
Transformers for bootstrapped
amplitudes

François CHARTON, Meta AI

Maths as a transla*on task

• Train models to translate problems, encoded as sentences
in some language, into their solu5ons
• 7+9 => 16

• x2-x-1 => !" #
$, !% #

$

The recipe

• Generate a lot of examples of problems and solu5ons
• Encode them as ”sentences” in some language
• Train a transformer model from problems and solu5ons
• By minimizing the correctness (X-entropy) of the solu8on

predicted by the model
• No maths are involved at this stage

• Test it on a held-out test set
• Not seen during training
• Using a mathema8cal criterion

Maths as transla*on: learning GCD

• Two integers a=10, b=32, and their GCD gcd(a,b)=2
• Can be encoded as sequences of digits (in base 10):
• ‘+’, ‘1’, ‘0’
• ‘+’, ‘3’, ‘2’
• ‘+’, ‘2’

• Translate ‘+’,‘1’,‘0’,‘+’,‘3’,‘2’ into ‘+’, ‘2’
• from examples only
• as a “pure language” problem: the model knows no maths

This works!

• Symbolic integra/on / Solving ODE:
• Deep learning for symbolic mathema4cs (2020): Lample & Charton (ArXiv 1912.01412)

• Dynamical systems:
• Learning advanced computa4ons from examples (2021) : Charton, Hayat & Lample (ArXiv 2006.06462)
• Discovering Lyapunov func4ons with transformers (2023) : Alfarano, Charton, Hayat (3rd MATH&AI workshop, NeurIPS)

• Symbolic regression:
• Deep symbolic regression for recurrent sequences (2022) : d’Ascoli, Kamienny, Lample, Charton (ArXiv 2201.04600)
• End-to-end symbolic regression with transformers (2022) : Kamienny, d’Ascoli, Lample, Charton (ArXiv 2204.10532)

• Cryptanalysis of post-quantum cryptography:
• SALSA: aXacking laYce cryptography with transformers (2022): Wenger, Chen, Charton, Lauter (ArXiv 2207.04785)
• SALSA PICANTE (2023) Li, Sotakova, Wenger, Mahlou, Garcelon, Charton, Lauter (ArXiv 2303.0478)
• SALSA VERDE (2023) Li, Wenger, Zhu, Charton, Lauter (ArXiv 2306.11641)

• Theore/cal physics
• Transformers for scaXering amplitudes (2023): Merz, Cai, Charton, Nolte, Wilhelm, Cranmer, Dixon (ML4PS Workshop, NeurIPS)

• Quantum compu/ng
• Using transformer to simplify ZX diagrams (2023) (3rd MATH&AI Workshop, NeurIPS)

Deep symbolic regression for recurrent sequences
(d’Ascoli, Kamienny, Lample, Charton 2022)

• Given the sequence 1, 2, 4, 7, 11, 16, what is the next term?
• 2 approaches:

• Numeric regression : direct predicNon of the next term
• Symbolic regression : finding a formula for the sequence
• a closed formula: un = n(n+1)/2 +1
• or a recurrence relaNon: un = un-1 + n

6

Deep symbolic regression for recurrent sequences
(d’Ascoli, Kamienny, Lample, Charton 2022)

• 2 tasks:
• Numeric regression : from the p first terms, predict the q next
• Symbolic regression : from the p first terms, find a func>on

• 2 se?ngs:
• Integer sequences
• Real (floa>ng point) sequences

• One evalua>on criterion: how good is the model at predic>ng the
next q terms?

7

Genera*ng data

• Generate a random funcNon f(n, un-1, … un-k): n + un-1

• Sample k iniNal points u0, u1, … uk-1 : u0=1
• Use funcNon f to compute the next terms of the sequence

• 1, 2, 4, 7, 11, 16, 22, 29, 37 ...

• Symbolic regression: predict f from (u0,…up-1)
• from (1,2,4,7,11) predict f(n) = n+un-1

• Numeric regression: predict (up,…up+q-1) from (u0,…up-1)
• from (1,2,4,7,11) predict (16,22,29,37)

8

Represen*ng expressions

2 + 3⇥ (5 + 2)
<latexit sha1_base64="LiMDNDKuaFPrdb5JJc20HmaGAeI=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSxCpVCStr52RTcuK9gHtKFMppN26GQSZiZCDf0SNy4UceunuPNvnKRB1HrgwuGce7n3HjdkVCrL+jRyK6tr6xv5zcLW9s5u0dzb78ggEpi0ccAC0XORJIxy0lZUMdILBUG+y0jXnV4nfveeCEkDfqdmIXF8NObUoxgpLQ3NYq1SHyjqEwnLp5XaydAsWVUrBVwmdkZKIENraH4MRgGOfMIVZkjKvm2FyomRUBQzMi8MIklChKdoTPqacqRXOXF6+Bwea2UEvUDo4gqm6s+JGPlSznxXd/pITeRfLxH/8/qR8i6cmPIwUoTjxSIvYlAFMEkBjqggWLGZJggLqm+FeIIEwkpnVUhDuExw9v3yMunUqna92rhtlJpXWRx5cAiOQBnY4Bw0wQ1ogTbAIAKP4Bm8GA/Gk/FqvC1ac0Y2cwB+wXj/Ag9hkYo=</latexit>

3x2 + cos(2x)� 1
<latexit sha1_base64="htNZZv5LMgBDdpC1JIsxFD9nVWM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSxCRSxJW3zsim5cVrAPaGOZTCft0MlMmJlIa+iXuHGhiFs/xZ1/Y5oGUeuBC4dz7uXee9yAUaUt69PILC2vrK5l13Mbm1vbeXNnt6lEKDFpYMGEbLtIEUY5aWiqGWkHkiDfZaTljq5mfuueSEUFv9WTgDg+GnDqUYx0LPXMfGV8Vz7uYqGK5fHRid0zC1bJSgAXiZ2SAkhR75kf3b7AoU+4xgwp1bGtQDsRkppiRqa5bqhIgPAIDUgnphz5RDlRcvgUHsZKH3pCxsU1TNSfExHylZr4btzpIz1Uf72Z+J/XCbV37kSUB6EmHM8XeSGDWsBZCrBPJcGaTWKCsKTxrRAPkURYx1nlkhAuZjj9fnmRNMslu1Kq3lQLtcs0jizYBwegCGxwBmrgGtRBA2AQgkfwDF6MB+PJeDXe5q0ZI53ZA79gvH8BiQGR2Q==</latexit>

@2

@x2
� 1

⌫2
@2

@t2
<latexit sha1_base64="tgYYgYmqnJQ188LswAJSU0Z3kN0=">AAACSHichVDNS8MwHE3n15xfU49egkPw4mjn8OM29OJxgvuAtStplm7BNC1JKo7SP8+LR2/+DV48KOLNdCtDneCDwOO93/sleV7EqFSm+WwUFhaXlleKq6W19Y3NrfL2TluGscCkhUMWiq6HJGGUk5aiipFuJAgKPEY63u1l5nfuiJA05DdqHBEnQENOfYqR0pJbdm1fIJzYERKKItavaSppms6U5L5fS1N4BKeDlnZ4rCX4b1BlQbdcMavmBHCeWDmpgBxNt/xkD0IcB4QrzJCUPcuMlJNkOzEjacmOJYkQvkVD0tOUo4BIJ5kUkcIDrQygHwp9uIIT9XsiQYGU48DTkwFSI/nby8S/vF6s/DMnoTyKFeF4epEfM6hCmLUKB1QQrNhYE4QF1W+FeIR0QUp3X5qUcJ7hZPbledKuVa3jav26Xmlc5HUUwR7YB4fAAqegAa5AE7QABg/gBbyBd+PReDU+jM/paMHIM7vgBwqFL6HbtV8=</latexit>

Genera*ng random formulas

1. Build a random tree
2. Sample operators as internal nodes
3. Sample integers, n, or past terms as leaves
4. Enumerate as a sequence

10

Evalua*ng performance

• Model performance is defined as its ability to predict the next npred
terms (1 to 10)
• Directly or using the symbolic formula

• All predicted term must be predicted up to some tolerance t (10-10)

• Accuracy is evaluated on a test set of 10 000 held-out examples

11

acc 𝑛!"#$, 𝜏 = ℙ 𝑚𝑎𝑥
%&'&(!"#$

𝑢
̂
' − 𝑢'
𝑢'

< 𝜏

In domain results

12

Success and failure cases

13

Out-of-domain generaliza2on -integers

14

Out-of-domain generaliza2on - integers

15

Fun facts

16

ApproximaDng constants ApproximaDng funcDons

Fun facts - embeddings

17

Integer Floa4ng point exponents

Predic*ng gluon scaDering amplitudes
(Cai, Merz, Nolte, Wilhelm, Cranmer, Dixon, Charton, 2024)

• ScaFering amplitudes: complex func8ons predic8ng the outcome of
par8cle interac8ons
• Computed by summing Feynman diagrams of increasing complexity
• loops: virtual parNcles created and destroyed in the process

• A hard problem: each loop introduces two latent variables, their
integra8on give rise to generalized polylogarithms
• For the standard model the best computaNonal techniques only reach loop 3

Amplitude bootstrap

• Polylogarithms have many algebraic proper8es
• Leverage them to predict the structure of the soluNon, up to some

coefficients
• Compute the coefficients from symmetry consideraNon, known limit values,

etc.

• In Planar N=4 supersymmetric Yang-Mills, solu8ons are “simple”
• Calculated from symbols: homogeneous polynomials, degree 2L (L=loop),

with integer coefficients

The three gluon form factor

• Three gluons and a Higgs
• Amplitudes for loop L can be computed

from symbols
• homogeneous polynomials in 6 non-

commuta@ve variables: a,b,c,d,e,f
• with integer coefficients
• -4 bccaff + 4 bcbaff + 8 bcafff + ...

• 62L possible “keys”, mapped to integers
• Most of them zero

• Symmetries and asympto>c proper>es
translate into constraints
• An enormous integer programming problem
• Could be solved up to loop 8

The six leDer game

• We want to learn a mapping between “keys” (sequences of length 2L of the
6 leFers, a,b,c,d,e and f) and integer coefficients
• There are obvious symmetries in the symbol
• Coefficients are invariant by the dihedral symmetry generated by

• a -> b->c -> a, d -> e -> f -> d, a <-> b, d <-> e
• bccaff maps to -4, so does abbcee

• Non zero coefficients
• must begin with a, b or c, and end with d, e or f
• Have no conDguous a and d, b and e, c and f, d and e, e and f and d and f

The six leDer game

• And many less obvious symmetries
• Non zero keys ending with a single leaer d,e or f, must be preceded by a run of one

of the leaers a, b or c
• A key ending in eccccd can be non zero, one ending in ecbcd must be zero

• And many empirical facts hold true over all symbols
• Large absolute coefficients happen for symbols with many runs of one leaer

• Can some of these rela8ons be learned, empirically, by a language model?
• To help calculate loops
• To discover new facts about amplitudes in planar N=4

Experiment 1 : Predic*ng zeroes

• For Loop 5 and 6, predict whether a term is zero or nonzero
• afdcfdadfe is zero
• aaaeeceaaf is not

• Build a 50/50 training sample of zero/non zero terms
• Reserve 10k terms for test, these will not be seen during training
• Train the model, and measure performance on the test set (% of correct

predicNon)
• For input a,f,d,c,f,d,a,d,f,e predict 0
• For input a,a,a,e,e,c,e,a,a,f predict 1

Experiment 1 : Predic*ng zeroes

• Loop 5 : aZer training on 300,000 examples (57% of the non
zero keys and as many zero keys), the model predict 99.96% of
test examples (not seen during training)

• Loop 6 : aZer training on 600,000 examples (6% of the symbol),
the model predicts 99.97% of test examples

Experiment 2 : Predic*ng non-zeroes

• From keys, sequences of 2L lePers, predict
coefficients, integers encoded in base 1000

• For loop 5, models trained on 164k
examples (62% of the symbol), tested on
100k
• 99.9% accuracy aFer 58 epochs of 300k examples

• For loop 6, models trained on 1M examples
(20% of the symbol), tested on 100k
• 98% accuracy aFer 120 epochs
• BUT a two step learning curve

Experiment 2 : Predic*ng non-zeroes

• full predic8on, magnitude and sign

Experiment 3 : Learning with less symmetries

• Non zero coefficients
• Must begin with a,b,c and end with d,e,f
• Are invariant by dihedral symmetry
• Cannot have a next to d (b next to e, c next to f)
• Cannot have d next to e or f (e next to d or f)

• Only a few endings are possible:
• 8 “quads” (4 leaer endings, up to cyclic symmetry (a,b,c), (d,e,f))
• 93 octuples

Experiment 3 : Learning loop 7 quads

• 7.3 million elements in the
symbol (vs 93 millions in full
representa8on)
• Models learn to predict with

98% accuracy
• Same “two step” shape

Experiment 3 : Learning loop 8 octuples

• 5.6 million elements in the
symbol (vs 1.7 billions in full
representa8on)
• Models learn to predict with

94% accuracy
• AFenuated “two step” shape
• Slower learning (600 epochs, vs

200 for quads, and 70 for full
representa8on)

Take aways from experiments 1-3

• We can use transformers to complete par8ally calculated loops

• Coefficients are learned with high accuracy
• Even when only a small part of the symbol is available

• A few unintui8ve observa8ons happen:
• hardness of learning the sign
• might shed new light on the underlying phenomenon

Experiment 4: predic*ng the next loop

• A loop L element E is a sequence of 2L lePers
• Strike out 2 of the 2L lePers

• From aabd make bd, ad, ab...
• There are L(2L-1) parents, call them P(E)

• Try to find a recurrence rela@on, that predicts the coefficient of E from its parents: E = f(P(E))
• A generalized Pascal triangle/pyramid (in 6 non-commutaEve variables)

• Predict loop 6 from loop 5:
• From 66 integers: loop 5 coefficients
• Predict 1 integer: the loop 6 coefficient
• (NOT the keys: we already know the model can predict coefficients from keys)

• 98.1% accuracy, no difference between sign (98.4) and magnitude (99.6) accuracy
• A func@on f certainly exists (but we have no idea what it is)

Experiment 4: understanding the recurrence

• To collect informa>on on f, the unknown recurrence, we could
• Remove informa@on about the parents
• See if the model s@ll learns

• Can we use less parents?
• Only strike lePers at most k tokens apart; e.g. k=1 only consecu@ve tokens
• k=2: 21 parents, k=1: 11 parents

Experiment 4: understanding the recurrence

• Shuffling/sor8ng the parents do not prevent learning
• Coupling between parent/children signs, and magnitudes

Next steps

• BeFer understanding the recurrence rela8on
• Try building loop 9, or loops for related problems

• Discovering local proper8es/symmetries in the symbol
• Symbols were calculated by exploiNng known symmetries in nature
• If we discover new regulariNes in the symbols, what does is tell us about nature?
• AnNpodal symmetries

Fun facts: learning the dihedral symmetry

Fun facts: learning relaCons between coefficients

Next steps

• We have a proof of concept :
• Models can predict coefficients from key
• Or discover recurrences from one loop to the next

• Can we go for loop 9? Or other problems?
• Can we reverse engineer the models?
• By looking at their weights?
• By looking at the representaNons they learn?
• By looking at the way they train?

• If we train a language model on “all we know” about the symbol (like
we train ChatGPT on all we know about language), will it learn new,
emerging, proper8es of the symbols?

A growing area of research

In symbolic mathema>cs, we are beginning to use transformers to help solve
longstanding open problems.

• Current projects in symbolic mathema>cs

• Discovering the (symbolic) Lyapunov func>ons that control the global
stability of dynamical systems (e.g. the N-body problem)
• Discovering yet unknown kernel elements in the Burau representa>on of

braid groups

• Could we use transformers in theore>cal physics?

