Soft Collinear Effective Theory & Collider Physics

Iain Stewart

MIT

Amplitudes IAS June 11, 2024

Massachusetts Institute of Technology

Soft Collinear Effective Theory (SCET)

"EFT for Collider Physics"

EFT for hard interactions which produce energetic (collinear) and soft particles.

Bauer, Fleming, Luke, Pirjol, IS `00, `01

Higgs production, DY, ...

Jet Physics

Jet Substructure

B-Decays and CP violation

Quarkonia Production

TMDs / Nuclear Physics

Higher order Resummation Gauge theory at Subleading Power Subtractions for Fixed Order QCD High Energy Limit / Regge phenomena

Infrared Structure of Gauge Theory

Factorization for Collider Processes

SCET Formalism:

- Introduction to SCET & Factorization
- Wilson Lines, Large Logs and Renormalization Group
- Forward Scattering & Factorization Violation
- Collider Physics Applications:
 - High Precision Resummation e^+e^-
 - High Precision Resummation *pp*
 - Power Corrections
 - Amplitudes in the Regge Limit

Perturbative Factorization: for multi-scale problems with N jets

Perturbative Factorization: for multi-scale problems with fixed # jets

Perturbative Universality

- H determined by hard process, independent of jet radius, etc.
- universal • J_i , $\mathcal{I}_{a,b}$ splitting and virtual effects for parton i, collinear encode jet dynamics, independent of H dynamics
- Soft radiation, all partons contribute, eikonal Feynman rules universal soft dynamics

Scale dependence \leftrightarrow RGE sums up logarithms $\log\left(\frac{\mu_H}{\mu_G}\right),...$

E

Perturbative QCD Results:

fixed order:

$$\hat{\sigma} = \sigma_0 \left[1 + \alpha_s + \alpha_s^2 + \dots \right]$$

= LO + NLO + NNLO + ...

SCET anomalous dimensions:

resummation of large (double) logs $L = \log(...)$

$$\log\left(\frac{p_T}{Q}\right), \dots$$

 $\log\left(\frac{\Lambda_{\rm QCD}}{\Omega}\right)$

$$\ln \hat{\sigma}(y) = \sum_{k} L(\alpha_{s}L)^{k} + \sum_{k} (\alpha_{s}L)^{k} + \sum_{k} \alpha_{s}(\alpha_{s}L)^{k} + \sum_{k} \alpha_{s}^{2}(\alpha_{s}L)^{k} + \dots$$
$$= LL + NLL + NLL + N^{3}LL + \dots$$

٠

Soft Collinear Effective Theory

dominant contributions from isolated regions of momentum space

 $\begin{array}{ll} \text{n-collinear} & \text{soft} \\ (n \cdot p, \bar{n} \cdot p, p_{\perp}) \sim Q(\lambda^2, 1, \lambda) & (n \cdot p, \bar{n} \cdot p, p_{\perp}) \sim Q\lambda^k \end{array}$

soft $(n \cdot p, \bar{n} \cdot p, p_{\perp}) \sim Q\lambda^k$ $k \ge 1$

power

counting

 $\lambda \ll 1$

Key Simplifying Principle is to Exploit the Hierarchy of Scales E μ_H μ_J μ_p ℓ^+ SCET μ_B J_2 μ_J, μ_B J_3 μ_S μ_S Wilson coefficients + operators at μ_H $\mathcal{L} = \sum_{i} C_{i} O_{i}$ μ_p **Amplitudes!** $d\sigma = \int (\text{phase space}) \left| \sum_{i} C_{i} \langle O_{i} \rangle \right|^{2} = \sum_{j} H_{j} \otimes (\text{longer distance dynamics})_{j}$ 10

Hard-collinear factorization

ds: $\frac{\mu_J}{\mu_p}$

Ε

SCET

Hard scale operators from building block fields:

$$\mathcal{O} = (\mathcal{B}_{n_a\perp})(\mathcal{B}_{n_b\perp})(\mathcal{B}_{n_1\perp})(\bar{\chi}_{n_2})(\chi_{n_3})$$

"quark jet" $\chi_n = (W_n^{\dagger} \xi_n)$ "gluon jet" $\mathcal{B}_{n\perp}^{\mu} = \frac{1}{g} [W_n^{\dagger} i D_{\perp}^{\mu} W_n]$ or $\mathcal{B}_{n\perp}^{A\mu} = \frac{1}{g} \frac{1}{\bar{n} \cdot \partial_n} \bar{n}_{\nu} G_n^{B\nu\mu} \mathcal{W}_n^{BA}$

Often convenient to use helicity basis for building blocks to make it easier to match to amplitude calculations

$${\cal B}^\pm_{n\perp} \qquad J^\pm_{nar n}$$

see 1508.02397

Soft-collinear factorization

Soft radiation knows only about bulk properties of radiation in the jets (color & direction)

Soft Wilson lines:

 $\left(\mathcal{S}_{n_a}\mathcal{S}_{n_b}\mathcal{S}_{n_1}S_{n_2}S_{n_3}\right)$

Soft function S = Matrix Elements of Soft Wilson Lines

Leading Power Glauber Lagrangian:

Rothstein, IS (2016)

Leading Power Glauber Lagrangian:

Rothstein, IS (2016)

- Glauber Lagrangian can spoil factorization by coupling sectors in a nonfactorizable manner. (Describes ONLY non-trivial fact. violation.)
- Its effects often cancel due to unitarity (summing over inclusive enough final states) or by exponentiating into an unobservable phase.
- Lagrangian can be used to systematically study non-factorizable
 Collider physics phenomena. (eg. super leading logs, "underlying event")

In Forward Scattering $s \gg |t|$

- Describes the leading scattering process. Old and well studied limit.
- SCET provides top-down EFT description, new tools

SCET Lagrangian at leading power

$$\mathcal{L} = \mathcal{L}_{dyn}^{(0)} + \mathcal{L}_{hard}^{(0)} + \mathcal{L}_{G}^{(0)}$$

Dynamics of infrared modes

Hard Scattering operators (typically once) Glauber gluon exchange (only factorization violating term)

•
$$\mathcal{L}_{hard}^{(0)} = \sum_{i} C_i^{(0)} \mathcal{O}_i^{(0)}$$

Leading operators for a given process

•
$$\mathcal{L}_{dyn}^{(0)} = \sum_{n} \mathcal{L}_{n}^{(0)} + \mathcal{L}_{soft}^{(0)}$$

Collinear and Soft dynamics (Factorizes after soft-collinear decoupling)

Copies of QCD* give dynamics in different sectors, with hard operators providing the only connection between sectors

SCET Lagrangian at leading power

$$\mathcal{L} = \mathcal{L}_{dyn}^{(0)} + \mathcal{L}_{hard}^{(0)} + \mathcal{L}_{G}^{(0)}$$

Dynamics of infrared modes

Hard Scattering operators (typically once) Glauber gluon exchange (only factorization violating term)

•
$$\mathcal{L}_{hard}^{(0)} = \sum_i C_i^{(0)} \mathcal{O}_i^{(0)}$$

Leading operators for a given process

•
$$\mathcal{L}_{dyn}^{(0)} = \sum_{n} \mathcal{L}_{n}^{(0)} + \mathcal{L}_{soft}^{(0)}$$

Collinear and Soft dynamics (Factorizes after soft-collinear decoupling)

Factorization

$$d\sigma = f_a f_b \otimes \hat{\sigma} \otimes F$$
$$\hat{\sigma}_{\text{fact}} = \mathcal{I}_a \mathcal{I}_b \otimes H \otimes \prod_i J_i \otimes S$$

Applications

Thrust vs. thrust moments

Agreement beyond the fit region

1

Thrust vs. C-parameter

27

Small $\alpha_s(m_Z)$?

thrust 2010: $\alpha_s(m_Z) = 0.1135 \pm 0.0011$ PDG 2023: $\alpha_s(m_Z) = 0.1180 \pm 0.0009$

thrust 2023 reanalysis: Bell, Lee, Makris, Talbert, Yan (2023), also small α_s

? Power corrections for 2-jets (Ω_1) versus 3-jets ($\neq \Omega_1$)

Luisoni, Monni, Salam (2021) Caola, Ravasio, Limatola, Melnikov, Nason, Ozcelik (`21-22) Nason, Zanderighi (2023) Benitez-Rathgeb, Hoang, Mateu, IS, Vita (2024)

Energy Energy Correlators and power corrections

Exciting class of observables for collider physics (both theoretically and experimentally)

 $\frac{d\Sigma}{d\chi}$ ι,j perturbative QCD universal power correction describing hadronization $c_n(\chi,\mu/Q)\alpha_s^n(\mu)$ Korchemsky, Sterman (1999) $1 d\hat{\Sigma}$ $1 \ d\Sigma$ $\Omega_1 \equiv rac{1}{N_c} \langle 0 | \operatorname{tr} \overline{Y}_{ar{n}}^{\dagger} Y_n^{\dagger} \mathcal{E}_T(0) Y_n \overline{Y}_{ar{n}} | 0 \rangle^{\dagger}$ $\overline{\sin^3 \chi}$ $\sigma_0 d\chi$ $\sigma_0 d\chi$ $\frac{1}{r} \frac{d\Sigma}{d\chi}$ C_e modified perturbative QCD scheme change to remove leading renorm $\sum c_n(\chi, \mu/Q) \alpha_s^n(\mu) + d_n$ -series $\alpha_{\prime} m_{\prime}$ $\Omega_1(R) \models \overline{\Omega}_1 - R \rightarrow d_{\overline{n}} (\mu/R) \alpha_{s}^{Q} (\overline{\mu})^{m_Z}$ 60n 80 100 120 140 160 180 20 400 $1 d\Sigma$ $\xrightarrow{\chi (deg Res)} cheme$ MS scheme \sin^3 $\sigma_0 d\chi$ σ_0 Hoang, I.S.(2007); Hoang Kluth(2008);

Schindler, Sun, I.S. (2023)

see talk by Ian Moult

here
$$e^+e^-$$

$$=\sum_{i,j}\int d\sigma \frac{E_i E_j}{Q^2} \delta(\chi - \theta_{ij})$$

Perturbative Energy Energy Correlators

NLO (analytic): Dixon, Luo, Shtabovenko, Yang, Zhu (2018)

NNLO (CoLoRFul): Del Duca, Duhr, Kardos, Somogyi, Trócsányi (2017); Tulipánt, Kardos, Somogyi (2018)

EEC With Power Corrections

Projected N-point Energy Correlators

 e^+e^-

Chen, Moult, Zhang, Zhu (2020)

$$\langle \mathcal{E}_1 \mathcal{E}_2 \cdots \mathcal{E}_N \rangle$$

 $\theta_L = \max(\theta_{ij})$

Power Corrections

Lee, Pathak, I.S., Sun (2024)

$$\frac{1}{\sigma} \frac{d\sigma^{[N]}}{d\theta_L} = \frac{1}{\sigma} \frac{d\hat{\sigma}^{[N]}}{d\theta_L} + \frac{4N}{2^N} \frac{\overline{\Omega}_1}{Q\sin^3\theta_L}$$

Ω_1 , $lpha_s$ from thrust fit

Projected N-point Energy Correlators

Chen, Moult, Zhang, Zhu (2020)

$$\langle \mathcal{E}_1 \mathcal{E}_2 \cdots \mathcal{E}_N \rangle$$
$$\theta_L = \max(\theta_{ij})$$

Power Corrections

Lee, Pathak, I.S., Sun (2024)

 $\frac{1}{\sigma} \frac{d\sigma^{[N]}}{d\theta_L} = \frac{1}{\sigma} \frac{d\hat{\sigma}^{[N]}}{d\theta_L} + \frac{4N}{2^N} \frac{\overline{\Omega}_1}{Q\sin^3\theta_L}$

 e^+e^-

Resummation $\theta_L \ll 1$

Dixon, Moult, Zhu (2019) Chen, Moult, Zhang, Zhu (2020)

$$\frac{1}{\sigma} \frac{d\sigma^{[N]}}{d\theta_L} \sim \int dx \, x^N \vec{J}^{[N]} \cdot \vec{H}$$

EEC in back-to-back limit

 N^4LI Duhr, Mistlberger, Vita (2022)

using factorization: Moult, Zhu (2018)

Key new ingredients:

 OPE for TMD PDFs and FFs to 3-loops (all channels)
 Ebert, Mistlberger, Vita (2020)
 Luo, Yang, Zhu, Zhu (2020)

$$f_{i/h}^{\text{pert}}(x, b_T, \mu, \zeta) = \sum_j \int \frac{dy}{y} C_{ij}(x/y, b_T, \mu, \zeta) f_{j/h}(y, \mu)$$

Accuracy	H, \mathcal{J}	$\Gamma_{\rm cusp}(\alpha_s)$	$\gamma^q_H(lpha_s)$	$\gamma_r^q(\alpha_s)$	$eta(lpha_s)$
LL	Tree level	1-loop	—	_	1-loop
NLL	Tree level	2-loop	1-loop	1-loop	2-loop
NLL'	1-loop	2-loop	1-loop	1-loop	2-loop
NNLL	1-loop	3-loop	2-loop	2-loop	3-loop
NNLL'	2-loop	3-loop	2-loop	2-loop	3-loop
N ³ LL	2-loop	4-loop	3-loop	3-loop	4-loop
$N^{3}LL'$	3-loop	4-loop	3-loop	3-loop	4-loop
N^4LL	3-loop	5-loop	4-loop	4-loop	5-loop
N^4LL'	4-loop	5-loop	4-loop	4-loop	5-loop

Resummation $\chi \rightarrow \pi$

High Precision Resummation pp

Small q_T factorization

$$\frac{d^2\sigma}{dq_TdY} = W^{(0)}(q_T, Y) + W^{\text{non.sing.}}(q_T, Y)$$

Collins, Soper, Sterman SCET

Small q_T factorization

$$\frac{d^2\sigma}{dq_T dY} = W^{(0)}(q_T, Y) + W^{\text{non.sing.}}(q_T, Y)$$

$$W(x_a, x_b, m_H, \vec{b}) = \left| C_V(m_t, m_H, \mu) \right|^2 S(\vec{b}, \mu, \nu) B_{g/N_1}^{\alpha\beta}(x_a, Q, \vec{b}, \mu, \nu) B_{g/N_2}^{\alpha\beta}(x_b, Q, \vec{b}, \mu, \nu)$$
Resummation:

$$\ln W = L \sum_k (\alpha_s L)^k + \sum_k (\alpha_s L)^k + \alpha_s \sum_k (\alpha_s L)^k + \alpha_s^2 \sum_k (\alpha_s L)^k$$

$$L = \ln(m_H b)$$
III NLL NILL N3LL

The Higgs p_T Spectrum and Total Cross Section with Fiducial Cuts at N³LL'+N³LO

Billis, Dehnadi, Ebert, Michel, Tackmann (2021)

Consider $gg
ightarrow H
ightarrow \gamma\gamma$ with ATLAS fiducial cuts:

$$p_T^{\gamma 1} \ge 0.35 \, m_H \,, \quad p_T^{\gamma 2} \ge 0.25 \, m_H \,, \quad |\eta^{\gamma}| \le 2.37 \,, \quad |\eta^{\gamma}| \notin [1.37, 1.52]$$
$$\sigma^{\text{fid}} = \int dq_T dY A(q_T, Y; \Theta) \, W(q_T, Y) \qquad \qquad \text{A=acceptance}$$

Fiducial cross section measures deviation from SM gluon-fusion:

Acceptance causes a need for resummation to obtain Fiducial cross section

Resummation Inputs

- Three-loop soft and hard function ... includes in particular the three-loop virtual form factor [Li, Zhu, '16] [Baikov et al. '09; Lee et al. '10; Gehrmann et al. '10]
- Three-loop unpolarized and two-loop polarized beam functions
 [Ebert, Mistlberger, Vita '20; Luo, Yang, Zhu, Zhu '20]
 [Luo, Yang, Zhu, Zhu '19; Gutierrez-Reyes, Leal-Gomez, Scimemi, Vladimirov '19]
- Four-loop cusp, three-loop noncusp anomalous dimensions
 [Brüser, Grozin, Henn, Stahlhofen '19; Henn, Korchemsky, Mistlberger '20; v. Manteuffel, Panzer,
 Schabinger '20] [Li, Zhu, '16; Moch, Vermaseren, Vogt '05; Idilbi, Ma, Yuan '06; Vladimirov '16]
- Four-loop CS kernel, from conformal relation between UV & rapidity anom. dims [Vladimirov, 1610.05791 → Duhr, Mistlberger, Vita, 2205.02242; Moult, Zhu, Zhu, 2205.02249]

Fixed Order Inputs

- At NNLO, renormalize & implement bare analytic results for $W(q_T, Y)$ [Dulat, Lionetti, Mistlberger, Pelloni, Specchia '17]
- At N³LO, use existing binned NNLO₁ results from NNLOjet
 [Chen, Cruz-Martinez, Gehrmann, Glover, Jaquier '15-16; as used in Chen et al. '18; Bizoń et al. '18]
- Use N³LO total inclusive cross section as additional fit constraint on underflow [Mistlberger '18]

Implemented in C++ Library "SCETlib"

Higgs Results

Billis, Dehnadi, Ebert, Michel, Tackmann (2021)

The fiducial q_T spectrum at N³LL'+N³LO

The total fiducial cross section at N^3LO and $N^3LL'+N^3LO$ (SM)

Precision and convergence improved

Drell-Yan Results

Billis, Michel, Tackmann (in progress)

Fixed Order Inputs

- Fiducial Z+jet MC data at $\mathcal{O}(\alpha_s^2)$ from MCFM [Campbell, Ellis, et al. '99, '15]
- Very recently: Precise fiducial Z+jet MC data at $\mathcal{O}(\alpha_s^3)$ from NNLOjet [Chen et al., 2203.01565 many thanks to the NNLOjet collaboration for providing the raw data.]

Power Corrections

(typically once)

Subleading Lagrangians

Subleading Hard Scattering Operators

Regge Amplitudes

Regge Amplitudes in SCET

 $\mathcal{A}(i,j)$

Rothstein, IS (2016) Moult, Raman, Ridgway, IS (2022) Gao, Moult, Raman, Ridgway, IS (2024)

 $s \gg |t|$

$$\mathcal{O}_n^A \ \frac{1}{\mathcal{P}_{\perp}^2} \ \mathcal{O}_S^{AB} \ \frac{1}{\mathcal{P}_{\perp}^2} \ \mathcal{O}_{\bar{n}}^B \quad , \quad \mathcal{O}_n^A \ \frac{1}{\mathcal{P}_{\perp}^2} \ \mathcal{O}_s^A$$

Lagrangian gives forward scattering amplitudes $J_{\kappa(i)}$ any loop order $p_1 \rightarrow$ $p_4 \rightarrow$ both planar and non-planar graphs any color channel $S_{(i,j)}$ large (Regge) logs from rapidity RGE $p_2 \rightarrow$ $p_3 \rightarrow$ $\ln\left(\frac{s}{-t}\right) = \ln\left(\frac{s}{\nu^2}\right) + \ln\left(\frac{\nu^2}{-t}\right)$ $\bar{J}_{\kappa'(j)}$

46

collinear soft loop loop

Same color as QCD box graph (includes 8_A)

Glauber \neq Reggeon

2 Glauber exchange reproduces 1_S (pomeron), 8_S , 27 BFKL equations

Interesting complementarity to Reggeon EFTs

 \star operator definition for impact factors

$$\langle p|O_n^{A_1}\cdots O_n^{A_N}|p'\rangle$$

- \star collinear loop calculations for rapidity logs
- \star different structure for vanishing transitions $1 \rightarrow j$ vs. eg. $(j-1) \rightarrow j$
- \star signature and crossing symmetry not manifest from start
- Glauber operators can also be used to study factorization violation in hard scattering

Other Areas (no time to discuss)

- SCET for **B-physics** (SCET+HQET)
- SCET for quarkonia (SCET+NRQCD)
- SCET for jet substructure, often called SCET₊
- SCET for heavy-ions (SCET coupled to medium)
- SCET for electroweak logarithms
- SCET for Dark Matter annihilation
- SCET for gravitational scattering amplitudes

For further references see my SCET review in 50 yrs of QCD, 2212.11107

Summary:

Precision Resummation

Regge Amplitudes

Ω

$\overline{n} \xrightarrow{n} \overline{n} \qquad n \xrightarrow{s} \overline{n} \xrightarrow{s}$

• Power Corrections

$$J_{\mathcal{P}}^{(1)\mu} \sim \frac{C_{f}^{(0)}}{2\omega_{a}} \bar{\chi}_{\bar{n},\omega_{b}} [S_{\bar{n}}^{\dagger} S_{n}] \gamma^{\mu} \mathcal{P}_{\perp} \bar{n} \chi_{n,\omega_{a}}$$
$$J_{\mathcal{B}}^{(1)\mu} \sim (n^{\mu} + \bar{n}^{\mu}) \int d\omega_{c} C_{f}^{(1)}(Q,\omega_{c}) \ \bar{\chi}_{\bar{n},\omega_{b}} [S_{\bar{n}}^{\dagger} S_{n}] \mathcal{B}_{\perp n,-\omega_{c}}$$

• Nonperturbative corrections

