Transformers for bootstrapped amplitudes

François CHARTON, Meta AI

Maths as a translation task

- Train models to translate problems, encoded as sentences in some language, into their solutions
- 7+9 => 16
- $x^{2}-x-1 \quad \Rightarrow \quad \frac{1+\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}$

The recipe

- Generate a lot of examples of problems and solutions
- Encode them as "sentences" in some language
- Train a transformer model from problems and solutions
- By minimizing the correctness (X-entropy) of the solution predicted by the model
- No maths are involved at this stage
- Test it on a held-out test set
- Not seen during training
- Using a mathematical criterion

Maths as translation: learning GCD

- Two integers $a=10, b=32$, and their GCD $\operatorname{gcd}(a, b)=2$
- Can be encoded as sequences of digits (in base 10):
- '+', '1’, '0'
- 'r', '3', '2'
- '+', '2'

- from examples only
- as a "pure language" problem: the model knows no maths

This works!

- Symbolic integration / Solving ODE:

- Deep learning for symbolic mathematics (2020): Lample \& Charton (ArXiv 1912.01412)
- Dynamical systems:
- Learning advanced computations from examples (2021) : Charton, Hayat \& Lample (ArXiv 2006.06462)
- Discovering Lyapunov functions with transformers (2023) : Alfarano, Charton, Hayat (3rd MATH\&AI workshop, NeurIPS)
- Symbolic regression:
- Deep symbolic regression for recurrent sequences (2022) : d’Ascoli, Kamienny, Lample, Charton (ArXiv 2201.04600)
- End-to-end symbolic regression with transformers (2022) : Kamienny, d’Ascoli, Lample, Charton (ArXiv 2204.10532)
- Cryptanalysis of post-quantum cryptography:
- SALSA: attacking lattice cryptography with transformers (2022): Wenger, Chen, Charton, Lauter (ArXiv 2207.04785)
- SALSA PICANTE (2023) Li, Sotakova, Wenger, Mahlou, Garcelon, Charton, Lauter (ArXiv 2303.0478)
- SALSA VERDE (2023) Li, Wenger, Zhu, Charton, Lauter (ArXiv 2306.11641)
- Theoretical physics
- Transformers for scattering amplitudes (2023): Merz, Cai, Charton, Nolte, Wilhelm, Cranmer, Dixon (ML4PS Workshop, NeurIPS)
- Quantum computing
- Using transformer to simplify ZX diagrams (2023) (3rd MATH\&AI Workshop, NeurIPS)

Deep symbolic regression for recurrent sequences (d'Ascoli, Kamienny, Lample, Charton 2022)

- Given the sequence $1,2,4,7,11,16$, what is the next term?
- 2 approaches:
- Numeric regression : direct prediction of the next term
- Symbolic regression : finding a formula for the sequence
- a closed formula: $u_{n}=n(n+1) / 2+1$
- or a recurrence relation: $u_{n}=u_{n-1}+n$

Deep symbolic regression for recurrent sequences (d'Ascoli, Kamienny, Lample, Charton 2022)

- 2 tasks:
- Numeric regression : from the p first terms, predict the q next
- Symbolic regression : from the p first terms, find a function
- 2 settings:
- Integer sequences
- Real (floating point) sequences
- One evaluation criterion: how good is the model at predicting the next q terms?

Generating data

- Generate a random function $f\left(n, u_{n-1}, \ldots u_{n-k}\right): n+u_{n-1}$
- Sample k initial points $u_{0}, u_{1}, \ldots u_{k-1}: u_{0}=1$
- Use function f to compute the next terms of the sequence - 1, 2, 4, 7, 11, 16, 22, 29, 37 ...
- Symbolic regression: predict from ($u_{0}, \ldots u_{p-1}$)
- from $(1,2,4,7,11)$ predict $f(n)=n+u_{n-1}$
- Numeric regression: predict $\left(u_{p}, \ldots u_{p+q-1}\right)$ from $\left(u_{0}, \ldots u_{p-1}\right)$
- from (1,2,4,7,11) predict $(16,22,29,37)$

Representing expressions

$2+3 \times(5+2)$

$$
\frac{\partial^{2} \psi}{\partial x^{2}}-\frac{1}{\nu^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}
$$

Generating random formulas

1. Build a random tree
2. Sample operators as internal nodes
3. Sample integers, n, or past terms as leaves
4. Enumerate as a sequence

	Integer	Float
Unary	abs, sqr, sign, step	abs, sqr, sqrt, inv, log, exp sin, cos, tan, atan
Binary	sum, sub, mul, intdiv, mod	sum, sub, mul, div

Evaluating performance

- Model performance is defined as its ability to predict the next $\mathrm{n}_{\text {pred }}$ terms (1 to 10)
- Directly or using the symbolic formula
- All predicted term must be predicted up to some tolerance $\tau\left(10^{-10}\right)$

$$
\operatorname{acc}\left(n_{\text {pred }}, \tau\right)=\mathbb{P}\left(\max _{1 \leq i \leq n_{\text {pred }}}\left|\frac{\hat{u}_{i}-u_{i}}{u_{i}}\right|<\tau\right)
$$

- Accuracy is evaluated on a test set of 10000 held-out examples

In domain results

Model	Integer		Float	
	$n_{o p} \leq 5$	$n_{o p} \leq 10$	$n_{o p} \leq 5$	$n_{o p} \leq 10$
Symbolic	$\mathbf{9 2 . 7}$	$\mathbf{7 8 . 4}$	$\mathbf{7 4 . 2}$	$\mathbf{4 3 . 3}$
Numeric	83.6	70.3	45.6	29.0

Table 6: Average in-distribution accuracies of our models. We set $\tau=10^{-10}$ and $n_{\text {pred }}=10$.

Success and failure cases

Out-of-domain generalization-integers

Model	$n_{\text {input }}=15$		$n_{\text {input }}=25$	
	$n_{\text {pred }}=1$	$n_{\text {pred }}=10$	$n_{\text {pred }}=1$	$n_{\text {pred }}=10$
Symbolic (ours)	33.4	19.2	34.5	21.3
Numeric (ours)	53.1	27.4	54.9	29.5
FindSequenceFunction	17.1	12.0	8.1	7.2
FindLinearRecurrence	17.4	14.8	21.2	19.5

Table 7: Accuracy of our integer models and Mathematica functions on OEIS sequences. We use as input the first $n_{\text {input }}=\{15,25\}$ first terms of OEIS sequences and ask each model to predict the next $n_{\text {pred }}=\{1,10\}$ terms. We set the tolerance $\tau=10^{-10}$.

Out-of-domain generalization- integers

OEIS	Description	First terms	Predicted recurrence
A000792	$a(n)=\max \{(n-i) a(i), i<n\}$	$1,1,2,3,4,6,9,12,18,27$	$u_{n}=u_{n-1}+u_{n-3}-u_{n-1} \% u_{n-3}$
A000855	Final two digits of 2^{n}	$1,2,4,8,16,32,64,28,56,12$	$u_{n}=\left(2 u_{n-1}\right) \% 100$
A006257	Josephus sequence	$0,1,1,3,1,3,5,7,1,3$	$u_{n}=\left(u_{n-1}+n\right) \%(n-1)-1$
A008954	Final digit of triangular number $n(n+1) / 2$	$0,1,3,6,0,5,1,8,6,5$	$u_{n}=\left(u_{n-1}+n\right) \% 10$
A026741	$a(n)=n$ if n odd, $n / 2$ if n even	$0,1,1,3,2,5,3,7,4,9$	$u_{n}=u_{n-2}+n / /\left(u_{n-1}+1\right)$
A035327	n in binary, switch 0 's and 1's, back to decimal	$1,0,1,0,3,2,1,0,7,6$	$u_{n}=\left(u_{n-1}-n\right) \%(n-1)$
A062050	n-th chunk consists of the numbers $1, \ldots, 2^{n}$	$1,1,2,1,2,3,4,1,2,3$	$u_{n}=\left(n \%\left(n-u_{n-1}\right)+1\right.$
A074062	Reflected Pentanacci numbers	$5,-1,-1,-1,-1,9,-7,-1,-1,-1$	$u_{n}=2 u_{n-5}-u_{n-6}$

Fun facts

Constant	Approximation	Rel. error
0.3333	$(3+\exp (-6))^{-1}$	10^{-5}
0.33333	$1 / 3$	10^{-5}
3.1415	$2 \arctan (\exp (10))$	10^{-7}
3.14159	π	10^{-7}
1.6449	$1 / \arctan (\exp (4))$	10^{-7}
1.64493	$\pi^{2} / 6$	10^{-7}
0.123456789	$10 / 9^{2}$	10^{-9}
0.987654321	$1-(1 / 9)^{2}$	10^{-11}

Expression u_{n}	Approximation \hat{u}_{n}
$\operatorname{arcsinh}(n)$	$\log \left(n+\sqrt{n^{2}+1}\right)$
$\operatorname{arccosh}(n)$	$\log \left(n+\sqrt{n^{2}-1}\right)$
$\operatorname{arctanh}(1 / n)$	$\frac{1}{2} \log (1+2 / n)$
$\operatorname{catalan}(n)$	$u_{n-1}(4-6 / n)$
dawson (n)	$\frac{n}{2 n^{2}-u_{n-1}-1}$
j0(n)(Bessel)	$\frac{\sin (n) \cos (n)}{\sqrt{\pi n}}$
$\mathrm{i} 0(n)(\bmod$. Bessel $)$	$\frac{e^{n}}{\sqrt{2 \pi n}}$

Approximating constants
Approximating functions

Fun facts- embeddings

Integer

Floating point exponents

Predicting gluon scattering amplitudes
 (Cai, Merz, Nolte, Wilhelm, Cranmer, Dixon, Charton, 2024)

- Scattering amplitudes: complex functions predicting the outcome of particle interactions
- Computed by summing Feynman diagrams of increasing complexity
- loops: virtual particles created and destroyed in the process
- A hard problem: each loop introduces two latent variables, their integration give rise to generalized polylogarithms
- For the standard model the best computational techniques only reach loop 3

Amplitude bootstrap

- Polylogarithms have many algebraic properties
- Leverage them to predict the structure of the solution, up to some coefficients
- Compute the coefficients from symmetry consideration, known limit values, etc.
- In Planar N=4 supersymmetric Yang-Mills, solutions are "simple"
- Calculated from symbols: homogeneous polynomials, degree 2L (L=loop), with integer coefficients

The three gluon form factor

- Three gluons and a Higgs
- Amplitudes for loop L can be computed from symbols
- homogeneous polynomials in 6 noncommutative variables: a,b,c,d,e,f
- with integer coefficients
- -4 bccaff +4 bcbaff +8 bcafff $+\ldots$
- $6^{2 \mathrm{~L}}$ possible "keys", mapped to integers
- Most of them zero

L	number of terms
1	6
2	12
3	636
4	11,208
5	263,880
6	$4,916,466$
7	$92,954,568$
8	$1,671,656,292$

- Symmetries and asymptotic properties translate into constraints
- An enormous integer programming problem

TABLE II. Number of terms in the symbol of $F_{3}^{(L)}$ as a function of the loop order L.

- Could be solved up to loop 8

The six letter game

- We want to learn a mapping between "keys" (sequences of length 2L of the 6 letters, a,b,c,d,e and f) and integer coefficients
- There are obvious symmetries in the symbol
- Coefficients are invariant by the dihedral symmetry generated by
- a -> b->c -> a, d ->e ->f -> d, a <-> b, d <-> e
- bccaff maps to -4, so does abbcee
- Non zero coefficients
- must begin with a, b or c, and end with d, e or f
- Have no contiguous a and d, b and e, c and f,d and e, e and fand d and f

The six letter game

- And many less obvious symmetries
- Non zero keys ending with a single letter d,e or f, must be preceded by a run of one of the letters a, b or c
- A key ending in eccccd can be non zero, one ending in ecbod must be zero
- And many empirical facts hold true over all symbols
- Large absolute coefficients happen for symbols with many runs of one letter
- Can some of these relations be learned, empirically, by a language model?
- To help calculate loops
- To discover new facts about amplitudes in planar $\mathrm{N}=4$

Experiment 1 : Predicting zeroes

- For Loop 5 and 6, predict whether a term is zero or nonzero
- afdcfdadfe is zero
- aaaeeceaaf is not
- Build a 50/50 training sample of zero/non zero terms
- Reserve 10k terms for test, these will not be seen during training
- Train the model, and measure performance on the test set (\% of correct prediction)
- For input a,f,d,c,f,d,a,d,f,e predict 0
- For input a,a,a,e,e,c,e,a,a,f predict 1

Experiment 1 : Predicting zeroes

- Loop 5 : after training on 300,000 examples (57\% of the non zero keys and as many zero keys), the model predict 99.96% of test examples (not seen during training)
- Loop 6 : after training on 600,000 examples (6% of the symbol), the model predicts 99.97% of test examples

Experiment 2 : Predicting non-zeroes

- From keys, sequences of 2L letters, predict coefficients, integers encoded in base 1000
- For loop 5, models trained on 164 k examples (62% of the symbol), tested on 100k
- 99.9% accuracy after 58 epochs of 300k examples
- For loop 6, models trained on 1 M examples (20% of the symbol), tested on 100 k
- 98\% accuracy after 120 epochs
- BUT a two step learning curve

Experiment 2 : Predicting non-zeroes

- full prediction, magnitude and sign

Experiment 3 : Learning with less symmetries

- Non zero coefficients
- Must begin with a, b, c and end with d, e, f
- Are invariant by dihedral symmetry
- Cannot have a next to d (b next to e, c next to f)
- Cannot have d next to e or f (e next to dorf)
- Only a few endings are possible:
- 8 "quads" (4 letter endings, up to cyclic symmetry (a, b, c), (d, e, f))
- 93 octuples

Experiment 3 : Learning loop 7 quads

- 7.3 million elements in the symbol (vs 93 millions in full representation)
- Models learn to predict with 98\% accuracy
- Same "two step" shape

Experiment 3 : Learning loop 8 octuples

- 5.6 million elements in the symbol (vs 1.7 billions in full representation)
- Models learn to predict with 94\% accuracy
- Attenuated "two step" shape
- Slower learning (600 epochs, vs 200 for quads, and 70 for full representation)

Take aways from experiments 1-3

- We can use transformers to complete partially calculated loops
- Coefficients are learned with high accuracy
- Even when only a small part of the symbol is available
- A few unintuitive observations happen:
- hardness of learning the sign
- might shed new light on the underlying phenomenon

Experiment 4: predicting the next loop

- A loop L element E is a sequence of 2 L letters
- Strike out 2 of the 2 L letters
- From aabd make bd, ad, ab...
- There are $\mathrm{L}(2 \mathrm{~L}-1)$ parents, call them $\mathrm{P}(\mathrm{E})$
- Try to find a recurrence relation, that predicts the coefficient of E from its parents: $E=f(P(E))$
- A generalized Pascal triangle/pyramid (in 6 non-commutative variables)
- Predict loop 6 from loop 5:
- From 66 integers: loop 5 coefficients
- Predict 1 integer: the loop 6 coefficient
- (NOT the keys: we already know the model can predict coefficients from keys)
- 98.1% accuracy, no difference between sign (98.4) and magnitude (99.6) accuracy
- A function f certainly exists (but we have no idea what it is)

Experiment 4: understanding the recurrence

- To collect information on f , the unknown recurrence, we could
- Remove information about the parents
- See if the model still learns
- Can we use less parents?
- Only strike letters at most k tokens apart; e.g. $k=1$ only consecutive tokens
- $\mathrm{k}=2$: 21 parents, $\mathrm{k}=1$: 11 parents

	Accuracy	Magnitude accuracy	Sign accuracy
Strike two, all parents	98.1	98.4	99.6
Strike two, $\mathrm{k}=5$	98.3	98.6	99.7
Strike two $\mathrm{k}=3$	98.4	98.7	99.7
Strike two, $\mathrm{k}=2$	98.1	98.3	99.5
Strike two, $\mathrm{k}=1$	94.3	95.2	98.5

Experiment 4: understanding the recurrence

- Shuffling/sorting the parents do not prevent learning
- Coupling between parent/children signs, and magnitudes

	Accuracy	Magnitude accuracy	Sign accuracy
Strike two, all parents	98.1	98.4	99.6
Strike two, $\mathrm{k}=5$	98.3	98.6	99.7
Strike two, $\mathrm{k}=3$	98.4	98.7	99.7
Strike two, $\mathrm{k}=2$	98.1	98.3	99.5
Strike two, $\mathrm{k}=1$	94.3	95.2	98.5
Shuffled parents	95.2	99.1	96.3
Shuffled parents, k=2	93.5	98.1	95.0
Sorted parents, k=5	93.9	95.4	97.9
Parent signs only	93.3	93.5	99.0
Parent magnitudes only	81.8	98.4	83.2

Table 2: $\overline{\text { Global, magnitude and sign accuracy. Best of four models, trained for about } 500 \text { epochs }}$

Next steps

- Better understanding the recurrence relation
- Try building loop 9, or loops for related problems
- Discovering local properties/symmetries in the symbol
- Symbols were calculated by exploiting known symmetries in nature
- If we discover new regularities in the symbols, what does is tell us about nature?
- Antipodal symmetries

Fun facts: learning the dihedral symmetry

Fun facts: learning relations between coefficients

final 16: $\quad \mathcal{E}^{b, f}-\mathcal{E}^{b, d}=0$, final 18: $\mathcal{E}^{d, d, b, d}-\mathcal{E}^{d, b, d, d}=0$.

Next steps

- We have a proof of concept :
- Models can predict coefficients from key
- Or discover recurrences from one loop to the next
- Can we go for loop 9? Or other problems?
- Can we reverse engineer the models?
- By looking at their weights?
- By looking at the representations they learn?
- By looking at the way they train?
- If we train a language model on "all we know" about the symbol (like we train ChatGPT on all we know about language), will it learn new, emerging, properties of the symbols?

A growing area of research

In symbolic mathematics, we are beginning to use transformers to help solve longstanding open problems.

- Current projects in symbolic mathematics
- Discovering the (symbolic) Lyapunov functions that control the global stability of dynamical systems (e.g. the N-body problem)
- Discovering yet unknown kernel elements in the Burau representation of braid groups
- Could we use transformers in theoretical physics?

