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Maths as a translation task

* Train models to translate problems, encoded as sentences

in some language, into their solutions
e 749 => 16

* x2-x-1 =>

1+V/5 1-/5
2 ' 2



The recipe

* Generate a lot of examples of problems and solutions
* Encode them as “sentences” in some language

* Train a transformer model from problems and solutions

* By minimizing the correctness (X-entropy) of the solution
predicted by the model

* No maths are involved at this stage
* Test it on a held-out test set

* Not seen during training
* Using a mathematical criterion



Maths as translation: learning GCD

* Two integers a=10, b=32, and their GCD gcd(a,b)=2
* Can be encoded as sequences of digits (in base 10):
o r_l_:, ClJ’ ‘9’
o r_l_:, ‘3” €9
o« €42 , €9
* Translate “+°, ‘1°, 0, “+°, 3’ ,°2” into '+, ‘2’
* from examples only
* as a “pure language” problem: the model knows no maths



This works!

Symbolic integration / Solving ODE:
* Deep learning for symbolic mathematics (2020): Lample & Charton (ArXiv 1912.01412)

Dynamical systems:
* Learning advanced computations from examples (2021) : Charton, Hayat & Lample (ArXiv 2006.06462)
* Discovering Lyapunov functions with transformers (2023) : Alfarano, Charton, Hayat (3rd MATH&AI workshop, NeurlIPS)

Symbolic regression:
* Deep symbolic regression for recurrent sequences (2022) : d’Ascoli, Kamienny, Lample, Charton (ArXiv 2201.04600)
* End-to-end symbolic regression with transformers (2022) : Kamienny, d’Ascoli, Lample, Charton (ArXiv 2204.10532)

Cryptanalysis of post-quantum cryptography:
* SALSA: attacking lattice cryptography with transformers (2022): Wenger, Chen, Charton, Lauter (ArXiv 2207.04785)
* SALSA PICANTE (2023) Li, Sotakova, Wenger, Mahlou, Garcelon, Charton, Lauter (ArXiv 2303.0478)
* SALSA VERDE (2023) Li, Wenger, Zhu, Charton, Lauter (ArXiv 2306.11641)

Theoretical physics
* Transformers for scattering amplitudes (2023): Merz, Cai, Charton, Nolte, Wilhelm, Cranmer, Dixon (ML4PS Workshop, NeurlPS)

Quantum computing
* Using transformer to simplify ZX diagrams (2023) (3rd MATH&AI Workshop, NeurlPS)



Deep symbolic regression for recurrent sequences

(d’Ascoli, Kamienny, Lample, Charton 2022)

* Given the sequence 1, 2,4, 7, 11, 16, what is the next term?

e 2 approaches:
* Numeric regression : direct prediction of the next term

* Symbolic regression : finding a formula for the sequence
* aclosed formula: u,=n(n+1)/2 +1
* or arecurrence relation: u,=u_,+n



Deep symbolic regression for recurrent sequences

(d’Ascoli, Kamienny, Lample, Charton 2022)

e 2 tasks:
* Numeric regression : from the p first terms, predict the g next
* Symbolic regression : from the p first terms, find a function

* 2 settings:
* Integer sequences
* Real (floating point) sequences

* One evaluation criterion: how good is the model at predicting the
next g terms?



Generating data

* Generate a random function f(n, u,4, ... U J): N + U, ;

* Sample k initial points ug, Uy, ... U1 : Uy=1

* Use function f to compute the next terms of the sequence
«1,2,4,7,11, 16, 22, 29, 37 ...

* Symbolic regression: predict f from (uy,...u, ; )
* from (1,2,4,7,11) predict f(n) = n+u, 4

* Numeric regression: predict (u,...up.q1 ) from (ug,...u, ;)
 from (1,2,4,7,11) predict (16,22,29,37)
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Generating random formulas

1. Build a random tree
2. Sample operators as internal nodes
3. Sample integers, n, or past terms as leaves
4. Enumerate as a sequence
Integer Float
abs, sqr, sqrt,
Unary abs, sqr, inv, log, exp

sign, ste .
gns b sin, cos, tan, atan

sum, sub, mul,

Binary intdiv, mod sum, sub, mul, div
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Evaluating performance

* Model performance is defined as its ability to predict the next n, .4
terms (1 to 10)

* Directly or using the symbolic formula

* All predicted term must be predicted up to some tolerance t (1019

)

* Accuracy is evaluated on a test set of 10 000 held-out examples

Ui — U

acc(npred, T) = IP( max
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Accuracy

In domain results

In Fl
Model ! teger ’ oat
Nep <D MNop<10 | Ngp<d Ny <10
Symbolic 92.7 78.4 74.2 43.3
Numeric 83.6 70.3 45.6 29.0

Table 6: Average in-distribution accuracies of
our models. We set 7 = 107 and n,,,..4 = 10.
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Success and failure cases
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Out-of-domain generalization-integers

Model Ninput = 15 Ninput = 25
Npred =1 Npred = 10 | Npred =1  Npred = 10
Symbolic (ours) 33.4 19.2 34.5 21.3
Numeric (ours) 53.1 27.4 54.9 29.5
FindSequenceFunction 17.1 12.0 8.1 7.2
FindLinearRecurrence 17.4 14.8 21.2 19.5

Table 7: Accuracy of our integer models and Mathematica functions on OEIS sequences. We use as input

the first n;,,,,,,¢ = {15, 25} first terms of OEIS sequences and ask each model to predict the next n,..; = {1,10}
terms. We set the tolerance + = 10710,
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Out-of-domain generalization- integers

OEIS Description First terms Predicted recurrence
A000792 a(n) = max{(n —i)a(i),? < n} 1,1,2,3,4,6,9, 12, 18, 27 Un = Un—1 + Un—3 — Un—1%0Un—_3
A000855 Final two digits of 2" 1,2,4, 8, 16, 32, 64, 28, 56, 12 un = (2un—_1)%100
A006257 Josephus sequence 0,1,1,3,1,3,5,7, 1,3 Up = (Up—1+n)%(MN—-1) -1
A008954 Final digit of triangular number n(n + 1)/2 0,1,3,6,0,5,1,8,6,5 Up = (Un—1 +n)%10
A026741 a(n) = nif n odd, n/2 if n even 0,1,1,3,2,5,3,7,4,9 Up = Un—2 +Nn//(Un-1+ 1)
A035327 | n in binary, switch 0’s and 1’s, back to decimal 1,0,1,0,3,2,1,0,7,6 Un = (Un—1 —n)%(n —1)
A062050 n-th chunk consists of the numbers 1, ..., 2" 1,1,2,1,2,3,4,1,2,3 un = (N%(N — un—1)) +1
A074062 Reflected Pentanacci numbers 5,-1,-1,-1,-1,9, -7, -1, -1, -1 Up = 2Un—5 — Un—6
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Fun facts

Constant Approximation Rel. error Expression u,, Approximation .,
0.3333 (3 + exp(—6))~* 10-° arcsinh(n) log(n + v/n2 + 1)
0.33333 1/3 107° arccosh(n) log(n +vn? —1)
3.1415 2 arctan(exp(10)) 107 arctanh(1/n) = log(1+2/n)
3.14159 i 10~7 catalan(n) Up_1(4 —6/n)
1.6449 1/ arctan(exp(4)) 101 dawson(n) _n
1.64493 72 /6 10-7 . o)
0.123456789 10/92 109 jo(n) (Bessel) Vn
0.987654321 1—(1/9)2 10~ i0(n) (mod. Bessel) —

Approximating constants Approximating functions
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Fun facts- embeddings
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Predicting gluon scattering amplitudes

(Cai, Merz, Nolte, Wilhelm, Cranmer, Dixon, Charton, 2024)

 Scattering amplitudes: complex functions predicting the outcome of
particle interactions

 Computed by summing Feynman diagrams of increasing complexity
* loops: virtual particles created and destroyed in the process

* A hard problem: each loop introduces two latent variables, their
integration give rise to generalized polylogarithms
* For the standard model the best computational techniques only reach loop 3



Amplitude bootstrap

* Polylogarithms have many algebraic properties

* Leverage them to predict the structure of the solution, up to some
coefficients

* Compute the coefficients from symmetry consideration, known limit values,
etc.
* In Planar N=4 supersymmetric Yang-Mills, solutions are “simple”

 Calculated from symbols: homogeneous polynomials, degree 2L (L=loop),
with integer coefficients



The three gluon form factor

* Three gluons and a Higgs

 Amplitudes for loop L can be computed
from symbols

* homogeneous polynomials in 6 non-
commutative variables: a,b,c,d,e,f

number of terms
6
12

» with integer coefficients 3 ggg
* -4 bccaff + 4 bebaff + 8 beafff + ... 263,880
* 6L possible “keys”, mapped to integers s

O O Ot W N N

* Most of them zero

* Symmetries and asymptotic properties
translate into constraints TABLE II. Number of terms in the symbol of F\") as a func-

 An enormous integer programming problem tion of the loop order L.
* Could be solved up to loop 8

1,671,656,292




The six letter game

* We want to learn a mapping between “keys” (sequences of length 2L of the
6 letters, a,b,c,d,e and f) and integer coefficients

* There are obvious symmetries in the symbol

* Coefficients are invariant by the dihedral symmetry generated by
e a->b->->a,d>e->f->d,a<->b,d<->e
* bccaff maps to -4, so does abbcee
* Non zero coefficients
* must begin with a, b or ¢, and end with d, e or f
* Have no contiguousaandd,bande,candf, dande,eandfanddandf



The six letter game

* And many less obvious symmetries
* Non zero keys ending with a single letter d,e or f, must be preceded by a run of one
of the letters a, bor c
* A key ending in eccccd can be non zero, one ending in ecbcd must be zero

* And many empirical facts hold true over all symbols
* Large absolute coefficients happen for symbols with many runs of one letter

* Can some of these relations be learned, empirically, by a language model?
* To help calculate loops
* To discover new facts about amplitudes in planar N=4



Experiment 1 : Predicting zeroes

* For Loop 5 and 6, predict whether a term is zero or nonzero
» afdcfdadfe is zero
* aaaeeceaaf is not

Build a 50/50 training sample of zero/non zero terms

Reserve 10k terms for test, these will not be seen during training

* Train the model, and measure performance on the test set (% of correct
prediction)
* Forinput a,f,d,c,f,d,a,d,f,e predict O
* Forinput a,a,a,e,e,c,e,a,a,f predict 1



Experiment 1 : Predicting zeroes

e Loop 5 : after training on 300,000 examples (57% of the non
zero keys and as many zero keys), the model predict 99.96% of
test examples (not seen during training)

* Loop 6 : after training on 600,000 examples (6% of the symbol),
the model predicts 99.97% of test examples



Experiment 2 : Predicting non-zeroes

100 1

* From keys, sequences of 2L letters, predict
coefficients, integers encoded in base 1000

* For loop 5, models trained on 164k
examples (62% of the symbol), tested on
100k c3

* 99.9% accuracy after 58 epochs of 300k examples

* For loop 6, models trained on 1M examples
(20% of the symbol), tested on 100k .

* 98% accuracy after 120 epochs
* BUT a two step learning curve

20 A1

0 20 40 60 80 100



Experiment 2 : Predicting non-zeroes

* full prediction, magnitude and sign




Experiment 3 : Learning with less symmetries

* Non zero coefficients
* Must begin with a,b,c and end with d,e,f
* Are invariant by dihedral symmetry
e Cannot have a next to d (b next to e, c next to f)
e Cannot have d next to e or f (e next to d or f)

* Only a few endings are possible:
* 8 “quads” (4 letter endings, up to cyclic symmetry (a,b,c), (d,e,f))
* 93 octuples



Experiment 3 : Learning loop 7 quads

e 7.3 million elements in the
symbol (vs 93 millions in full
representation) "

* Models learn to predict with
98% accuracy

e Same “two step” shape o




Experiment 3 : Learning loop 8 octuples

* 5.6 million elements in the o
symbol (vs 1.7 billions in full
representation)

* Models learn to predict with
94% accuracy

e Attenuated “two step” shape

* Slower learning (600 epochs, vs
200 for quads, and 70 for full
representation)




Take aways from experiments 1-3

* We can use transformers to complete partially calculated loops

 Coefficients are learned with high accuracy
* Even when only a small part of the symbol is available

* A few unintuitive observations happen:
* hardness of learning the sign
* might shed new light on the underlying phenomenon



Experiment 4: predicting the next loop

A loop L element E is a sequence of 2L letters

Strike out 2 of the 2L letters

* From aabd make bd, ad, ab...
* There are L(2L-1) parents, call them P(E)

Try to find a recurrence relation, that predicts the coefficient of E from its parents: E = f(P(E))
* A generalized Pascal triangle/pyramid (in 6 non-commutative variables)

Predict loop 6 from loop 5:
* From 66 integers: loop 5 coefficients
* Predict 1 integer: the loop 6 coefficient
* (NOT the keys: we already know the model can predict coefficients from keys)

98.1% accuracy, no difference between sign (98.4) and magnitude (99.6) accuracy
A function f certainly exists (but we have no idea what it is)



Experiment 4: understanding the recurrence

* To collect information on f, the unknown recurrence, we could

 Remove information about the parents
e See if the model still learns

e Can we use less parents?
* Only strike letters at most k tokens apart; e.g. k=1 only consecutive tokens
e k=2:21 parents, k=1: 11 parents

Accuracy Magnitude accuracy  Sign accuracy

Strike two, all parents 98.1 98.4 99.6
Strike two, k=5 98.3 98.6 99.7
Strike two, k=3 98.4 98.7 99.7
Strike two, k=2 98.1 98.3 99.5

Strike two, k=1 94.3 95.2 98.5




Experiment 4: understanding the recurrence

 Shuffling/sorting the parents do not prevent learning
* Coupling between parent/children signs, and magnitudes

Accuracy Magnitude accuracy  Sign accuracy

Strike two, all parents 98.1 98.4 99.6
Strike two, k=5 98.3 98.6 99.7
Strike two, k=3 98.4 98.7 99.7
Strike two, k=2 98.1 98.3 99.5
Strike two, k=1 94.3 95.2 98.5
Shuffled parents 95.2 99.1 96.3
Shuffled parents, k=2 93.5 98.1 95.0
Sorted parents, k=5 93.9 95.4 97.9
Parent signs only 93.3 93.5 99.0
Parent magnitudes only 81.8 98.4 83.2

Table 2: Global, magnitude and sign accuracy. Best of four models, trained for about 500 epochs



Next steps

e Better understanding the recurrence relation
* Try building loop 9, or loops for related problems

 Discovering local properties/symmetries in the symbol
* Symbols were calculated by exploiting known symmetries in nature
* If we discover new regularities in the symbols, what does is tell us about nature?
* Antipodal symmetries



Fun facts: learning the dihedral symmetry
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Accuracy (%)

Fun facts: learning relations between coefficients
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Next steps

* We have a proof of concept :
* Models can predict coefficients from key
* Or discover recurrences from one loop to the next

e Can we go for loop 9? Or other problems?

* Can we reverse engineer the models?
* By looking at their weights?
* By looking at the representations they learn?
* By looking at the way they train?

* |f we train a language model on “all we know” about the symbol (like
we train ChatGPT on all we know about language), will it learn new,
emerging, properties of the symbols?




A growing area of research

In symbolic mathematics, we are beginning to use transformers to help solve
longstanding open problems.

* Current projects in symbolic mathematics

* Discovering the (symbolic) Lyapunov functions that control the global
stability of dynamical systems (e.g. the N-body problem)

* Discovering yet unknown kernel elements in the Burau representation of
braid groups

* Could we use transformers in theoretical physics?



