle - \frac{\alpha_{s}}{2\pi}\left[\alpha_{s}\right]\left\langle c_{\epsilon}KI_{C}(2\epsilon)F_{\mathrm{LM}}\right\rangle - \frac{\alpha_{s}}{2\pi}\left[\alpha_{s}\right]\left\langle c_{\epsilon}KI_{C}(2\epsilon)F_{\mathrm{LM}}\right\rangle - C_{A}A_{K} + \frac{C_{A}}{\epsilon^{2}}c_{1} \quad \text{finite} \quad \text{f$$

$$-\frac{\alpha_{s}}{2\pi}\frac{\beta_{0}}{\epsilon}\left\langle\left[\left[\alpha_{s}\right]I_{1,R}(\epsilon)+\frac{\alpha_{s}}{2\pi}2\Re\left(\mathcal{I}_{1}(\epsilon)\right)+I_{C}(\epsilon)\right]F_{\mathrm{LM}}\right\rangle\right.\\ +\left(\frac{\alpha_{s}}{2\pi}\right)^{2}\frac{\beta_{0}}{\epsilon}c_{\epsilon}\left\langle2\Re\left(\mathcal{I}_{1}(2\epsilon)\right)F_{\mathrm{LM}}\right\rangle+\left[\alpha_{s}\right]^{2}\frac{\beta_{0}}{\epsilon}c_{2}(\epsilon)\left\langle\tilde{I}_{1,R}(2\epsilon)F_{\mathrm{LM}}\right\rangle+\left[\alpha_{s}\right]^{2}\beta_{0}c_{3}(\epsilon)\left\langle\tilde{I}_{1,R}(2\epsilon)F_{\mathrm{LM}}\right\rangle\right.\\ +\left\langle\left[-\left[\alpha_{s}\right]^{2}C_{A}A_{K}\tilde{I}_{1,R}(2\epsilon)+\left[\alpha_{s}\right]^{2}\frac{C_{A}}{\epsilon^{2}}c_{1}(\epsilon)\tilde{I}_{1,R}(2\epsilon)+\left(\frac{\alpha_{s}}{2\pi}\right)^{2}c_{\epsilon}K2\Re\left(\mathcal{I}_{1}(2\epsilon)\right)\right]F_{\mathrm{LM}}\right\rangle\right.\\ \left.\left.\left.\left.\left.\left[\alpha_{s}\right]\frac{\alpha_{s}}{2\pi}\frac{\beta_{0}}{\epsilon}\left\langle\left(I_{1,T}(2\epsilon)-I_{1,T}(\epsilon)\right)F_{\mathrm{LM}}\right\rangle\right.\\ +\left\langle\left[\left[\alpha_{s}\right]^{2}\left(-C_{A}A_{K}+\frac{C_{A}}{\epsilon^{2}}c_{1}(\epsilon)+\beta_{0}c_{3}(\epsilon)\right)-\frac{\alpha_{s}}{2\pi}\left[\alpha_{s}\right]c_{\epsilon}K\right]I_{1,R}(2\epsilon)F_{\mathrm{LM}}\right\rangle\right.\\ \left.\left.\left.\left.\left.\left.\left.\left[\alpha_{s}\right]\frac{\left\langle\left(c_{\epsilon}K+\frac{\beta_{0}}{\epsilon}\right)I_{C}(2\epsilon)F_{\mathrm{LM}}\right\rangle\right)}{I/\epsilon^{2}\operatorname{ color-uncorrelated}}\right.\right\right.\right\}$$

Peculiar dependence in the color-correlations, that fits perfectly a contribution from triple-collinear sectors $\Theta^{(b)}$

$$\left\langle \sum_{i \in \mathrm{TC}} (I - S_{45}) C_{45} \Theta^{(b)} (F_{\mathrm{LM}} - 2S_5 F_{\mathrm{LM}}^{4>5}) \omega_{4i5i} \Delta^{(45)} \right\rangle - 4[\alpha_s]^2 C_A 2^{-2\epsilon} \delta_g(\epsilon)$$

$$\left\langle I_{1,R}(2\epsilon)F_{\mathrm{LM}}\right\rangle + \Sigma_{T_i \cdot T_j, \,\mathrm{fin}}^{(2)} \propto -\frac{C_A(C_A + 2C_F)}{\epsilon^2} \left(-\frac{131}{72} + \frac{\pi^2}{6} + \frac{11}{6}\log 2\right) + \frac{\pi^2}{6} + \frac{11}{6}\log 2\right)$$

Useful relations:

$$\begin{split} I_{1,R}(\epsilon) &= -\frac{\left(2E_{\max}/\mu\right)^{-2\epsilon}}{\epsilon^2} \sum_{i\neq j}^n \eta_{ij}^{-\epsilon} K_{ij} \mathbf{T}_i \cdot \mathbf{T}_j ,\\ K_{ij} &= \frac{\Gamma^2(1-\epsilon)}{\Gamma(1-2\epsilon)} \eta_{ij}^{1+\epsilon} {}_2F_1(1,1,1-\epsilon,1-\eta_{ij}) \\ &= \frac{\Gamma^2(1-\epsilon)}{\Gamma(1-2\epsilon)} {}_2F_1(-\epsilon,-\epsilon,1-\epsilon,1-\eta_{ij}) \end{split}$$
$$\tilde{I}_{1,R}(2\epsilon) &= -\frac{\left(2E_{\max}/\mu\right)^{-4\epsilon}}{(2\epsilon)^2} \sum_{i\neq j}^n \eta_{ij}^{-2\epsilon} \widetilde{K}_{ij} \mathbf{T}_i \cdot \mathbf{T}_j \\ \tilde{K}_{ij} &= \frac{\Gamma^2(1-2\epsilon)}{\Gamma(1-4\epsilon)} \eta_{ij}^{1+3\epsilon} {}_2F_1(1+\epsilon,1+\epsilon,1-\epsilon,1-\eta_{ij}) \\ &= \frac{\Gamma^2(1-2\epsilon)}{\Gamma(1-4\epsilon)} {}_2F_1(-2\epsilon,-2\epsilon;1-\epsilon,1-\eta_{ij}) . \end{split}$$

$$\widetilde{K}_{ij}(\epsilon) = K_{ij}(2\epsilon) \left[\frac{{}_2F_1(-2\epsilon, -2\epsilon; 1-\epsilon, 1-\eta_{ij})}{{}_2F_1(-2\epsilon, -2\epsilon, 1-2\epsilon, 1-\eta_{ij})} \right] = K_{ij}(2\epsilon) \left[1 + \mathcal{O}(\epsilon^3) \right]$$

$$\tilde{I}_{1,R}(2\epsilon) =$$

 $I_{1,R}(2\epsilon) + \mathcal{O}(\epsilon)$

Useful definitions:

$$\hat{\Gamma}_{q} = \frac{1}{\epsilon} \frac{\Gamma^{2}(1-\epsilon)}{\Gamma(1-2\epsilon)} \left(\frac{2E_{1}}{\mu}\right)^{-2\epsilon} \left[\gamma_{q} + \frac{C_{F}}{\epsilon} (1-e^{-2\epsilon L_{1}})\right] F_{\mathrm{LM}}(1\dots N) \sim \frac{1}{\epsilon} (\gamma_{q} + 2C_{F} L_{1}) + \mathcal{O}(\epsilon^{0})$$

$$\hat{\Gamma}_{g} = \frac{1}{\epsilon} C_{A} \left(\frac{2E_{n}}{\mu}\right)^{-2\epsilon} \frac{\Gamma^{2}(1-\epsilon)}{\Gamma(1-2\epsilon)} \left[\gamma_{z,g \to gg}^{22} + \frac{1}{\epsilon} (1-e^{-2\epsilon L_{n}})\right] \qquad \gamma_{z,g \to gg}^{22} \sim \frac{11}{6} + \frac{1}{9} \left(67 - 6\pi^{2}\right)\epsilon + \dots$$

$$\hat{\Gamma}_{g}(2\epsilon) = \frac{1}{2\epsilon} C_{A} \left(\frac{2E_{n}}{\mu}\right)^{-4\epsilon} \frac{\Gamma^{2}(1-2\epsilon)}{\Gamma(1-4\epsilon)} \left[\gamma_{z,g \to gg}^{44} + \frac{1}{2\epsilon} (1-e^{-4\epsilon L_{n}})\right]$$

$$\begin{split} \hat{\Gamma}_{q} &= \frac{1}{\epsilon} \frac{\Gamma^{2}(1-\epsilon)}{\Gamma(1-2\epsilon)} \Big(\frac{2E_{1}}{\mu}\Big)^{-2\epsilon} \Big[\gamma_{q} + \frac{C_{F}}{\epsilon} (1-e^{-2\epsilon L_{1}})\Big] F_{\mathrm{LM}}(1\dots N) \sim \frac{1}{\epsilon} (\gamma_{q} + 2C_{F} L_{1}) + \mathcal{O}(\epsilon^{0}) \\ \hat{\Gamma}_{g} &= \frac{1}{\epsilon} C_{A} \Big(\frac{2E_{n}}{\mu}\Big)^{-2\epsilon} \frac{\Gamma^{2}(1-\epsilon)}{\Gamma(1-2\epsilon)} \Bigg[\gamma_{z,g \to gg}^{22} + \frac{1}{\epsilon} (1-e^{-2\epsilon L_{n}})\Bigg] \qquad \gamma_{z,g \to gg}^{22} \sim \frac{11}{6} + \frac{1}{9} \left(67 - 6\pi^{2}\right) \epsilon + \dots \\ \hat{\Gamma}_{g}(2\epsilon) &= \frac{1}{2\epsilon} C_{A} \Big(\frac{2E_{n}}{\mu}\Big)^{-4\epsilon} \frac{\Gamma^{2}(1-2\epsilon)}{\Gamma(1-4\epsilon)} \Bigg[\gamma_{z,g \to gg}^{44} + \frac{1}{2\epsilon} (1-e^{-4\epsilon L_{n}})\Bigg] \end{split}$$

$$\begin{split} \hat{\Gamma}_{q} &= \frac{1}{\epsilon} \frac{\Gamma^{2}(1-\epsilon)}{\Gamma(1-2\epsilon)} \Big(\frac{2E_{1}}{\mu}\Big)^{-2\epsilon} \Big[\gamma_{q} + \frac{C_{F}}{\epsilon} (1-e^{-2\epsilon L_{1}})\Big] F_{\mathrm{LM}}(1\dots N) \sim \frac{1}{\epsilon} (\gamma_{q} + 2C_{F} L_{1}) + \mathcal{O}(\epsilon^{0}) \\ \hat{\Gamma}_{g} &= \frac{1}{\epsilon} C_{A} \Big(\frac{2E_{n}}{\mu}\Big)^{-2\epsilon} \frac{\Gamma^{2}(1-\epsilon)}{\Gamma(1-2\epsilon)} \Bigg[\gamma_{z,g \to gg}^{22} + \frac{1}{\epsilon} (1-e^{-2\epsilon L_{n}})\Bigg] \qquad \gamma_{z,g \to gg}^{22} \sim \frac{11}{6} + \frac{1}{9} \left(67 - 6\pi^{2}\right) \epsilon + \dots \\ \hat{\Gamma}_{g}(2\epsilon) &= \frac{1}{2\epsilon} C_{A} \Big(\frac{2E_{n}}{\mu}\Big)^{-4\epsilon} \frac{\Gamma^{2}(1-2\epsilon)}{\Gamma(1-4\epsilon)} \Bigg[\gamma_{z,g \to gg}^{44} + \frac{1}{2\epsilon} (1-e^{-4\epsilon L_{n}})\Bigg] \end{split}$$

$$P_{qq}^{\text{gen}}(z) = -\frac{1}{\epsilon} \hat{P}_{qq}^{\text{AP},0}(z) + P_{\text{fin},qq}'(z)$$

$$G^{(1)}(z) F_{\rm LM}^{(1)} = \frac{1}{2} [\alpha_s]^2 \left[-P_{qq}^{\rm gen} \otimes \Gamma_q^{(1)}(z) F_{\rm LM}^{(1)}(1_q, 2_{\bar{q}}; 3_g | z) + \Gamma_q^{(1)} P_{qq}^{\rm gen} \otimes F_{\rm LM}^{(1)}(1_q, 2_{\bar{q}}; 3_g | z) \right]$$

$$G^{(3)}(L_3) = \frac{1}{2} \frac{[\alpha_s]^2}{\epsilon^2} C_A^2 \left(\frac{2E_3}{\mu}\right)^{-4\epsilon} \left(\frac{\Gamma^2(1-\epsilon)}{\Gamma(1-2\epsilon)}\right)^2 \left(\gamma_{z,g\to gg}^{22} + \frac{1}{\epsilon}\right) \left(\gamma_{z,g\to gg}^{42} - \gamma_{z,g\to gg}^{22}\right)$$

1. Clear understanding of which singular configurations do actually contribute

Do non-commutative limits actually contribute?

collinear limits order -> redundant configurations were included

Gauge invariant amplitudes are free of entangled singularities thanks to color coherence: soft parton does not resolve angles of the collinear partons

[Czakon 1005.0274]

2. Get to the point where the problem is well defined

a) Identify the overlapping singularities b) Regulate them

Soft and collinear modes do not intertwine: soft subtraction can be done globally. Collinear singularities have still to be regulated. Strongly ordered configurations have to be properly taken into account.

Phase space partitions

Efficient way to simplify the problem: introduce **partition functions** (following FKS philosophy):

- Unitary partition
- Select a minimum number of singularities in each sector
- Do not affect the analytic integration of the counterterms

Definition of partition functions benefits from remarkable degree of **freedom**: different approaches can be implemented

Examples: Nested soft-collinear subtraction $q\bar{q} \rightarrow Z \rightarrow e^-e^+gg$ [Caola, Melnikov, Röntsch 1702.01352]

$$1 = \omega^{51,61} + \omega^{52,62} + \omega^{51,62} +$$

$$\omega^{51,61} = \frac{\rho_{25}\rho_{26}}{d_5d_6} \left(1 + \frac{\rho_{15}}{d_{5621}} + \frac{\rho_{16}}{d_{5612}}\right) \qquad \omega^{51,62} = \frac{\rho_{25}\rho_{16}\rho_{56}}{d_5d_6d_{5612}} \qquad \rho_{ab} = 1 - \cos\vartheta_{ab} , \eta_{ab} = \rho_{ab}/2$$

$$d_{i=5,6} = \rho_{1i} + \rho_{2i} = 2$$

$$d_{52,62} = \frac{\rho_{15}\rho_{16}}{d_5d_6} \left(1 + \frac{\rho_{25}}{d_{5621}} + \frac{\rho_{26}}{d_{5612}}\right) \qquad \omega^{52,61} = \frac{\rho_{15}\rho_{26}\rho_{56}}{d_5d_6d_{5621}} \qquad d_{5621} = \rho_{56} + \rho_{52} + \rho_{61}$$

$$d_{5612} = \rho_{56} + \rho_{51} + \rho_{62}$$

$$\left(\frac{\eta_{51}}{2} < \eta_{61} < \eta_{51}\right) + \theta\left(\eta_{51} < \frac{\eta_{61}}{2}\right) + \theta\left(\frac{\eta_{61}}{2} < \eta_{51} < \eta_{61}\right) \qquad g_{60}^{(6)} \qquad g_{60}^{(5)} \qquad g_{60}^{(6)} \qquad g_{60}^$$

$$\begin{array}{c}
q(1) \\
q(1) \\
q(2) \\
g(6) \\
q(6) \\
q$$

 $+\omega^{52,61}$

Phase space partitions

Efficient way to simplify the problem: introduce **partition functions** (following FKS philosophy):

- Unitary partition
- Select a minimum number of singularities in each sector
- Do not affect the analytic integration of the counterterms

Definition of partition functions benefits from remarkable degree of **freedom**: different approaches can be implemented

Examples: Nested soft-collinear subtraction $q\bar{q} \rightarrow Z \rightarrow e^-e^+gg$ [Caola, Melnikov, Röntsch 1702.01352]

Advantages:

- 1. Simple definition
- 2. Structure of collinear singularities fully defined
- 3. Same strategy holds for NNLO mixed QCDxEW processes
- 4. Minimum number of sector

Disadvantages:

- -> angles defined in a given reference frame
- 2. Theta function

1. Partition based on angular ordering -> Lorentz invariance not preserved

3. Solve the PS integrals

The problem is now well defined:

A. Singular kernels and their nested limits have to be subtracted from the double real correction to get integrable object

$$\int d\Phi_{n+2} RR_{n+2} = \int d\Phi_{n+2} \left[RR_{n+2} - K_{n+2} \right] + \int d\Phi_{n+2} K_{n+2} \qquad K_{n+2} \supset C_{ij}, C_{kl}, S_i, S_{ij}, C_{kl}, S_{ij}, C_{k$$

B. Counterterms have to be integrated over the unresolved phase space

$$I = \int PS_{unres.} \otimes Li$$

The 'Limit' component is universal and known. The phase space is well defined. Constraints may vary depending on the scheme.

Several kinematic structures have to be integrated **analytically** over a 6-dim PS.

Different approximations and techniques can be applied: the results assume different form depending on the adopted strategy

Two main structure are the most complicated ones and affect most of the physical processes:

- Double soft
- Triple collinear

$imit \otimes Constraints$

Kernels integration

Examples: Nested soft-collinear subtraction $q\bar{q} \rightarrow Z \rightarrow e^- e^+ g g$ [Caola, Delto, Frellesvig, Melnikov 1807.05835, Delto, Melnikov 1901.05213]

Two soft parton (5,6) and two hard massless radiator (1,2): arbitrary relative angle between the three-momenta of the radiators

$$I_{12}^{(gg)(56)} = \frac{(1-\epsilon)(s_{51}s_{62} + s_{52}s_{61}) - 2s_{56}s_{12}}{s_{56}^2(s_{51} + s_{61})(s_{52} + s_{62})} + s_{12} \frac{s_{51}s_{62} + s_{52}s_{61} - s_{56}s_{12}}{s_{56}s_{51}s_{62}s_{52}s_{61}} \left[1 - \frac{1}{2} \frac{s_{51}s_{62} + s_{52}s_{61}}{(s_{51} + s_{61})(s_{52} + s_{62})}\right]$$

$$I_{S_{56}}^{(gg)} = \int [dk_5] [dk_6] \,\theta(E_{\text{max}} - E_5) \,\theta(E_5 - E_6) \,I_{12}^{(gg)(56)}(k_1, k_2, k_5, k_6) \qquad [df_i] = \frac{d^d k_i}{(2\pi)^d} (2\pi) \,\delta_+(k_i^2)$$

$$E_5 = E_{\max} \xi \qquad E_6 = E_{\max} \xi z \qquad 0 <$$

after defining integral families, integration-by-part identities. Differential equations w.r.t. the ratio of energies of emitted gluons at fixed angle. Boundary conditions for z=0, and arbitrary angle

 $< \xi < 1, 0 < z < 1$

Reverse unitarity: map phase space integrals onto loop integrals [Anastasiou, Melnikov 0207004]

Ingredients for higher-order corrections and main difficulties

$$+ \alpha_s^2 \frac{d\sigma_{N^2LO}}{dX} + \alpha_s^3 \frac{d\sigma_{N^3LO}}{dX} + \dots \qquad X = \text{IRC-safe, } \delta_{X_i} = \delta(X)$$

$$\mathcal{O}(\alpha_s^3) \sim 0.1 \%$$

$$\int d\Phi_{n+1} \, \mathbf{RV} \, \delta_{X_{n+1}}$$

- Explicit poles from virtual corrections
- Phase space singularities

- One-loop amplitudes in degenerate kinematics - OpenLoops, Recola

Well defined in the non-degenerate kinematics

- Real emission corrections finite in the bulk of the allowed PS
- IR singularities arise upon integration over energies and angles of emitted partons

Summary of the talk

- A subtraction scheme based of FKS was proposed.
- for arbitrary kinematics.
- Application to simple processes worked out straightforwardly.
- This can be done because we know how to deal with **multiple radiators** [partitioning, energy ordering]
- simplifications that are suggested by the simple structure of Catani's operator.
- This suggests that we may need to take **some steps back**.

• Singular kernels for initial- and final-state emission are known. Integration of the most complicated double-unresolved limits performed

• In principle, general formulas for subtraction terms and fully-resolved components for an arbitrary number of partons are available.

• However, for non-trivial processes (e.g. V+j) several difficulties arise: partitioning, energy ordering and Casimir operators obscure

Subtraction

Nested soft-collinear subtraction at NNLO: generalities [Caola, Melnikov, Röntsch 1702.01352]

Extension of FKS subtraction [Frixione, Kunst, Signer 9512328] to NNLO and inspired by STRIPPER [Czakon 1005.0274]

$$\frac{1}{E_{1}E_{2}(1-\vec{n}_{1}\cdot\vec{n}_{2})} \frac{1}{E_{1}E_{2}(1-\vec{n}_{1}\cdot\vec{n}_{2}) + E_{1}E_{3}(1-\vec{n}_{1}\cdot\vec{n}_{3}) + E_{2}E_{3}(1-\vec{n}_{2}\cdot\vec{n}_{3})}$$

$$E_{1} \rightarrow 0 \quad E_{2} \rightarrow 0 \quad E_{1}, E_{2} \rightarrow 0$$

$$\vec{n}_{1} \parallel \vec{n}_{2} \parallel \vec{n}_{3}$$

$$\vec{n}_{1} \parallel \vec{n}_{2}$$
is have also to be included:
$$E_{1} \ll E_{2}, \quad E_{2} \ll E_{1}$$

$$\vec{n}_{1}\cdot\vec{n}_{2} < \vec{n}_{1}\cdot\vec{n}_{3}$$

$$\vec{n}_{2}\cdot\vec{n}_{3} < \vec{n}_{1}\cdot\vec{n}_{3}$$

$$\vec{n}_{2}\cdot\vec{n}_{3} < \vec{n}_{1}\cdot\vec{n}_{3}$$

$$\vec{n}_{2}\cdot\vec{n}_{3} < \vec{n}_{1}\cdot\vec{n}_{3}$$

$$\vec{n}_{1}\cdot\vec{n}_{3} < \vec{n}_{2}.$$
Soft limits:
$$\cdot \text{ Non-trivial structure of double-soft eikonal}$$

$$\cdot \text{ Strongly-ordered limits to disentangle}$$

$$1 = \theta(E_{g_{5}} - E_{g_{6}}) + \theta(E_{g_{6}} - E_{g_{5}})$$

$$\vec{E}_{g_{5}} = E_{g_{6}}$$

Strongly-ordered configurations

$$\frac{1}{E_1E_2(1-\vec{n}_1\cdot\vec{n}_2)} \frac{1}{E_1E_2(1-\vec{n}_1\cdot\vec{n}_2)+E_1E_3(1-\vec{n}_1\cdot\vec{n}_3)+E_2E_3(1-\vec{n}_2\cdot\vec{n}_3)}$$

$$\Rightarrow 0 \quad E_2 \rightarrow 0 \quad E_1, E_2 \rightarrow 0$$

$$\parallel \vec{n}_2 \parallel \vec{n}_3$$

$$\parallel \vec{n}_2$$
we also to be included: $E_1 \ll E_2, \quad E_2 \ll E_1$

$$\vec{n}_1\cdot\vec{n}_2 < \vec{n}_1\cdot\vec{n}_3$$

$$\vec{n}_2 \cdot \vec{n}_3 < \vec{n}_1\cdot\vec{n}_3$$

$$\vec{n}_2 \cdot \vec{n}_3 < \vec{n}_1\cdot\vec{n}_3$$

$$\vec{n}_1 \cdot \vec{n}_3 < \vec{n}_2 \cdot \vec{n}_3$$

$$\vec{n}_2 \cdot \vec{n}_3 < \vec{n}_1\cdot\vec{n}_3$$

$$\vec{n}_1 \cdot \vec{n}_3 < \vec{n}_2 \cdot \vec{n}_3$$

$$\vec{n}_1 \cdot \vec{n}_3 < \vec{n}_2 \cdot \vec{n}_3$$

$$\vec{n}_2 \cdot \vec{n}_3 < \vec{n}_1 \cdot \vec{n}_3$$

$$\vec{n}_1 \cdot \vec{n}_3 < \vec{n}_2 \cdot \vec{n}_3$$

Nested soft-collinear subtraction at NNLO: generalities [Caola, Melnikov, Röntsch 1702.01352]

Extension of FKS subtraction [Frixione, Kunst, Signer 9512328] to NNLO and inspired by STRIPPER [Czakon 1005.0274]

- Exploit colour-coherence to discard interplay between soft and collinear
 - \rightarrow subtract soft limits first, then collinear
- Define subtraction terms in 3 steps:
 - Globally remove double soft singularities
 - Globally remove single soft singularities [using energy ordering]
 - FKS partition and sectoring to treat the minimum number of collinear singularities at a time
- Integrate subtraction terms analytically using Reverse Unitarity [Anastasiou, Melnikov '02]: map phase space integrals onto loop integrals [Caola, Delto, Frellesvig, Melnikov '18, '19]

"nested approach"

 $1 = \sum \omega^{i5, j6}$ $\omega^{5i,6i} = \omega^{5i,6i} \left(\theta_a + \theta_b + \theta_c + \theta_d \right)$

Double virtual contribution

Universal structure, regulated by Catani's operator, valid for any number of external coloured partons [Catani '98] . Features a single structure with color-correlations

$$\begin{split} \left\langle F_{\rm LVV} \right\rangle &= \left(\frac{\alpha_s}{2\pi}\right)^2 \left\langle \frac{1}{2} \left(2\Re(\mathcal{I}_1(\epsilon))\right)\right|^2 F_{\rm LM} - \frac{\beta_0}{\epsilon} 2\Re(\mathcal{I}_1(\epsilon)) F_{\rm LM} \\ &+ \frac{e^{-\epsilon\gamma_{\rm E}}\Gamma(1-2\epsilon)}{\Gamma(1-\epsilon)} \frac{\beta_0}{\epsilon} 2\Re(\mathcal{I}_1(2\epsilon)) F_{\rm LM} + \frac{e^{-\epsilon\gamma_{\rm E}}\Gamma(1-2\epsilon)}{\Gamma(1-\epsilon)} K 2\Re(\mathcal{I}_1(2\epsilon)) F_{\rm LM} \\ &+ 2 \frac{e^{\epsilon\gamma_{\rm E}}}{4\epsilon\,\Gamma(1-\epsilon)} \mathcal{H}_2(\epsilon) F_{\rm LM} + 2\Re(\mathcal{I}_1(\epsilon)) F_{\rm LV}^{\rm fin} + F_{\rm LVV}^{\rm fin} + F_{\rm LV}^{\rm fin} \right\rangle, \end{split}$$

Process-dependent

Finite remainders from 2-loop and $(1-loop)^2$ amplitudes

Color-correlations inside $\mathcal{I}_1(\epsilon)$ (already encountered at NLO)

$$K = \left(\frac{67}{18} - \frac{\pi^2}{6}\right) C_A - \frac{10}{9} T_R r$$

Hard-collinear real-virtual and single soft RR

Also in this case the IR structure is know in full generality [Kosower '99, Bern, Del Duca et al. '99]. For $q\bar{q} \rightarrow V + ggg$ the integrated contribution reads

$$\sum_{i=1}^{3} \left\langle (I - S_4)C_{4i} \Delta^{(4)} F_{\text{LV}}(4) \right\rangle = [\alpha_s]^2 \left\langle I_C(\epsilon) 2\Re(\bar{I}_1(\epsilon))F_{\text{LM}} \right\rangle + \\ - [\alpha_s] \frac{\alpha_s}{2\pi} \frac{\beta_0}{\epsilon} \left\langle I_C(\epsilon)F_{\text{LM}} + \sum_{k=1}^2 \right\rangle + [\alpha_s]^2 \left\langle \Gamma_g^{1\text{loop}} F_{\text{LM}} \right\rangle + \frac{[\alpha_s]^2}{\epsilon} \\ + [\alpha_s]^2 \left\langle \Gamma_g^{1\text{loop}} F_{\text{LM}} \right\rangle + \frac{[\alpha_s]^2}{\epsilon} \\ \text{One-loop splitting functions,} \\ + [\alpha_s]^2 \sum_{k=1}^2 \left\langle P_{qq}^{\text{gen}}(z) \otimes 2\text{Re}(\bar{I}_{\text{K}}) \right\rangle + \frac{[\alpha_s]^2}{\epsilon} \\ + [\alpha_s]^2 \sum_{k=1}^2 \left\langle P_{qq}^{\text{gen}}(z) \right\rangle + \frac{[\alpha_s]^2}{\epsilon} \\ + [\alpha_s]^2 \sum_{k=1}^2 \left\langle P_{qq}^{\text{gen}}(z) \right\rangle + \frac{[\alpha_s]^2}{\epsilon} \\ + [\alpha_s]^2 \sum_{k=1}^2 \left\langle P_{qq}^{\text{gen}}(z) \right\rangle + \frac{[\alpha_s]^2}{\epsilon} \\ + [\alpha_s]^2 \sum_{k=1}^2 \left\langle P_{qq}^{\text{gen}}(z) \right\rangle + \frac{[\alpha_s]^2}{\epsilon} \\ + [\alpha_s]^2 \sum_{k=1}^2 \left\langle P_{qq}^{\text{gen}}(z) \right\rangle + \frac{[\alpha_s]^2}{\epsilon} \\ + [\alpha_s]^2 \sum_{k=1}^2 \left\langle P_{qq}^{\text{gen}}(z) \right\rangle + \frac{[\alpha_s]^2}{\epsilon} \\ + \left[\alpha_s]^2 \sum_{k=1}^2 \left\langle P_{qq}^{\text{gen}}(z) \right\rangle + \frac{[\alpha_s]^2}{\epsilon} \\ + \left[\alpha_s]^2 \sum_{k=1}^2 \left\langle P_{qq}^{\text{gen}}(z) \right\rangle + \frac{[\alpha_s]^2}{\epsilon} \\ + \left[\alpha_s]^2 \sum_{k=1}^2 \left\langle P_{qq}^{\text{gen}}(z) \right\rangle + \frac{[\alpha_s]^2}{\epsilon} \\ + \left[\alpha_s]^2 \sum_{k=1}^2 \left\langle P_{qq}^{\text{gen}}(z) \right\rangle + \frac{[\alpha_s]^2}{\epsilon} \\ + \left[\alpha_s]^2 \sum_{k=1}^2 \left\langle P_{qq}^{\text{gen}}(z) \right\rangle + \frac{[\alpha_s]^2}{\epsilon} \\ + \left[\alpha_s]^2 \sum_{k=1}^2 \left\langle P_{qq}^{\text{gen}}(z) \right\rangle + \frac{[\alpha_s]^2}{\epsilon} \\ + \left[\alpha_s]^2 \sum_{k=1}^2 \left\langle P_{qq}^{\text{gen}}(z) \right\rangle + \frac{[\alpha_s]^2}{\epsilon} \\ + \left[\alpha_s]^2 \sum_{k=1}^2 \left\langle P_{qq}^{\text{gen}}(z) \right\rangle + \frac{[\alpha_s]^2}{\epsilon} \\ + \left[\alpha_s]^2 \sum_{k=1}^2 \left\langle P_{qq}^{\text{gen}}(z) \right\rangle + \frac{[\alpha_s]^2}{\epsilon} \\ + \left[\alpha_s]^2 \sum_{k=1}^2 \left\langle P_{qq}^{\text{gen}}(z) \right\rangle + \frac{[\alpha_s]^2}{\epsilon} \\ + \left[\alpha_s]^2 \sum_{k=1}^2 \left\langle P_{qq}^{\text{gen}}(z) \right\rangle + \frac{[\alpha_s]^2}{\epsilon} \\ + \left[\alpha_s]^2 \sum_{k=1}^2 \left\langle P_{qq}^{\text{gen}}(z) \right\rangle + \frac{[\alpha_s]^2}{\epsilon} \\ + \left[\alpha_s]^2 \sum_{k=1}^2 \left\langle P_{qq}^{\text{gen}}(z) \right\rangle + \frac{[\alpha_s]^2}{\epsilon} \\ + \left[\alpha_s]^2 \sum_{k=1}^2 \left\langle P_{qq}^{\text{gen}}(z) \right\rangle + \frac{[\alpha_s]^2}{\epsilon} \\ + \left[\alpha_s]^2 \sum_{k=1}^2 \left\langle P_{qq}^{\text{gen}}(z) \right\rangle + \frac{[\alpha_s]^2}{\epsilon} \\ + \left[\alpha_s]^2 \sum_{k=1}^2 \left\langle P_{qq}^{\text{gen}}(z) \right\rangle + \frac{[\alpha_s]^2}{\epsilon} \\ + \left[\alpha_s]^2 \sum_{k=1}^2 \left\langle P_{qq}^{\text{gen}}(z) \right\rangle + \frac{[\alpha_s]^2}{\epsilon} \\ + \left[\alpha_s]^2 \sum_{k=1}^2 \left\langle P_{qq}^{\text{gen}}(z) \right\rangle + \frac{[\alpha_s]^2}{\epsilon} \\ + \left[\alpha_s]^2 \sum_{k=1}^2 \left\langle P_{qq}^{\text{gen}}(z) \right\rangle + \frac{[\alpha_s]^2}{\epsilon} \\ + \left[\alpha_s]^2 \sum_{k=1}^2 \left\langle P_{qq}^{\text{gen}}(z) \right$$

Single soft: different subtraction terms combined \rightarrow careful with the limits order

$$\begin{split} \sum_{i=1}^{3} \left\langle (I - S_{4})C_{4i} \left[\left\langle S_{5} \Delta^{(45)} F_{\text{LM}}^{4>5}(4,5) \right\rangle \right] + S_{5} \left(I - S_{4} \right) C_{4i} \Delta^{(45)} F_{\text{LM}}^{5>4}(4,5) \right\rangle = \\ + \left[\alpha_{s} \right]^{2} \sum_{k=1}^{2} \left\langle I_{1R}(\epsilon) P_{qq}^{\text{gen}}(z) \otimes F_{\text{LM}}^{(k)}(z) \right\rangle + \left[\alpha_{s} \right]^{2} \left\langle I_{1R}(\epsilon) I_{C}(\epsilon) F_{\text{LM}} \right\rangle \\ + \frac{\left[\alpha_{s} \right]^{2}}{\epsilon^{2}} N_{s} C_{A} \left[\sum_{k=1}^{2} \left\langle \left(\frac{2E_{k}}{\mu} \right)^{-2\epsilon} \tilde{P}_{qq}^{\text{gen}}(z) \otimes F_{\text{LM}}^{(k)}(z) \right\rangle + \sum_{k=1}^{3} \left\langle \left(\frac{2E_{k}}{\mu} \right)^{-2\epsilon} \hat{\Gamma}^{(k) \text{ e.o.}} F_{\text{LM}} \right\rangle \right] \end{split}$$

Status so far

$\langle F_{ m LVV} angle$	$igg = rac{1}{2} \Big[2 \Re(\mathcal{I}_1(\epsilon)) \Big]^2$	$rac{eta_0}{\epsilon}2 \$$
$\langle S_{45}F_{ m LM}^{4>5}(4,5) angle$	${1\over 2}I^2_{1,R}(\epsilon)$	
$ig\langle S_4 F_{ m LRV}(4) ig angle$	$I_{1,R}(\epsilon) 2 \Re ig(\mathcal{I}_1(\epsilon) ig)$	$\frac{\beta_0}{\epsilon} I_2$
$\left\langle (I-S_4)C_{4i}\Delta^{(4)}F_{ m LV}(4) ight angle$	$I_C(\epsilon) 2 \Re ig(ar{\mathcal{I}}_1(\epsilon) ig)$	$-rac{eta_0}{\epsilon}I$
$\left\langle (I - S_4) C_{4i} \left[\left\langle S_5 \Delta^{(45)} F_{\rm LM}^{4>5}(4,5) \right\rangle \right] + S_5 \left(I - S_4 \right) C_{4i} \Delta^{(45)} F_{\rm LM}^{5>4}(4,5) \right\rangle$	$I_{1R}(\epsilon) I_C(\epsilon)$	
$A terecon \\ \rightarrow lo$	erm $I_C^2(\epsilon)$ needed to struct $(I_1 + I_{1,R} + I_C)^2$ ok at double-collinear	recon $I_1(\epsilon) + I_{1,F}$ but with

Chiara Signorile-Signorile

$$K = \left(\frac{67}{18} - \frac{\pi^2}{6}\right)C_A - \frac{10}{9}T_A$$

Hard-collinear real-virtual and single soft RR

Manipulations required to reconstruct recurring structures and match, for instance, PDFs-like corrections

$$\begin{aligned} \frac{1}{2} \left\langle \sum_{i,j} (I - S_4) \left(I - S_5 \right) C_{4i} C_{5j} \, \Delta^{(45)} F_{\text{LM}}(4,5) \right\rangle &= \left\langle \frac{1}{2} [\alpha_s]^2 \left(I_C(\epsilon) \right)^2 F_{\text{LM}} + \sum_{k=1}^2 G^{(k)}(z) F_{\text{LM}}^{(k)}(z) + G^{(3)} F_{\text{LM}} \right. \\ &+ \frac{1}{2} \left[\alpha_s \right]^2 \sum_{k=1}^2 \left[P_{qq}^{\text{gen}} \otimes P_{qq}^{\text{gen}}(z) \right]_{\text{pdf}} F_{\text{LM}}^{(k)}(z) + [\alpha_s]^2 \sum_{k=1}^2 P_{qq}^{\text{gen}} \otimes I_C(z,\epsilon) F_{\text{LM}}^{(k)}(z) \\ &+ [\alpha_s]^2 P_{qq}^{\text{gen}}(z_1) \otimes F_{\text{LM}}(z_1, z_2) \otimes P_{qq}^{\text{gen}}(z_2) \right\rangle \end{aligned}$$

Cancellation of the double-color-correlated contributions

$$\frac{1}{2} \left\langle \left(\frac{\alpha_s}{2\pi} 2 \Re \left(\mathcal{I}_1(\epsilon) \right) + [\alpha_s] I_{1,R}(\epsilon) + [\alpha_s] I_C(\epsilon) \right)^2 F_{\text{LM}} \right\rangle = \frac{1}{2} [\alpha_s]^2 \left\langle I_{1,T}^2(\epsilon) F_{\text{LM}} \right\rangle$$

 $\longrightarrow \text{ finite}$

Same combination encountered at NLO: finite, and easy to be computed.

