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Feynman Integrals

Feynman integrals are a useful computational tool, but quickly become hard to evaluate
(see talks by Tancredi and Abreu)

104

[Jiang, Liu, Xu, Yang (2024)] [Abreu, Chicherin, Sotnikov, Zoia (to appear)]

Thus, in addition to attacking the computation of Feynman integrals directly, we can ask what
can be proven about their properties from first principles



Landau Analysis
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o The locations where Feynman integrals can become singular and develop branch cuts are
described by solutions to the Landau Equations [Landau (1959)]
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o In these configurations, the zeros in the denominator can pinch the integration contour ~
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Landau Analysis
What happens after we start computing discontinuities?
IG — DiSC)\IG

o Can all of the singularities of the original integral still arise in this discontinuity?



Landau Analysis

What happens after we start computing discontinuities?

I — DiSC)\IG

o Can all of the singularities of the original integral still arise in this discontinuity?

The answer to this question goes back over sixty years, and is definitively no!

o This can already be seen in simple examples via Cutkosky's formula [cutkosky (1960)]
\ P4

: D 6t (g3 —
— Discs_ (mytma)2 T o< d=/
%

P2 P3

[ a singularity in which the N
propagators with mass ma
\and my4 pinch the contour

J

m3)d" (gf —m3)

)

(@3 —m?)(q3 — m3




Landau Analysis

More generally, the hierarchical principle states that propagators that are put on shell when
we compute discontinuities must stay on shell [Landshoff, Olive, Polkinghorne (1965)] [Pham (1967)] [Boyling (1968)]

o This follows from Picard-Lefschetz theory, which describes how discontinuities can be
expressed as integrals in which the integration contour is localized to the pinched surface
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o This suggests that a modified set of Landau equations should apply to Disc)yZg:
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@Z—-m2=0 for every edge e involved in pinching the contour when A =0
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Landau Analysis
o Thus, one should be able to derive restrictions of the form
Discy/DiscyZg =0
by comparing the solutions of these equations to those of the original Landau equations

o In practice, however, doing this can be extremely subtle, as it requires ensuring we have
found all solutions to the (blown up versions of) these equations

o For this reason, these constraints have only been worked out in a few examples
[Landshoff, Olive, Polkinghorne (1965)] [Pham (1967)] [Berghoff, Panzer (2022)]
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Hierarchical Constraints

In this talk, | will describe how these difficulties can be
sidestepped for a large class of hierarchical constraints

The result will be a practical method for deriving constraints of the form
Discy,---Discy---Zg =0

that are tailored to individual Feynman integrals
o Does not require explicitly working out any algebraic blowups
o Can be applied to any configuration of massive or massless particles

o The resulting constraints hold to all orders in dimensional regularization



Recent Advances in Landau Analysis

o This method will build on two recent advances in particular:

1

An improved understanding of New topological methods for probing the
cuts in Feynman parameter space singularity structure of Feynman integrals
(along with an implementation in the PLD code)
[Berghoff, Panzer (2022)] [Britto (2023)] [Fevola, Mizera, Telen (2023)]



Feynman Parameter Space

The first thing we do is move to Feynman parameter space
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o In this representation we encounter endpoint singularities as well as pinch singularities
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Feynman Parameter Space

The first thing we do is move to Feynman parameter space

I . oo dOél"'dOéEuEi(L+1)D/2
¢ /0 GL(1) ~ FE-LD/2

o In this representation we encounter endpoint singularities as well as pinch singularities

o A version of the hierarchical principle also exists in Feynman parameter space [Berghoff, Panzer (2022)]

o Just as in momentum space, discontinuities localize the integration contour to the
pinched surface — here, we will start to forget the integration boundaries at o, = 0



Feynman Parameter Cuts

o This phenomenon was nicely illustrated for the massive triangle in [Britto (2023)]
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Two Practical Hurdles

o There are two practical questions that need to be answered if we want to use this
observation about Feynman parameter boundaries to derive hierarchical constraints

(1) Which o, = 0 boundaries are dropped when we compute the discontinuity Discy?

(2) Once we have decided which boundaries to drop, how can we reliably rule out whether a
kinematic singularity at A’ = 0 can still exist?

o Both questions are made difficult by the possible existence of further solutions to the
Landau equations that we haven't found



Two Practical Hurdles

o There are two practical questions that need to be answered if we want to use this
observation about Feynman parameter boundaries to derive hierarchical constraints

(1) Which o, = 0 boundaries are dropped when we compute the discontinuity Discy?
o We address this by introducing minimal cuts
(2) Once we have decided which boundaries to drop, how can we reliably rule out whether a
kinematic singularity at A’ = 0 can still exist?

o This is solved by the Euler characteristic test [Fevola, Mizera, Telen (2023)]

o Both questions are made difficult by the possible existence of further solutions to the
Landau equations that we haven't found



The Euler Characteristic Test

o Singularities only arise in Feynman integrals when the space on which the integration
contour is defined degenerates [Pham (1967)]
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o One way to probe when this can happens is by computing the Euler characteristic of this

space—this number should change if something topologically interesting happens
[Fevola, Mizera, Telen (2023)]

o This Euler characteristic test has been implemented in the PLD code, using the fact
that |x(Y")| can be computed as the number of solutions to the system of equations

/1,18]: [1/28[/{ Ve
—= — — = f 1,2,....F
f@ae+uaae+ae 0 forec{l2,....E}

for generic p; and v, [Huh (2013)]




The Euler Characteristic Test

o If we know that specific a, = 0 boundaries no longer appear in our integral, however, a
clear modification of this test suggests itselfs
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o Specifically, to probe whether our integral can become singular at A = 0 after the o, = 0
boundaries have been dropped for e € {i,...,j}, we ask
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IX(Yi,...5la=0)| < Ix(Yi,... )l

o If these numbers are equal, there can be no singularity at A\ =0



Minimal Cuts

o The Euler characteristic test provides us with a reliable way to determine which
singularities can still arise after a given set of o, = 0 boundaries have been dropped

o This leaves the question of how we decide which o, = 0 boundaries are dropped when we
compute a discontinuity

4 Rather than try to determine which a. = 0 boundaries have actually been dropped, our
\strategy will be to identify the minimum set of boundaries must that must be dropped/,




Minimal Cuts

Minimal Cut: Given a Feynman integral Z¢ and a singular kinematic surface
A({si..j},{m3}) =0, we refer to a set of cut propagators as a minimal cut if:

(i) the cut propagators partition the external momenta into the combinations that
appear in the Mandelstam variables {s; ;}

(unless this mass has already appeared as one of the Mandelstam variables)

(7ii) one of the first two properties is no longer satisfied if any of the cut propagators
are taken off shell

(i) each of the internal masses in {m?2} appears in at least one of the cut propagators

)

More colloquially, minimal cuts are designed to make sure that all of the kinematic variables

that appear in \ are “resolved” by the cut diagram



Minimal Cuts

As an example, consider some of the singularities of the massless triangle-box:
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Minimal Cuts

As an example, consider some of the singularities of the massless triangle-box:
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Putting Everything Together

[ We now have all the ingredients necessary to derive hierarchical constraints in practice ]

To investigate whether a given sequential discontinuity
Discy/Disc)\Zg
can be nonzero, we:
o construct the minimal cut associated with the singularity at A =0

o conclude that the o, = 0 boundary associated with each of the cut propagators,
labelled {i,...,4}, can no longer appear in our integral
o compute |x(Y;

If the first number is not smaller than the second, we conclude that

Discy/DiscyZg =0



Putting Everything Together

[ We now have all the ingredients necessary to derive hierarchical constraints in practice ]

To investigate whether a given sequential discontinuity
Discy/Disc)\Zg
can be nonzero, we:
o construct the minimal cut associated with the singularity at A =0

o conclude that the o, = 0 boundary associated with each of the cut propagators,
labelled {i,...,4}, can no longer appear in our integral
o compute |x(Y;

If the first number is not smaller than the second, we conclude that

Discys---Discy---Zg =0



Genealogical Constraints

Note that this method is not expected to give us the full set of hierarchical constraints

o Minimal cuts provide a conservative bound on what propagators/Feynman parameters
have participated in a pinch singularity

o It thus remains possible that more o, = 0 boundaries have dropped out of DiscyZg

o However, this is not a problem, since our predictions can only be made stronger by
dropping additional boundaries

[We call the subset of hierarchical constraints that our method allows us to derive, which\

describe what singularities cannot descend from minimal cuts, genealogical constraints/

o We will see in examples that genealogical constraints account for the vast majority
of possible hierarchical constraints



One-Loop Example: the Two-Mass Easy Box
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o This integral depends on four Mandelstam variables, and involves ten singular surfaces

sij = (i +p;)° sijk = (pi +pj + pr)?



One-Loop Example:
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the Two-Mass Easy Box
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o This integral depends on four Mandelstam variables, and involves ten singular surfaces

sij = (pi +p;)° sijk = (pi +pj + pi)?

o Applying our method, we are able to derive 64 genealogical constraints of the form

DiSC)\/ s DiSCA e -Iji =0



One-Loop Example:

D1
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Y253

the Two-Mass Easy Box

512 5123 5345 545
Po j >< >< >< l
S$12 — S123 S12 — S345 — 8123 S45 — S345
P5 $12845 — 51235345 S12 + S45 — S123 — S345
r
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o This integral depends on four Mandelstam variables, and involves ten singular surfaces

sij = (pi +pj)2 Sijk = (i +1j +pk)2

o Applying our method, we are able to derive 64 genealogical constraints of the form

DiSC)\/ DiSC,\ e -Iji =0

o These constraints are indeed obeyed to all orders in dimensional regularization



Two-Loop Examples
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Two-Loop Examples

Pps p1

P4 P1

P3 b2 P2

156 genealogical constraints

miss only 31 constraints

[Chicherin, Gehrmann, Henn,
Lo Presti, Mitev, Wasser (2019)]
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Two-Loop Examples
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miss only 31 constraints

[Chicherin, Gehrmann, Henn,
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Tschernow, Zeng (2020)]



Two-Loop Examples

Pps

P4 P1

D3 P2

156 genealogical constraints

miss only 31 constraints

[Chicherin, Gehrmann, Henn,
Lo Presti, Mitev, Wasser (2019)]
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Two-Loop Examples

Pps P1 Ps
P4 P1
p1 b2
D4
Y2
D3 b2 b2 b3 b3 Pps

156 genealogical constraints 620 genealogical constraints 540 genealogical constraints

miss only 31 constraints miss only 25 constraints miss only 9 constraints
[Chicherin, Gehrmann, Henn, [Abreu, Ita, Moriello, Page, [Abreu, Ita, Page, Tschernow (2022)]
Lo Presti, Mitev, Wasser (2019)] Tschernow, Zeng (2020)]

These constraints follow from restrictions on both algebraic and logarithmic discontinuities



Two-Loop Examples

How constraining are these genealogical constraints?

D1 P2

y4s yZ p3

o This integral is polylogarithmic, and gives rise to 37 different symbol letters

o 679 weight-four symbols can be constructed with appropriate first entries



Two-Loop Examples

How constraining are these genealogical constraints?

D1 P2

y4s yZ p3

o This integral is polylogarithmic, and gives rise to 37 different symbol letters
o 679 weight-four symbols can be constructed with appropriate first entries

o Our best previous constraints—the extended Steinmann relations—tell us that s;5 and

$15 cannot appear next to each other in the symbol; this leaves 569 possible symbols
[Caron-Huot, Dixon, Dulat, von Hippel, AJM, Papathanasiou (2019)]



Two-Loop Examples

How constraining are these genealogical constraints?

D1 P2

y4s yZ p3

o This integral is polylogarithmic, and gives rise to 37 different symbol letters
o 679 weight-four symbols can be constructed with appropriate first entries

o Our best previous constraints—the extended Steinmann relations—tell us that s;5 and

$15 cannot appear next to each other in the symbol; this leaves 569 possible symbols
[Caron-Huot, Dixon, Dulat, von Hippel, AJM, Papathanasiou (2019)]

o However, our new genealogical constraints cut this space down to 264 possible symbols



Beyond Two Loops

Note that we can use this method to derive constraints on complicated integrals, even if we
don't know the full set of singularities that can arise

o For example, from just knowledge of some of the solutions to the Landau equations, we
can already derive constraints on the above integral that contributes to gg — Hg:

Disc
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Conclusions and Outlook

We have presented a practical method for deriving hierarchical constraints on Feynman integrals

o These genealogical constraints can be s12 5123 5345 815
efficiently derived for integrals involving j >< >< l
any configuration of massive or massless - .

. S12 — S123 S12 — 5345 S45 — S123 845 — S345
particles \ /

o The constraints hold to all orders in M

H H H H §12845 — $1235345 S12 + S45 — S123 — S345
dimensional regularization . v

~ — — -

There remain a number of directions that merit further work

o We have focused for now on scalar Feynman integrals, but it is also possible to include
numerators and propagators raised to higher powers

o Can these types of predictions help inform how we build bases of master integrals?

o These predictions will be ideal for applying bootstrap methods to Feynman integrals!






