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Feynman Integrals

Feynman integrals are a useful computational tool, but quickly become hard to evaluate

(see talks by Tancredi and Abreu)
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Thus, in addition to attacking the computation of Feynman integrals directly, we can ask what
can be proven about their properties from first principles



Landau Analysis

IG(p) =
∫

dDℓ1 · · · dDℓL
1∏

e∈G(qe(ℓi, p)
2 −m2

e)

◦ The locations where Feynman integrals can become singular and develop branch cuts are
described by solutions to the Landau Equations [Landau (1959)]
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Landau Analysis

What happens after we start computing discontinuities?

IG −→ DiscλIG
◦ Can all of the singularities of the original integral still arise in this discontinuity?

The answer to this question goes back over sixty years, and is definitively no!

◦ This can already be seen in simple examples via Cutkosky’s formula [Cutkosky (1960)]
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s = (p1 + p2)
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a singularity in which the
propagators with mass m2

and m4 pinch the contour
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Landau Analysis
More generally, the hierarchical principle states that propagators that are put on shell when
we compute discontinuities must stay on shell [Landshoff, Olive, Polkinghorne (1965)] [Pham (1967)] [Boyling (1968)]

◦ This follows from Picard-Lefschetz theory, which describes how discontinuities can be
expressed as integrals in which the integration contour is localized to the pinched surface
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◦ This suggests that a modified set of Landau equations should apply to DiscλIG:

q2e −m2
e = 0 for every edge e involved in pinching the contour when λ = 0

αe(q
2
e −m2

e) = 0 for every edge e that did not participate in the pinch
∑

e∈loop

αeq
µ
e = 0 for each independent loop in G



Landau Analysis

◦ Thus, one should be able to derive restrictions of the form

Discλ′DiscλIG = 0

by comparing the solutions of these equations to those of the original Landau equations

◦ In practice, however, doing this can be extremely subtle, as it requires ensuring we have
found all solutions to the (blown up versions of) these equations

◦ For this reason, these constraints have only been worked out in a few examples
[Landshoff, Olive, Polkinghorne (1965)] [Pham (1967)] [Berghoff, Panzer (2022)]
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Hierarchical Constraints

In this talk, I will describe how these difficulties can be
sidestepped for a large class of hierarchical constraints

The result will be a practical method for deriving constraints of the form

Discλ′ · · ·Discλ · · · IG = 0

that are tailored to individual Feynman integrals

◦ Does not require explicitly working out any algebraic blowups

◦ Can be applied to any configuration of massive or massless particles

◦ The resulting constraints hold to all orders in dimensional regularization



Recent Advances in Landau Analysis

◦ This method will build on two recent advances in particular:
Andrew McLeod
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example:

⇡
(16)

Here, ↵ and z = (z1, z2) are coordinates on the one-
dimensional C⇤ and two-dimensional E respectively. The
incidence variety Yf has five irreducible components,

Y
(1)
f , Y

(2)
f , . . . , Y

(5)
f . Let us analyze them one by one. Be-

low, when we write fiber dimension of a component, we
mean the dimension of the pre-image ⇡�1(z) for a generic

point z on ⇡(Y
(i)
f ), i.e., it is the number of unconstrained

Schwinger parameters remaining after solving (12).

The orange component Y
(3)
f is dominant because it

projects down to the whole kinematic space E . It has
fiber dimension 0, i.e., every point downstairs comes from
a projection of a unique point upstairs. In physics terms,
it corresponds to a UV and/or IR divergence. In other
words, the Landau equations (12) have a solution for any
z 2 E . This, however, does not mean that we can sim-
ply disregard the (fictional) face f : there are other irre-
ducible components of type (b).

The red components Y
(1)
f and Y

(4)
f both have fiber

dimension 0 and project down to codimension 1 in E .
Next, the blue component Y

(5)
f has fiber dimension 1

and projects to codimension 1. We hence keep all three
of them in PLD. Finally, the green component Y

(2)
f has

fiber dimension 1, but projects to codimension 2. We do
not include it in PLD. See [4, Ex. 5.1] for more details.

Let us call the result of the projection ⇡(Y
(i)
f ). For any

Feynman diagram G, PLD is defined as the union of all
those projections that have codimension 1:

PLDG(E) :=
[

faces f

[

codim-1
projections i

⇡(Y
(i)
f ) ⇢ E . (17)

This definition can be used in practice and is imple-
mented in PLD.jl (we refer to [4, Sec. 3.2] for a for-
mulation in the language of algebraic geometry).

IMPLEMENTATION

Code and database. Classic symbolic elimination
tools, such as Gröbner bases, can be used, but are not ef-

ficient enough to handle multi-loop examples. We hence
introduce a numerical algorithm for computing PLD,
based on homotopy continuation techniques. It performs
the above irreducible decomposition and projection to
the kinematic space. We refer to [4, Sec. 5.2] for the algo-
rithmic details. We implemented both symbolic and nu-
merical elimination algorithms in an open-source Julia

package PLD.jl available at [32]. This website also con-
tains documentation and a guided tutorial through the
functionality of PLD.jl. Together with the package, we
provide a database of 114 example diagrams with various
graph topologies and mass assignments.

Comparison with HyperInt. The only competitive
tool for finding Landau singularities is the compatibility
graph reduction algorithm cgReduction implemented in
HyperInt [33] and based on the formalism of Pham and
Brown in integer dimensions D [34, 35]. It computes an
upper bound on the set of singularities, i.e., finds many
components that are not genuine singularities of the cor-
responding Feynman integral. However, they can be ef-
ficiently filtered out by the Euler characteristic criterion
(14), see [4, App. A] for a practical example. We found
diagrams for which this pipeline gave more singularities
than those computed numerically by PLD, which means
that PLDG(E) ( r�(E) ( cgReduction. Indeed, it is
known that the blow-ups implicitly performed by look-
ing at the Newton polytope might not su�ce to detect
all singularities of Feynman integrals, see [15, Sec. 6.4]
and [4, Ex. 3.9]. In other words, there are scalings of
Schwinger parameters that go beyond (2) with genuinely
new singularities. These are captured by the Euler dis-
criminant but not by PLD.

On the other hand, in practice, cgReduction termi-
nated only on the simplest 70 out of 114 diagrams we
considered, so PLD remains the only practical tool for
obtaining (a subset of) singularities of more complicated
diagrams. At any rate, most of the entries in the database
give new predictions for singularities of previously un-
studied diagrams.

EXAMPLE

As a concrete example, let us consider the following
Higgs + jet production process:
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1
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46
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p1
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(18)

We take the external Higgs (dashed) to have mass-
squared M2 = p2

5, the quarks (solid) to have mass-
squared m2, and all the remaining particles massless.

An improved understanding of New topological methods for probing the
cuts in Feynman parameter space singularity structure of Feynman integrals

(along with an implementation in the PLD code)
[Berghoff, Panzer (2022)] [Britto (2023)] [Fevola, Mizera, Telen (2023)]



Feynman Parameter Space

The first thing we do is move to Feynman parameter space

IG =

∫ ∞

0

dα1 · · · dαE

GL(1)

UE−(L+1)D/2

FE−LD/2

◦ In this representation we encounter endpoint singularities as well as pinch singularities

F = (αe − r1)(αe − r2) · · · (αe − rn)

αe

γ

•

•
r2

•
r3

•
r1

αe = 0

◦ A version of the hierarchical principle also exists in Feynman parameter space [Berghoff, Panzer (2022)]

◦ Just as in momentum space, discontinuities localize the integration contour to the
pinched surface — here, we will start to forget the integration boundaries at αe = 0
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Feynman Parameter Cuts

◦ This phenomenon was nicely illustrated for the massive triangle in [Britto (2023)]

p21 p22

p23

α3

α1α2

m3

m1m2
α3 = 1− α1 − α2

I Discm2
2
I Discp2

1−(m2+m3)2I

F = 0



Two Practical Hurdles

◦ There are two practical questions that need to be answered if we want to use this
observation about Feynman parameter boundaries to derive hierarchical constraints

(1) Which αe = 0 boundaries are dropped when we compute the discontinuity Discλ?

◦ We address this by introducing minimal cuts

(2) Once we have decided which boundaries to drop, how can we reliably rule out whether a
kinematic singularity at λ′ = 0 can still exist?

◦ This is solved by the Euler characteristic test [Fevola, Mizera, Telen (2023)]

◦ Both questions are made difficult by the possible existence of further solutions to the
Landau equations that we haven’t found
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The Euler Characteristic Test

◦ Singularities only arise in Feynman integrals when the space on which the integration
contour is defined degenerates [Pham (1967)]

Y = CE−1
∖(

F = 0 ∪ U = 0

E⋃

e=1

αe = 0

)

◦ One way to probe when this can happens is by computing the Euler characteristic of this
space—this number should change if something topologically interesting happens
[Fevola, Mizera, Telen (2023)]

◦ This Euler characteristic test has been implemented in the PLD code, using the fact
that |χ(Y )| can be computed as the number of solutions to the system of equations

µ1

F
∂F
∂αe

+
µ2

U
∂U
∂αe

+
νe
αe

= 0 for e ∈ {1, 2, . . . , E}

for generic µi and νe [Huh (2013)]



The Euler Characteristic Test

◦ If we know that specific αe = 0 boundaries no longer appear in our integral, however, a
clear modification of this test suggests itselfs

Y = CE−1
∖(

F = 0 ∪ U = 0

E⋃

e=1

αe = 0

)

y

Yi,...,j = CE−1
∖

F = 0 ∪ U = 0

⋃

e/∈{i,...,j}
αe = 0




◦ Specifically, to probe whether our integral can become singular at λ = 0 after the αe = 0
boundaries have been dropped for e ∈ {i, . . . , j}, we ask

|χ(Yi,...,j |λ=0)|
?
< |χ(Yi,...,j)|

◦ If these numbers are equal, there can be no singularity at λ = 0



Minimal Cuts

◦ The Euler characteristic test provides us with a reliable way to determine which
singularities can still arise after a given set of αe = 0 boundaries have been dropped

◦ This leaves the question of how we decide which αe = 0 boundaries are dropped when we
compute a discontinuity

Rather than try to determine which αe = 0 boundaries have actually been dropped, our
strategy will be to identify the minimum set of boundaries must that must be dropped



Minimal Cuts

Minimal Cut: Given a Feynman integral IG and a singular kinematic surface
λ({si...j}, {m2

k}) = 0, we refer to a set of cut propagators as a minimal cut if:

(i) the cut propagators partition the external momenta into the combinations that
appear in the Mandelstam variables {si...j}

(ii) each of the internal masses in {m2
k} appears in at least one of the cut propagators

(unless this mass has already appeared as one of the Mandelstam variables)

(iii) one of the first two properties is no longer satisfied if any of the cut propagators
are taken off shell

More colloquially, minimal cuts are designed to make sure that all of the kinematic variables
that appear in λ are “resolved” by the cut diagram



Minimal Cuts

As an example, consider some of the singularities of the massless triangle-box:

p1
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p3

p4

p5

s12

p1p2

p3
p4 p5

λ = s12 = (p1 + p2)
2 = 0

−→



Minimal Cuts

As an example, consider some of the singularities of the massless triangle-box:

p1

p2

p3

p4

p5

s12
s45

p1p2

p3

p4 p5

λ = s12 − s45 = 0

−→



Putting Everything Together

We now have all the ingredients necessary to derive hierarchical constraints in practice

To investigate whether a given sequential discontinuity

Discλ′DiscλIG

can be nonzero, we:

◦ construct the minimal cut associated with the singularity at λ = 0

◦ conclude that the αe = 0 boundary associated with each of the cut propagators,
labelled {i, . . . , j}, can no longer appear in our integral

◦ compute |χ(Yi,...,j |λ′=0)| and |χ(Yi,...,j)| (using, for instance, the PLD code)

If the first number is not smaller than the second, we conclude that

Discλ′DiscλIG = 0
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Genealogical Constraints

Note that this method is not expected to give us the full set of hierarchical constraints

◦ Minimal cuts provide a conservative bound on what propagators/Feynman parameters
have participated in a pinch singularity

◦ It thus remains possible that more αe = 0 boundaries have dropped out of DiscλIG

◦ However, this is not a problem, since our predictions can only be made stronger by
dropping additional boundaries

We call the subset of hierarchical constraints that our method allows us to derive, which
describe what singularities cannot descend from minimal cuts, genealogical constraints

◦ We will see in examples that genealogical constraints account for the vast majority
of possible hierarchical constraints



One-Loop Example: the Two-Mass Easy Box

p1
p2

p3 p4
p5

p6

3

Singularity Pinched ↵i contours

s12 ↵1, ↵4

s45 ↵2, ↵3

s123 ↵2, ↵4

s345 ↵1, ↵3

s12�s123 ↵1, ↵2, ↵4

s12�s345 ↵1, ↵3, ↵4

s123�s45 ↵2, ↵3, ↵4

s345�s45 ↵1, ↵2, ↵3

s12s45�s123s345 ↵1, ↵2, ↵3, ↵4

s12�s123�s345+s45 ↵1, ↵2, ↵3, ↵4

TABLE I. The singularity locus and set of Feynman parame-
ter contours that are pinched in each solution to the Landau
equations for the two-mass easy box.

to two di�culties. First, it means that we cannot gener-
ally discern which ↵i = 0 boundaries have been dropped
when we compute a discontinuity ��. Second, even if
we could decide which boundaries have been dropped,
concluding that a second singularity at �0 = 0 can no
longer be accessed requires ruling out the possibility that
an additional �0 = 0 solution to the (blown up) Landau
equations exists even when these boundaries are absent.
In the next two sections, we present practical solutions
to both of these problems.

The Euler Characteristic Test

Singularities can only arise in Feynman integrals when
the space on which the integration contour is defined de-
generates [31]. This was made precise in [11, 12], where it
was shown that Feynman integrals only become singular
on a kinematic variety � = 0 if the Euler characteris-
tic �(Y ) of the space Y drops in value when � vanishes,
where

Y = PE�1
/ 

F = 0 [ U = 0

E[

i=1

↵i = 0

!
(5)

is the projective space of Feynman parameters ↵i mi-
nus the loci where the integrand can become singular,
and the boundaries of integration. An implementation
of this criterion, which we henceforth refer to as the Eu-
ler characteristic test, can also be found in [11, 12]. This
implementation makes use of Theorem 1 in [51], which
states that � is equal to the number of solutions of the
system of equations

X

j

µj

fj

@fj

@↵i
+

⌫i

↵i
= 0 for i 2 {1, 2, . . . , E} (6)

for generic µj and ⌫i, where fj are the factors that ap-
pear in the integrand (so f1 = F and f2 = U in the
Feynman parameter representation).1 Checking whether

1 If we were to work in the Lee-Pomeransky representation, Y�

s12 s123 s345 s45

s12 � s123 s12 � s345 s45 � s123 s45 � s345

s12s45 � s123s345 s12 + s45 � s123 � s345

FIG. 2. The allowed sequences of discontinuities in the two-
mass easy box. An arrow a ! b indicates that there can exist
a singularity at b = 0 after computing a discontinuity around
a = 0. Each singularity should also be thought of as having
an arrow that points back to itself.

this number drops when one sets � = 0 provides an e�-
cient method for determining whether the Feynman in-
tegral (2) can become singular on the � = 0 surface.

We are now in a position to take this Euler characteris-
tic test one step further, by applying it not only to Feyn-
man integrals, but also to their discontinuities. To do so,
we leverage the observation highlighted above, that cer-
tain ↵i = 0 integration boundaries can be dropped from
the integration space whenever we compute a discontinu-
ity. In particular, by keeping track of which integration
boundaries have been dropped, we can refine the Euler
characteristic test by not subtracting the ↵i = 0 sur-
faces in Y that no longer exist as integration boundaries.
For instance, if the set of Feynman parameter contours
in {↵1,↵2, . . . ,↵j} are known to be pinched at � = 0,
we can probe whether the discontinuity ��I can become
singular on a di↵erent variety �0 = 0 by asking whether
the Euler characteristic � of the space

Y1...j = PE�1
/
0
@F = 0 [ U = 0

E[

i=j+1

↵i = 0

1
A (7)

drops in value when �0 vanishes. This corresponds to
setting ⌫i = 0 for i 2 {1, 2, . . . , j} in (6).2 If the value
of the Euler characteristic does not drop in this limit,
we conclude that ��0 · · ·�� · · · I = 0, where the dots
represent any other sequences of discontinuities. In this
way, the consequences of the hierarchical principle can be
worked out without the need to carry out any blowups.

would have dimension E, and there would just be a single factor
f1 = U + F .

2 Strictly speaking, Theorem 1 in [51] assumes that the ⌫e are
generic (and in particular, nonzero), so it is not guaranteed to
hold in the case of interest to us. However, we do not know of
a counterexample, in which the number of the solutions to the
critical-point equations (6) fails to capture a singularity.

◦ This integral depends on four Mandelstam variables, and involves ten singular surfaces

sij = (pi + pj)
2 sijk = (pi + pj + pk)

2

◦ Applying our method, we are able to derive 64 genealogical constraints of the form

Discλ′ · · ·Discλ · · · I = 0

◦ These constraints are indeed obeyed to all orders in dimensional regularization
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◦ Applying our method, we are able to derive 64 genealogical constraints of the form

Discλ′ · · ·Discλ · · · I = 0

◦ These constraints are indeed obeyed to all orders in dimensional regularization



One-Loop Example: the Two-Mass Easy Box

p1
p2

p3 p4
p5

p6
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Singularity Pinched ↵i contours

s12 ↵1, ↵4

s45 ↵2, ↵3

s123 ↵2, ↵4

s345 ↵1, ↵3

s12�s123 ↵1, ↵2, ↵4

s12�s345 ↵1, ↵3, ↵4

s123�s45 ↵2, ↵3, ↵4

s345�s45 ↵1, ↵2, ↵3

s12s45�s123s345 ↵1, ↵2, ↵3, ↵4

s12�s123�s345+s45 ↵1, ↵2, ↵3, ↵4

TABLE I. The singularity locus and set of Feynman parame-
ter contours that are pinched in each solution to the Landau
equations for the two-mass easy box.

to two di�culties. First, it means that we cannot gener-
ally discern which ↵i = 0 boundaries have been dropped
when we compute a discontinuity ��. Second, even if
we could decide which boundaries have been dropped,
concluding that a second singularity at �0 = 0 can no
longer be accessed requires ruling out the possibility that
an additional �0 = 0 solution to the (blown up) Landau
equations exists even when these boundaries are absent.
In the next two sections, we present practical solutions
to both of these problems.

The Euler Characteristic Test

Singularities can only arise in Feynman integrals when
the space on which the integration contour is defined de-
generates [31]. This was made precise in [11, 12], where it
was shown that Feynman integrals only become singular
on a kinematic variety � = 0 if the Euler characteris-
tic �(Y ) of the space Y drops in value when � vanishes,
where

Y = PE�1
/ 

F = 0 [ U = 0
E[

i=1

↵i = 0

!
(5)

is the projective space of Feynman parameters ↵i mi-
nus the loci where the integrand can become singular,
and the boundaries of integration. An implementation
of this criterion, which we henceforth refer to as the Eu-
ler characteristic test, can also be found in [11, 12]. This
implementation makes use of Theorem 1 in [51], which
states that � is equal to the number of solutions of the
system of equations

X

j

µj

fj

@fj

@↵i
+

⌫i

↵i
= 0 for i 2 {1, 2, . . . , E} (6)

for generic µj and ⌫i, where fj are the factors that ap-
pear in the integrand (so f1 = F and f2 = U in the
Feynman parameter representation).1 Checking whether

1 If we were to work in the Lee-Pomeransky representation, Y�

s12 s123 s345 s45

s12 � s123 s12 � s345 s45 � s123 s45 � s345

s12s45 � s123s345 s12 + s45 � s123 � s345

FIG. 2. The allowed sequences of discontinuities in the two-
mass easy box. An arrow a ! b indicates that there can exist
a singularity at b = 0 after computing a discontinuity around
a = 0. Each singularity should also be thought of as having
an arrow that points back to itself.

this number drops when one sets � = 0 provides an e�-
cient method for determining whether the Feynman in-
tegral (2) can become singular on the � = 0 surface.

We are now in a position to take this Euler characteris-
tic test one step further, by applying it not only to Feyn-
man integrals, but also to their discontinuities. To do so,
we leverage the observation highlighted above, that cer-
tain ↵i = 0 integration boundaries can be dropped from
the integration space whenever we compute a discontinu-
ity. In particular, by keeping track of which integration
boundaries have been dropped, we can refine the Euler
characteristic test by not subtracting the ↵i = 0 sur-
faces in Y that no longer exist as integration boundaries.
For instance, if the set of Feynman parameter contours
in {↵1,↵2, . . . ,↵j} are known to be pinched at � = 0,
we can probe whether the discontinuity ��I can become
singular on a di↵erent variety �0 = 0 by asking whether
the Euler characteristic � of the space

Y1...j = PE�1
/
0
@F = 0 [ U = 0

E[

i=j+1

↵i = 0

1
A (7)

drops in value when �0 vanishes. This corresponds to
setting ⌫i = 0 for i 2 {1, 2, . . . , j} in (6).2 If the value
of the Euler characteristic does not drop in this limit,
we conclude that ��0 · · ·�� · · · I = 0, where the dots
represent any other sequences of discontinuities. In this
way, the consequences of the hierarchical principle can be
worked out without the need to carry out any blowups.

would have dimension E, and there would just be a single factor
f1 = U + F .

2 Strictly speaking, Theorem 1 in [51] assumes that the ⌫e are
generic (and in particular, nonzero), so it is not guaranteed to
hold in the case of interest to us. However, we do not know of
a counterexample, in which the number of the solutions to the
critical-point equations (6) fails to capture a singularity.

◦ This integral depends on four Mandelstam variables, and involves ten singular surfaces

sij = (pi + pj)
2 sijk = (pi + pj + pk)

2

◦ Applying our method, we are able to derive 64 genealogical constraints of the form

Discλ′ · · ·Discλ · · · I = 0

◦ These constraints are indeed obeyed to all orders in dimensional regularization
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Two-Loop Examples

How constraining are these genealogical constraints?

p1 p2

p3p5 p4

◦ This integral is polylogarithmic, and gives rise to 37 different symbol letters

◦ 679 weight-four symbols can be constructed with appropriate first entries

◦ Our best previous constraints—the extended Steinmann relations—tell us that s12 and
s15 cannot appear next to each other in the symbol; this leaves 569 possible symbols
[Caron-Huot, Dixon, Dulat, von Hippel, AJM, Papathanasiou (2019)]

◦ However, our new genealogical constraints cut this space down to 264 possible symbols
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Beyond Two Loops

Note that we can use this method to derive constraints on complicated integrals, even if we
don’t know the full set of singularities that can arise 5

t g

Z

H
p4

p3
p2

p1

FIG. 4. Example three-loop diagram that contributes to gg !
Hg, which involves a top quark loop and a pair of Z boson
propagators.

ample, p2
1 can be isolated by cutting either the lines asso-

ciated with {↵1,↵6} or with {↵2,↵6,↵7}. Thus, when de-
termining the minimal cuts for singularities like p2

1�s234,
we must consider all ways of combining the di↵erent cuts
that isolate p2

1 and s234. New complications also arise in
the non-planar case, as we now need to consider di↵er-
ent ways of expressing each singularity. For instance, the
singularity p2

1�s15 +s23�s45 = 0 seemingly gives rise to
a five-particle cut, but can be rewritten as s14 = 0, which
only has a three-particle cut. In this case, we can discard
the former cut, since it involves cutting a superset of the
propagators that are cut in the latter one. Proceeding in
this way, we find 620 and 540 genealogical constraints on
the symbol letters that appear in these planar and non-
planar double-boxes, respectively, which we have have
verified against the explicit results in [28, 53] (finding
that we miss only 25 and 9 further empirical restrictions
of this type). Like before, some of these restrictions ap-
ply to algebraic letters; however, we note that one has
to be careful when multiple algebraic letters give rise to
the same logarithmic branch cut (as happens here), since
this branch cut cancels out in ratios of these letters. We
include these two-loop predictions in ancillary files.

We can also probe how powerful these genealogical con-
straints are compared to the extended Steinmann rela-
tions, for instance in the example of the planar double
box. A space of 679 integrable weight-four symbols that
satisfy the first entry condition can be constructed out
of the 37 symbol letters that appear in this integral (for
more detail on how to construct such spaces, see for in-
stance [54]). Imposing the extended Steinmann relations,
which tell us that s12 and s15 cannot appear next to each
other, reduces this number to 569, while imposing our
genealogical constraints (which in this case also imply
the extended Steinmann ones) brings it down further, to
264.3 Thus, we see that these new constraints are signif-
icantly more restrictive than extended Steinmann.

Conclusions

In this letter, we have presented a practical method
for deriving a powerful set of genealogical constraints on

3 In fact, we observe that it is su�cient to impose the genealogical
constraints that restrict which letters can appear after threshold
discontinuities; integrability then seems to ensure that all other
genealogical constraints are satisfied.

the discontinuities of any Feynman integral. In the two-
loop examples we have studied, we have found that this
method misses very few of the constraints that could fol-
low from the hierarchical principle. Moreover, these pre-
dictions can be made e�ciently (for instance, using the
PLD code [11, 12]), so it is not a stretch to derive con-
straints on complicated diagrams. For example, we find
that the three-loop diagram in Figure 4 should satisfy

�s12+s23�m2
H+m2

Z
· · ·�m2

H�4m2
Z

· · · I = 0 , (8)

where mZ is the mass of the internal Z bosons, and m2
H =

p2
4 is the mass of the external Higgs.

While we have restricted our attention to scalar inte-
grals in this paper, we plan to describe how this method
can be extended to integrals involving numerators and
propagators raised to higher powers in an upcoming
work [55]. The same basic method can also be applied
in momentum space, which may make it easier to con-
nect with the types of numerators used by much of the
community.

Finally, in addition to the clear conceptual interest
these hierarchical constraints hold, we expect them to
provide extremely useful input for bootstrap methods.
Since genealogical constraints can be derived in dimen-
sional regularization for processes involving any masses,
they are ideal for studying the integrals that contribute
to important Standard Model processes.
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Conclusions and Outlook

We have presented a practical method for deriving hierarchical constraints on Feynman integrals

◦ These genealogical constraints can be
efficiently derived for integrals involving
any configuration of massive or massless
particles

◦ The constraints hold to all orders in
dimensional regularization
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Singularity Pinched ↵i contours

s12 ↵1, ↵4

s45 ↵2, ↵3

s123 ↵2, ↵4

s345 ↵1, ↵3

s12�s123 ↵1, ↵2, ↵4

s12�s345 ↵1, ↵3, ↵4

s123�s45 ↵2, ↵3, ↵4

s345�s45 ↵1, ↵2, ↵3

s12s45�s123s345 ↵1, ↵2, ↵3, ↵4

s12�s123�s345+s45 ↵1, ↵2, ↵3, ↵4

TABLE I. The singularity locus and set of Feynman parame-
ter contours that are pinched in each solution to the Landau
equations for the two-mass easy box.

to two di�culties. First, it means that we cannot gener-
ally discern which ↵i = 0 boundaries have been dropped
when we compute a discontinuity ��. Second, even if
we could decide which boundaries have been dropped,
concluding that a second singularity at �0 = 0 can no
longer be accessed requires ruling out the possibility that
an additional �0 = 0 solution to the (blown up) Landau
equations exists even when these boundaries are absent.
In the next two sections, we present practical solutions
to both of these problems.

The Euler Characteristic Test

Singularities can only arise in Feynman integrals when
the space on which the integration contour is defined de-
generates [31]. This was made precise in [11, 12], where it
was shown that Feynman integrals only become singular
on a kinematic variety � = 0 if the Euler characteris-
tic �(Y ) of the space Y drops in value when � vanishes,
where

Y = PE�1
/ 

F = 0 [ U = 0

E[

i=1

↵i = 0

!
(5)

is the projective space of Feynman parameters ↵i mi-
nus the loci where the integrand can become singular,
and the boundaries of integration. An implementation
of this criterion, which we henceforth refer to as the Eu-
ler characteristic test, can also be found in [11, 12]. This
implementation makes use of Theorem 1 in [51], which
states that � is equal to the number of solutions of the
system of equations

X
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µj
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@fj

@↵i
+

⌫i

↵i
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for generic µj and ⌫i, where fj are the factors that ap-
pear in the integrand (so f1 = F and f2 = U in the
Feynman parameter representation).1 Checking whether

1 If we were to work in the Lee-Pomeransky representation, Y�

s12 s123 s345 s45

s12 � s123 s12 � s345 s45 � s123 s45 � s345

s12s45 � s123s345 s12 + s45 � s123 � s345

FIG. 2. The allowed sequences of discontinuities in the two-
mass easy box. An arrow a ! b indicates that there can exist
a singularity at b = 0 after computing a discontinuity around
a = 0. Each singularity should also be thought of as having
an arrow that points back to itself.

this number drops when one sets � = 0 provides an e�-
cient method for determining whether the Feynman in-
tegral (2) can become singular on the � = 0 surface.

We are now in a position to take this Euler characteris-
tic test one step further, by applying it not only to Feyn-
man integrals, but also to their discontinuities. To do so,
we leverage the observation highlighted above, that cer-
tain ↵i = 0 integration boundaries can be dropped from
the integration space whenever we compute a discontinu-
ity. In particular, by keeping track of which integration
boundaries have been dropped, we can refine the Euler
characteristic test by not subtracting the ↵i = 0 sur-
faces in Y that no longer exist as integration boundaries.
For instance, if the set of Feynman parameter contours
in {↵1,↵2, . . . ,↵j} are known to be pinched at � = 0,
we can probe whether the discontinuity ��I can become
singular on a di↵erent variety �0 = 0 by asking whether
the Euler characteristic � of the space

Y1...j = PE�1
/
0
@F = 0 [ U = 0

E[

i=j+1

↵i = 0

1
A (7)

drops in value when �0 vanishes. This corresponds to
setting ⌫i = 0 for i 2 {1, 2, . . . , j} in (6).2 If the value
of the Euler characteristic does not drop in this limit,
we conclude that ��0 · · ·�� · · · I = 0, where the dots
represent any other sequences of discontinuities. In this
way, the consequences of the hierarchical principle can be
worked out without the need to carry out any blowups.

would have dimension E, and there would just be a single factor
f1 = U + F .

2 Strictly speaking, Theorem 1 in [51] assumes that the ⌫e are
generic (and in particular, nonzero), so it is not guaranteed to
hold in the case of interest to us. However, we do not know of
a counterexample, in which the number of the solutions to the
critical-point equations (6) fails to capture a singularity.

There remain a number of directions that merit further work

◦ We have focused for now on scalar Feynman integrals, but it is also possible to include
numerators and propagators raised to higher powers

◦ Can these types of predictions help inform how we build bases of master integrals?

◦ These predictions will be ideal for applying bootstrap methods to Feynman integrals!
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