Categorical Symmetries \& $1+1 \mathbf{d}$ Scattering Amplitudes

Christian Copetti (Oxford)

Based on 2403.04835 and 2406. XXXXX with L. Cordova and S. Komatsu

What is this talk about?

What is this talk about?

What is this talk about?

What is this talk about?

What is this talk about?

What is this talk about?

Aim: Discuss action of Generalized Symmetries on S-matrix and derive physical consequences (Integrable examples, but conclusions more general!).

Summary

Summary

- Categorical Symmetries act on (massive) kinks and lead to Ward identities for the $2 \rightarrow 2$ S-Matrix:

Summary

Categorical Symmetries act on (massive) kinks and lead to Ward identities for the $2 \rightarrow 2$ S-Matrix:

Summary

Categorical Symmetries act on (massive) kinks and lead to Ward identities for the $2 \rightarrow 2$ S-Matrix:

- Imposing

Summary

Categorical Symmetries act on (massive) kinks and lead to Ward identities for the $2 \rightarrow 2$ S-Matrix:

(*)

- Imposing Symmetry (\star),

Summary

Categorical Symmetries act on (massive) kinks and lead to Ward identities for the $2 \rightarrow 2$ S-Matrix:

(*)

O Imposing Symmetry (*), Unitarity (**)

Summary

Categorical Symmetries act on (massive) kinks and lead to Ward identities for the $2 \rightarrow 2$ S-Matrix:

$$
(\star \star)
$$

○ Imposing Symmetry (\star), Unitarity ($* \star$) and YBE ($\star \star \star$)

Summary

Categorical Symmetries act on (massive) kinks and lead to Ward identities for the $2 \rightarrow 2$ S-Matrix:

(*)
($\star \star$)

- Imposing Symmetry (\star), Unitarity ($(\star$) and YBE ($\star \star \star$) is incompatible with standard Crossing.

Summary

Categorical Symmetries act on (massive) kinks and lead to Ward identities for the $2 \rightarrow 2$ S-Matrix:

$$
(\star \star)
$$

○ Imposing Symmetry (\star), Unitarity ($(\star$) and YBE ($\star \star \star$) is incompatible with standard Crossing. Instead:

$$
S_{d c}^{a b}(\theta)=\sqrt{\frac{d_{a} d_{c}}{d_{b} d_{d}}} S_{a d}^{b c}(i \pi-\theta)
$$

Summary

Categorical Symmetries act on (massive) kinks and lead to Ward identities for the $2 \rightarrow 2$ S-Matrix:

$$
(\star \star)
$$

- Imposing Symmetry (\star), Unitarity ($(\star$) and YBE ($\star \star \star$) is incompatible with standard Crossing. Instead:

$$
S_{d c}^{a b}(\theta)=\sqrt{\frac{d_{a} d_{c}}{d_{b} d_{d}}} S_{a d}^{b c}(i \pi-\theta)
$$

o Categorical symmetries can be used efficiently in the Bootstrap program. (See Lucia's Lectures!)

Philosophy

Philosophy

$$
\mathrm{IR} \longrightarrow \mathrm{UV}
$$

Philosophy

$$
\mathrm{IR} \longrightarrow \mathrm{UV}
$$

Philosophy

$$
\mathrm{IR} \longrightarrow \mathrm{UV}
$$

Symmetric TQFT \mathscr{M}

Massive Kinks
$K_{a b}$

Philosophy

$$
\mathrm{IR} \longrightarrow \mathrm{UV}
$$

Symmetric TQFT \mathscr{M}

assive Kinks
$K_{a b}$

UV CFT

Relevant Pert. ϕ

Philosophy

$$
\mathrm{IR} \longrightarrow \mathrm{UV}
$$

Symmetric TQFT \mathscr{M}

assive Kinks
$K_{a b}$

UV CFT

Relevant Pert. ϕ

Symmetry \mathcal{C} is present at all steps.

Philosophy

$$
\mathrm{IR} \longrightarrow \mathrm{UV}
$$

Symmetric TQFT \mathscr{M}
IR Vacua

Massive Kinks
$K_{a b}$

UV CFT
Relevant Pert. ϕ

Symmetry \mathcal{C} is present at all steps.

Philosophy

$$
\mathrm{IR} \longrightarrow \mathrm{UV}
$$

UR Vacua
Rymmetric TQFT \mathscr{M}

Symmetry \mathcal{C} is present at all steps.

Philosophy

$$
\mathrm{IR} \longrightarrow \mathrm{UV}
$$

Symmetry \mathcal{C} is present at all steps.

Categorical symmetries (Review)

Categorical symmetries (Review)

Implemented by topological lines:
[Petkova, Zuber '02; Gaiotto, Kapustin, Seiberg, Willett '14; Chang, Lin, Shao, Wang, Yin '18; ...]

Categorical symmetries (Review)

Implemented by topological lines:
[Petkova, Zuber '02; Gaiotto, Kapustin, Seiberg, Willett '14; Chang, Lin, Shao, Wang, Yin '18; ...]

Categorical symmetries (Review)

Implemented by topological lines:
[Petkova, Zuber '02; Gaiotto, Kapustin, Seiberg, Willett '14; Chang, Lin, Shao, Wang, Yin '18; ...]

Fusion structure

$$
N_{\mathscr{L}_{\mathscr{L}} \mathscr{L}^{\prime}}^{\prime \prime} \in \mathbb{N}
$$

Categorical symmetries (Review)

Implemented by topological lines:
[Petkova, Zuber '02; Gaiotto, Kapustin, Seiberg, Willett '14; Chang, Lin, Shao, Wang, Yin '18; ...]

Fusion structure

$$
N_{\mathscr{L}_{\mathscr{L}}^{\mathscr{L}^{\prime}}} \in \mathbb{N}
$$

Topological junctions (vector space):

Categorical symmetries (Review)

Implemented by topological lines:
[Petkova, Zuber '02; Gaiotto, Kapustin, Seiberg, Willett '14; Chang, Lin, Shao, Wang, Yin '18; ...]

$$
N_{\mathscr{L}}^{\mathscr{L}_{\mathscr{L}}^{\prime}}{ }^{\prime \prime} \in \mathbb{N}
$$

Associativity (F-symbols):
Topological junctions (vector space):

Categorical symmetries (Review)

Implemented by topological lines:
[Petkova, Zuber '02; Gaiotto, Kapustin, Seiberg, Willett '14; Chang, Lin, Shao, Wang, Yin '18; ...]

Associativity (F-symbols):

$$
N_{\mathscr{L}}^{\mathscr{L}_{\mathscr{L}}^{\prime}}{ }^{\prime \prime} \in \mathbb{N}
$$

Fusion structure

Quantum dimension:

Example: Ising Symmetry

Example: Ising Symmetry

Consider the $1+1 \mathrm{~d}$ Ising phase diagram:

Example: Ising Symmetry

Consider the $1+1 \mathrm{~d}$ Ising phase diagram:

Example: Ising Symmetry

Consider the $1+1 \mathrm{~d}$ Ising phase diagram:

KW duality exchanges high and low T

Example: Ising Symmetry

Consider the $1+1 \mathrm{~d}$ Ising phase diagram:

KW duality exchanges high and low T

Example: Ising Symmetry

Consider the $1+1 \mathrm{~d}$ Ising phase diagram:

KW duality exchanges high and low T

At critical point O this becomes a symmetry \mathcal{N}.

Example: Ising Symmetry

Consider the $1+1 \mathrm{~d}$ Ising phase diagram: Ising Symmetry:

KW duality exchanges high and low T

At critical point O this becomes a symmetry \mathcal{N}.

Example: Ising Symmetry

Consider the 1+1d Ising phase diagram: Ising Symmetry:

$$
\text { Ising }=\{1, \eta, \mathcal{N}\}
$$

KW duality exchanges high and low T

At critical point O this becomes a symmetry \mathcal{N}.

Example: Ising Symmetry

Consider the $1+1 \mathrm{~d}$ Ising phase diagram: Ising Symmetry:

Fusion algebra:

$$
\begin{aligned}
& \eta^{2}=1, \quad \eta \mathcal{N}=\mathcal{N} \eta=\mathcal{N} \\
& \mathcal{N}^{2}=1+\eta
\end{aligned}
$$

At critical point O this becomes a symmetry \mathcal{N}.

Example: Ising Symmetry

Consider the 1+1d Ising phase diagram: Ising Symmetry:

$$
\text { Ising }=\{1, \eta, \mathcal{N}\}
$$

Fusion algebra:

$$
\begin{aligned}
& \eta^{2}=1, \quad \eta \mathcal{N}=\mathcal{N} \eta=\mathcal{N} \\
& \mathcal{N}^{2}=1+\eta
\end{aligned}
$$

$$
d_{\eta}=1, d_{\mathcal{N}}=\sqrt{2}
$$

At critical point O this becomes a symmetry \mathcal{N}.

Example: Ising Symmetry

Consider the 1+1d Ising phase diagram: Ising Symmetry:

$$
\text { Ising }=\{1, \eta, \mathcal{N}\}
$$

KW duality exchanges high and low T

At critical point O this becomes a symmetry \mathcal{N}.

Fusion algebra:

$$
\begin{aligned}
& \eta^{2}=1, \quad \eta \mathcal{N}=\mathcal{N} \eta=\mathcal{N} \\
& \mathcal{N}^{2}=1+\eta
\end{aligned}
$$

$$
d_{\eta}=1, d_{\mathcal{N}}=\sqrt{2}
$$

The KW defect line \mathcal{N} is non-invertible!

\mathcal{C}-symmetric TQFTs

\mathcal{C}-symmetric TQFTs

We describe $1+1 \mathrm{~d}$ TQFT \mathscr{M} via a collection of boundary conditions (states) a, b, c, \ldots [Huang, Lin, Seifnashri '21, ..]

\mathcal{C}-symmetric TQFTs

We describe $1+1 \mathrm{~d}$ TQFT \mathscr{M} via a collection of boundary conditions (states) a, b, c, \ldots [Huang, Lin, Seifnashri '21, ..]

The symmetry action is described by topological junctions.

\mathcal{C}-symmetric TQFTs

We describe $1+1 \mathrm{~d}$ TQFT \mathscr{M} via a collection of boundary conditions (states) a, b, c, \ldots [Huang, Lin, Seifnashri '21, ..]

The symmetry action is described by topological junctions. Which satisfy associativity conditions

\mathcal{C}-symmetric TQFTs

We describe $1+1 \mathrm{~d}$ TQFT \mathscr{M} via a col- Parallel fusion is described by an integerlection of boundary conditions (states) valued matrix: a, b, c, \ldots [Huang, Lin, Seifnashri '21, ..]

$$
a \longrightarrow=\left(n_{\mathscr{L}}\right)_{a}^{b}
$$

The symmetry action is described by topological junctions. Which satisfy associativity conditions

\mathcal{C}-symmetric TQFTs

We describe $1+1 \mathrm{~d}$ TQFT \mathscr{M} via a col- Parallel fusion is described by an integerlection of boundary conditions (states) valued matrix: a, b, c, \ldots [Huang, Lin, Seifnashri '21, ...]

The symmetry action is described by topological junctions. Which satisfy associativity conditions

\mathcal{C}-symmetric TQFTs

We describe $1+1 \mathrm{~d}$ TQFT \mathscr{M} via a col- Parallel fusion is described by an integerlection of boundary conditions (states) valued matrix: a, b, c, \ldots [Huang, Lin, Seifnashri '21, \ldots]

The symmetry action is described by topological junctions. Which satisfy associativity conditions

Satisfying the algebra:

$$
\sum_{b}\left(n_{\mathscr{L}}\right)_{a}^{b}\left(n_{\mathscr{L}^{\prime}}\right)_{b}^{c}=\sum_{\mathscr{L}^{\prime \prime}} N_{\mathscr{L}}^{\mathscr{L}^{\prime \prime}} \mathscr{L}^{\prime}\left(n_{\mathscr{L}^{\prime \prime}}\right)_{a}^{c},
$$

This endows \mathscr{M} with the mathematical structure of a module category over \mathcal{C}.

Example: Ising TQFT

Example: Ising TQFT

As an example let us study a TQFT with Ising symmetry.

Example: Ising TQFT

As an example let us study a TQFT with Ising symmetry.
We are familiar with the TQFTs with \mathbb{Z}_{2} symmetry:

Example: Ising TQFT

As an example let us study a TQFT with Ising symmetry.
We are familiar with the TQFTs with \mathbb{Z}_{2} symmetry:

The KW symmetry interchanges the two sets in a \mathbb{Z}_{2}-neutral way:

$$
\mathcal{N}|0\rangle=|+\rangle+|-\rangle, \quad \mathcal{N}| \pm\rangle=|0\rangle .
$$

Example: Ising TQFT

As an example let us study a TQFT with Ising symmetry.
We are familiar with the TQFTs with \mathbb{Z}_{2} symmetry:

The KW symmetry interchanges the two sets in a \mathbb{Z}_{2}-neutral way:

$$
\mathcal{N}|0\rangle=|+\rangle+|-\rangle, \quad \mathcal{N}| \pm\rangle=|0\rangle
$$

One can check that there are no consistent TQFTs with 1 or 2 vacua.

Example: Ising TQFT

As an example let us study a TQFT with This is a special case of the Regular repIsing symmetry. resentation.
We are familiar with the TQFTs with \mathbb{Z}_{2} symmetry:

The KW symmetry interchanges the two sets in a \mathbb{Z}_{2}-neutral way:

$$
\mathcal{N}|0\rangle=|+\rangle+|-\rangle, \quad \mathcal{N}| \pm\rangle=|0\rangle
$$

One can check that there are no consistent TQFTs with 1 or 2 vacua.

Example: Ising TQFT

As an example let us study a TQFT with This is a special case of the Regular repIsing symmetry.
resentation. One identifies $\{a, b, c \ldots\}=$ We are familiar with the TQFTs with $\mathbb{Z}_{2}\left\{\mathscr{L}, \mathscr{L}^{\prime}, \mathscr{L}^{\prime \prime} \ldots\right\}$ and: symmetry:

The KW symmetry interchanges the two sets in a \mathbb{Z}_{2}-neutral way:

$$
\mathcal{N}|0\rangle=|+\rangle+|-\rangle, \quad \mathcal{N}| \pm\rangle=|0\rangle
$$

One can check that there are no consistent TQFTs with 1 or 2 vacua.

Example: Ising TQFT

As an example let us study a TQFT with This is a special case of the Regular repIsing symmetry.
resentation. One identifies $\{a, b, c \ldots\}=$ We are familiar with the TQFTs with $\mathbb{Z}_{2}\left\{\mathscr{L}, \mathscr{L}^{\prime}, \mathscr{L}^{\prime \prime} \ldots\right\}$ and: symmetry:

The KW symmetry interchanges the two sets in a \mathbb{Z}_{2}-neutral way:

$$
\mathcal{N}|0\rangle=|+\rangle+|-\rangle, \quad \mathcal{N}| \pm\rangle=|0\rangle
$$

One can check that there are no consistent TQFTs with 1 or 2 vacua.

Example: Ising TQFT

As an example let us study a TQFT with This is a special case of the Regular repIsing symmetry.
We are familiar with the TQFTs with \mathbb{Z}_{2} symmetry:

The KW symmetry interchanges the two sets in a \mathbb{Z}_{2}-neutral way:

$$
\mathcal{N}|0\rangle=|+\rangle+|-\rangle, \quad \mathcal{N}| \pm\rangle=|0\rangle . \quad \text { This enforces: }
$$

$$
\varphi_{\mathscr{L}_{1} \mathscr{L}^{\prime} \mathscr{L}^{\prime \prime}}^{\mathscr{L}_{2} \mathscr{L}_{3}}=\left[F_{\mathscr{L}^{\prime}}^{\mathscr{L}_{1} \mathscr{L}_{3}}\right]_{\mathscr{L}_{2} \mathscr{L}^{\prime \prime}}
$$

One can check that there are no consistent resentation. One identifies $\{a, b, c \ldots\}=$ $\left\{\mathscr{L}, \mathscr{L}^{\prime}, \mathscr{L}^{\prime \prime} \ldots\right\}$ and:
 TQFTs with 1 or 2 vacua.

Example: Ising TQFT

As an example let us study a TQFT with Ising symmetry.
We are familiar with the TQFTs with \mathbb{Z}_{2} symmetry:

The KW symmetry interchanges the two sets in a \mathbb{Z}_{2}-neutral way:

$$
\mathcal{N}|0\rangle=|+\rangle+|-\rangle, \quad \mathcal{N}| \pm\rangle=|0\rangle
$$

One can check that there are no consistent TQFTs with 1 or 2 vacua.

This is a special case of the Regular representation. One identifies $\{a, b, c \ldots\}=$ $\left\{\mathscr{L}, \mathscr{L}^{\prime}, \mathscr{L}^{\prime \prime} \ldots\right\}$ and:

This enforces:

$$
\varphi_{\mathscr{L} \mathscr{L}^{\prime} \mathscr{L}^{\prime} \mathscr{L}^{\prime} \mathscr{L}_{3}}=\left[F_{\mathscr{L}^{\prime}}^{\mathscr{L}_{1} \mathscr{L} \mathscr{L}_{3}}\right]_{\mathscr{L}_{2} \mathscr{L}^{\prime \prime}}
$$

And describes the complete SSB of the symmetry \mathcal{C}.

Example: Ising TQFT

As an example let us study a TQFT with Ising symmetry.
We are familiar with the TQFTs with \mathbb{Z}_{2} symmetry:

The KW symmetry interchanges the two sets in a \mathbb{Z}_{2}-neutral way:

$$
\mathcal{N}|0\rangle=|+\rangle+|-\rangle, \quad \mathcal{N}| \pm\rangle=|0\rangle
$$

One can check that there are no consistent TQFTs with 1 or 2 vacua.

$$
|0\rangle=|\mathcal{N}\rangle, \quad|+\rangle=|1\rangle, \quad|-\rangle=|\eta\rangle
$$

This is a special case of the Regular representation. One identifies $\{a, b, c \ldots\}=$ $\left\{\mathscr{L}, \mathscr{L}^{\prime}, \mathscr{L}^{\prime \prime} \ldots\right\}$ and:

This enforces:

$$
\varphi_{\mathscr{L} \mathscr{L}^{\prime} \mathscr{L}^{\prime} \mathscr{L}^{\prime} \mathscr{L}_{3}}=\left[F_{\mathscr{L}^{\prime}}^{\mathscr{L}_{1} \mathscr{L} \mathscr{L}_{3}}\right]_{\mathscr{L}_{2} \mathscr{L}^{\prime \prime}}
$$

And describes the complete SSB of the symmetry \mathcal{C}.

Kink Multiplets

Kink Multiplets ...

To understand symmetry action on kinks we descibe their Hilbert space $\mathcal{H}_{a b}$ as the strip Hilbert space with $L \gg 1 / M_{\text {kink }}$ and TQFT b.c. [Cordova, Garcia-Sepulveda, Holfester '24] :

Kink Multiplets

To understand symmetry action on kinks we descibe their Hilbert space $\mathcal{H}_{a b}$ as the strip Hilbert space with $L \gg 1 / M_{\text {kink }}$ and TQFT b.c. [Cordova, Garcia-Sepulveda, Holfester '24] :

Kink Multiplets

To understand symmetry action on kinks we descibe their Hilbert space $\mathcal{H}_{a b}$ as the strip Hilbert space with $L \gg 1 / M_{\text {kink }}$ and TQFT b.c. [Cordova, Garcia-Sepulveda, Holfester '24] :

\mathscr{L} maps $\mathcal{H}_{a b} \rightarrow \mathcal{H}_{c d}$ by downwards action:

Kink Multiplets

To understand symmetry action on kinks we descibe their Hilbert space $\mathcal{H}_{a b}$ as the strip Hilbert space with $L \gg 1 / M_{\text {kink }}$ and TQFT b.c. [Cordova, Garcia-Sepulveda, Holfester '24] :

\mathscr{L} maps $\mathcal{H}_{a b} \rightarrow \mathcal{H}_{c d}$ by downwards action:

Kink Multiplets

To understand symmetry action on kinks we descibe their Hilbert space $\mathcal{H}_{a b}$ as the strip Hilbert space with $L \gg 1 / M_{\text {kink }}$ and TQFT b.c. [Cordova, Garcia-Sepulveda, Holfester '24] :

\mathscr{L} maps $\mathcal{H}_{a b} \rightarrow \mathcal{H}_{c d}$ by downwards action:
 $=\left.\sqrt{d_{\mathscr{L}}}[\mathscr{L}]_{a b}^{c d}\right|_{c}$

Composition of two lines $\mathscr{L}, \mathscr{L}^{\prime}$

Kink Multiplets

To understand symmetry action on kinks we descibe their Hilbert space $\mathcal{H}_{a b}$ as the strip Hilbert space with $L \gg 1 / M_{\text {kink }}$ and TQFT b.c. [Cordova, Garcia-Sepulveda, Holfester '24] :

\mathscr{L} maps $\mathcal{H}_{a b} \rightarrow \mathcal{H}_{c d}$ by downwards action:

$=\left.\sqrt{d_{\mathscr{L}}}[\mathscr{L}]_{a b}^{c d}\right|_{c}$

d

Gives the algebra:

$$
\left[\mathscr{L}^{\prime}\right]_{c d}^{e f} \cdot[\mathscr{L}]_{a b}^{c d}=\sum_{\mathscr{L}^{\prime \prime}} \varphi_{\mathscr{L}}^{a c e} \mathscr{L}^{\prime} \mathscr{L}^{\prime \prime} \varphi_{\mathscr{L}}^{c d f} \mathscr{L}^{\prime} \mathscr{L}^{\prime \prime}\left[\mathscr{L}^{\prime \prime}\right]_{a b}^{e f}
$$

... and Topological Lines

... and Topological Lines

The irreducible representations of this algebra are labelled by lines $v \in \mathcal{C}_{\mathscr{M}}^{*}$.

We call $K_{a b}^{v}$ the Kink multiplet.

... and Topological Lines

The irreducible representations of this algebra are labelled by lines $v \in \mathcal{C}_{\mathscr{M}}^{*}$. For $\mathscr{M}=\operatorname{Reg} \mathcal{C}_{\mathscr{M}}^{*}=\mathcal{C}$.

We call $K_{a b}^{v}$ the Kink multiplet.

... and Topological Lines

The irreducible representations of this algebra are labelled by lines $v \in \mathcal{C}_{\mathscr{M}}^{*}$. For $\mathscr{M}=\operatorname{Reg} \mathcal{C}_{\mathscr{M}}^{*}=\mathcal{C}$. In this case the kink creation operator descends from the v-twisted sector in the UV CFT.

We call $K_{a b}^{v}$ the Kink multiplet.

... and Topological Lines

The irreducible representations of this algebra are labelled by lines $v \in \mathcal{C}_{\mathscr{M}}^{*}$. For $\mathscr{M}=\operatorname{Reg} \mathcal{C}_{\mathscr{M}}^{*}=\mathcal{C}$. In this case the kink creation operator descends from the v-twisted sector in the UV CFT.

We call $K_{a b}^{v}$ the Kink multiplet.

The fusion algebra $v \times v^{\prime}=\sum_{v^{\prime \prime}} \widetilde{N}_{v v^{\prime}}^{v^{\prime \prime}} v^{\prime \prime}$ encodes the tensor product decomposition of irreps \longrightarrow kink bound states!

Example: Tricritical Ising \longrightarrow Ising TQFT

Example: Tricritical Ising \longrightarrow Ising TQFT

The classical example is to study the $-\phi_{1,3}$ deformation of the $\mathcal{M}_{4,3}$ minimal model. [Zamolodchikov '89, ...]

Example: Tricritical Ising \longrightarrow Ising TQFT

The classical example is to study the $-\phi_{1,3}$ deformation of the $\mathcal{M}_{4,3}$ minimal model. [Zamolodchikov '89, ...]

This preserves an Ising symmetry and flows to three degenerate vacua $|0\rangle,| \pm\rangle$.

Example: Tricritical Ising \longrightarrow Ising TQFT

The classical example is to study the $-\phi_{1,3}$ deformation of the $\mathcal{M}_{4,3}$ minimal model. [Zamolodchikov '89, ...]

This preserves an Ising symmetry and flows to three degenerate vacua $|0\rangle,| \pm\rangle$.
The kink multiplet is

$$
K_{ \pm 0}^{\mathcal{N}}, K_{0 \pm}^{\mathcal{N}} .
$$

Example: Tricritical Ising \longrightarrow Ising TQFT

The classical example is to study the $-\phi_{1,3}$ deformation of the $\mathcal{M}_{4,3}$ minimal model. [Zamolodchikov '89, ...]

This preserves an Ising symmetry and flows to three degenerate vacua $|0\rangle,| \pm\rangle$.
The kink multiplet is

$$
K_{ \pm 0}^{\mathcal{N}}, K_{0 \pm}^{\mathcal{N}}
$$

The literature proposes the following integrable S-matrix: [Bernard, Leclair '90; Zamolodchikov '91; Fendley, Saleur, Zamolodchikov '93]

Example: Tricritical Ising \longrightarrow Ising TQFT

The classical example is to study the $-\phi_{1,3}$ deformation of the $\mathcal{M}_{4,3}$ minimal model. [Zamolodchikov '89, ...]

This preserves an Ising symmetry and flows to three degenerate vacua $|0\rangle,| \pm\rangle$.
The kink multiplet is

$$
K_{ \pm 0}^{\mathcal{N}}, K_{0 \pm}^{\mathcal{N}}
$$

The literature proposes the following integrable S-matrix: [Bernard, Leclair '90; Zamolodchikov '91; Fendley, Saleur, Zamolodchikov '93]

$$
S_{d c}^{a b}(\theta)=\quad Z(\theta)\left[\sqrt{\frac{d_{a} d_{c}}{d_{b} d_{d}}} \sinh \left(\frac{\theta}{4}\right) \delta_{b d}+\sinh \left(\frac{i \pi-\theta}{4}\right) \delta_{a c}\right]
$$

Example: Tricritical Ising \longrightarrow Ising TQFT

The classical example is to study the $-\phi_{1,3}$ deformation of the $\mathcal{M}_{4,3}$ minimal model. [Zamolodchikov '89, ...]

This preserves an Ising symmetry and flows to three degenerate vacua $|0\rangle,| \pm\rangle$.
The kink multiplet is

$$
K_{ \pm 0}^{\mathcal{N}}, K_{0 \pm}^{\mathcal{N}}
$$

The literature proposes the following integrable S-matrix: [Bernard, Leclair '90; Zamolodchikov '91; Fendley, Saleur, Zamolodchikov '93]

$$
S_{d c}^{a b}(\theta)=\left(\frac{d_{a} d_{c}}{d_{b} d_{d}}\right)^{i \theta / 2 \pi} Z(\theta)\left[\sqrt{\frac{d_{a} d_{c}}{d_{b} d_{d}}} \sinh \left(\frac{\theta}{4}\right) \delta_{b d}+\sinh \left(\frac{i \pi-\theta}{4}\right) \delta_{a c}\right]
$$

The green factor enforces crossing symmetry.

Example: Tricritical Ising \longrightarrow Ising TQFT

The classical example is to study the $-\phi_{1,3}$ deformation of the $\mathcal{M}_{4,3}$ minimal model. [Zamolodchikov '89, ...]

This preserves an Ising symmetry and flows to three degenerate vacua $|0\rangle,| \pm\rangle$.
The kink multiplet is

$$
K_{ \pm 0}^{\mathcal{N}}, K_{0 \pm}^{\mathcal{N}}
$$

The literature proposes the following integrable S-matrix: [Bernard, Leclair '90; Zamolodchikov '91; Fendley, Saleur, Zamolodchikov '93]

$$
S_{d c}^{a b}(\theta)=\left(\frac{d_{a} d_{c}}{d_{b} d_{d}}\right)^{i \theta / 2 \pi} Z(\theta)\left[\sqrt{\frac{d_{a} d_{c}}{d_{b} d_{d}}} \sinh \left(\frac{\theta}{4}\right) \delta_{b d}+\sinh \left(\frac{i \pi-\theta}{4}\right) \delta_{a c}\right]
$$

The green factor enforces crossing symmetry. Otherwise

$$
S_{d c}^{a b}(\theta)=\sqrt{\frac{d_{a} d_{c}}{d_{b} d_{d}}} S_{a d}^{b c}(i \pi-\theta)
$$

Example: Tricritical Ising \longrightarrow Ising TQFT

The classical example is to study the $-\phi_{1,3}$ deformation of the $\mathcal{M}_{4,3}$ minimal model. [Zamolodchikov '89, ...]

This preserves an Ising symmetry and flows to three degenerate vacua $|0\rangle,| \pm\rangle$.
The kink multiplet is

$$
K_{ \pm 0}^{\mathcal{N}}, K_{0 \pm}^{\mathcal{N}}
$$

The literature proposes the following integrable S-matrix: [Bernard, Leclair '90; Zamolodchikov '91; Fendley, Saleur, Zamolodchikov '93]

$$
S_{d c}^{a b}(\theta)=\left(\frac{d_{a} d_{c}}{d_{b} d_{d}}\right)^{i \theta / 2 \pi} Z(\theta)\left[\sqrt{\frac{d_{a} d_{c}}{d_{b} d_{d}}} \sinh \left(\frac{\theta}{4}\right) \delta_{b d}+\sinh \left(\frac{i \pi-\theta}{4}\right) \delta_{a c}\right]
$$

The green factor enforces crossing symmetry. Otherwise

$$
S_{d c}^{a b}(\theta)=\sqrt{\frac{d_{a} d_{c}}{d_{b} d_{d}}} S_{a d}^{b c}(i \pi-\theta)
$$

Including the green piece turns out to be incompatible with the Ising symmetry.

Ward identities and the S-matrix

Ward identities and the S-matrix

To derive the symmetry action we construct the S-matrix by analytic continuation from a large disk:

Ward identities and the S-matrix

To derive the symmetry action we construct the S-matrix by analytic continuation from a large disk:

Ward identities and the S-matrix

To derive the symmetry action we construct the S-matrix by analytic continuation from a large disk:

Ward identities and the S-matrix

To derive the symmetry action we construct the S-matrix by analytic continuation from a large disk:

Ward identities and the S-matrix

To derive the symmetry action we construct the S-matrix by analytic continuation from a large disk:

We insert a symmetry line on the disk and deform it either upwards or downwards:

Ward identities and the S-matrix

To derive the symmetry action we construct the S-matrix by analytic continuation from a large disk:

We insert a symmetry line on the disk and deform it either upwards or downwards:

Ward identities and the S-matrix

To derive the symmetry action we construct the S-matrix by analytic continuation from a large disk:

We insert a symmetry line on the disk and deform it either upwards or downwards:

Ward identities and the S-matrix

To derive the symmetry action we construct the S-matrix by analytic continuation from a large disk:

$$
\sum_{e}[\mathcal{L} ; v]_{c b}^{c^{\prime} e}[\mathcal{L} ; v]_{b a}^{e a^{\prime}} \sqrt{\frac{d_{a}}{d_{c}}} S_{a^{\prime} e}^{c^{\prime} b^{\prime}}(\theta)=\sum_{e^{\prime}}[\mathcal{L} ; v]_{b^{\prime} c^{\prime}}^{e^{\prime} c}[\mathcal{L} ; v]_{a^{\prime} b^{\prime}}^{a e^{\prime}} \sqrt{\frac{d_{a^{\prime}}}{d_{c^{\prime}}}} S_{a b}^{c e^{\prime}}(\theta)
$$

Ward identities and the S-matrix

To derive the symmetry action we construct the S-matrix by analytic continuation from a large disk:

$\mathcal{M}_{4,3} \rightarrow$ Ising:

$$
\mathcal{N}: S_{+0}^{0+}(\theta)=S_{0+}^{+0}(\theta)+S_{0-}^{+0}(\theta)
$$

Modified Crossing

Modified Crossing

To analyze crossing symmetry we assume that the Disk 4pf is crossing invariant.

Modified Crossing

To analyze crossing symmetry we assume that the Disk 4pf is crossing invariant. We then introduce the in and out states:

Modified Crossing

To analyze crossing symmetry we assume that the Disk 4pf is crossing invariant. We then introduce the in and out states:

Their norms are schematically ${ }_{\text {in }}\langle\psi \mid \psi\rangle_{i n}=d \underbrace{v}_{v} b=d_{v} \sqrt{d_{b} d_{d}}$

Modified Crossing

To analyze crossing symmetry we assume that the Disk 4pf is crossing invariant. We then introduce the in and out states:

Their norms are schematically ${ }_{i n}\langle\psi \mid \psi\rangle_{i n}=d \underbrace{v}_{v} b=d_{v} \sqrt{d_{b} d_{d}}$

Using the normalized states in both channels the Disk crossing is continued to:

Modified Crossing

To analyze crossing symmetry we assume that the Disk 4pf is crossing invariant. We then introduce the in and out states:

$$
|\psi\rangle_{i n}=\underbrace{d}_{v} \underbrace{b}_{v}
$$

Their norms are schematically in $\langle\psi \mid \psi\rangle_{\text {in }}=d \overbrace{v}^{v} b=d_{v} \sqrt{d_{b} d_{d}}$
Using the normalized states in both channels the Disk crossing is continued to:

Modified Crossing

To analyze crossing symmetry we assume that the Disk 4pf is crossing invariant. We then introduce the in and out states:

Their norms are schematically

Using the normalized states in both channels the Disk crossing is continued to:

$$
S_{d c}^{a b}(\theta)=\sqrt{\frac{d_{a} d_{c}}{d_{b} d_{d}}} S_{a d}^{b c}(i \pi-\theta)
$$

Bootstrap for Fibonacci symmetry

Bootstrap for Fibonacci symmetry

To conclude let me flash some results coming from the S-matrix Bootstrap.

Bootstrap for Fibonacci symmetry

To conclude let me flash some results coming from the S-matrix Bootstrap.

$$
\text { Unitarity }+ \text { Analiticity }+ \text { Modified Crossing }+ \text { Symmetry }
$$

Bootstrap for Fibonacci symmetry

To conclude let me flash some results coming from the S-matrix Bootstrap.

$$
\text { Unitarity }+ \text { Analiticity }+ \text { Modified Crossing }+ \text { Symmetry }
$$

Bootstrap for Fibonacci symmetry

To conclude let me flash some results coming from the S-matrix Bootstrap.

$$
\text { Unitarity }+ \text { Analiticity }+ \text { Modified Crossing }+ \text { Symmetry }
$$

- $\mathcal{C}=$ Fibonacci (two vacua)

$$
1, W \quad W^{2}=1+W
$$

Bootstrap for Fibonacci symmetry

To conclude let me flash some results coming from the S-matrix Bootstrap.

$$
\text { Unitarity }+ \text { Analiticity }+ \text { Modified Crossing }+ \text { Symmetry }
$$

- $\mathcal{C}=$ Fibonacci (two vacua)

$$
1, W \quad W^{2}=1+W
$$

- g^{2} : cubic coupling $K \bar{K} \rightarrow B$.

Bootstrap for Fibonacci symmetry

To conclude let me flash some results coming from the S-matrix Bootstrap.

$$
\text { Unitarity }+ \text { Analiticity }+ \text { Modified Crossing }+ \text { Symmetry }
$$

- $\mathcal{C}=$ Fibonacci (two vacua)

$$
1, W \quad W^{2}=1+W
$$

- g^{2} : cubic coupling $K \bar{K} \rightarrow B$.
- Fat dot: integrable flow $\mathcal{M}_{4,3}+\phi_{2,1}$ [Smirnov '91; Colomo, Koubek, Mussardo '92; ...]

Bootstrap for Fibonacci symmetry

To conclude let me flash some results coming from the S-matrix Bootstrap.

$$
\text { Unitarity }+ \text { Analiticity }+ \text { Modified Crossing }+ \text { Symmetry }
$$

- $\mathcal{C}=$ Fibonacci (two vacua)

$$
1, W \quad W^{2}=1+W
$$

- g^{2} : cubic coupling $K \bar{K} \rightarrow B$.
- Fat dot: integrable flow $\mathcal{M}_{4,3}+\phi_{2,1}$ [Smirnov '91; Colomo, Koubek, Mussardo '92; ...]
- Other integrable point: cusp at $g=0$, Potts $S+S^{*}$-deformation

Bootstrap for Fibonacci symmetry

To conclude let me flash some results coming from the S-matrix Bootstrap.

$$
\text { Unitarity }+ \text { Analiticity }+ \text { Modified Crossing }+ \text { Symmetry }
$$

- $\mathcal{C}=$ Fibonacci (two vacua)

$$
1, W \quad W^{2}=1+W
$$

- g^{2} : cubic coupling $K \bar{K} \rightarrow B$.
- Fat dot: integrable flow $\mathcal{M}_{4,3}+\phi_{2,1}$ [Smirnov '91; Colomo, Koubek, Mussardo '92; ...]
- Other integrable point: cusp at $g=0$, Potts $S+S^{*}$-deformation

Symmetry $\mathbb{Z}_{2} \times$ Fib, $\left\{1, W, W^{\prime} \equiv \eta W, \eta\right\}$. Kink is in W^{\prime} multiplet. But now:

Bootstrap for Fibonacci symmetry

To conclude let me flash some results coming from the S-matrix Bootstrap.

$$
\text { Unitarity }+ \text { Analiticity }+ \text { Modified Crossing }+ \text { Symmetry }
$$

- $\mathcal{C}=$ Fibonacci (two vacua)

$$
1, W \quad W^{2}=1+W
$$

- g^{2} : cubic coupling $K \bar{K} \rightarrow B$.
- Fat dot: integrable flow $\mathcal{M}_{4,3}+\phi_{2,1}$ [Smirnov '91; Colomo, Koubek, Mussardo '92; ...]
- Other integrable point: cusp at $g=0$, Potts $S+S^{*}$-deformation

Symmetry $\mathbb{Z}_{2} \times$ Fib, $\left\{1, W, W^{\prime} \equiv \eta W, \eta\right\}$. Kink is in W^{\prime} multiplet. But now:

$$
W^{\prime} \times W^{\prime}=1+W \quad \Longrightarrow \quad B_{W, W}^{W^{\prime}} \notin K_{W, 1}^{W^{\prime}} \times K_{1, W}^{W^{\prime}}
$$

Future Prospects

Future Prospects

There are many avenues yet to pursue. For example:

Future Prospects

There are many avenues yet to pursue. For example:

- Physical observables related to modified crossing. Promising: TBA for twisted sector data along RG flow (WIP).

Future Prospects

There are many avenues yet to pursue. For example:

- Physical observables related to modified crossing. Promising: TBA for twisted sector data along RG flow (WIP).
- Reconstructing UV CFT data from integrable IR. Haagerup - Double Haagerup symmetric CFTs? [Huang, Lin, Ohmori, Tachikawa, Tezuka '21; Van Hoove, Lootens, Van Damme, Wolf, Osborne '21]

Future Prospects

There are many avenues yet to pursue. For example:

- Physical observables related to modified crossing. Promising: TBA for twisted sector data along RG flow (WIP).
- Reconstructing UV CFT data from integrable IR. Haagerup - Double Haagerup symmetric CFTs? [Huang, Lin, Ohmori, Tachikawa, Tezuka '21; Van Hoove, Lootens, Van Damme, Wolf, Osborne '21]
- Applications to higher dimensions. (3d results [Mehta, Minwalla, Patel, Prakash, Sharma '22]) Monopole scattering in 4 d [Van Beest, Boyle Smith, Delmastro, Komargodski, Tong '23, ...] .

Future Prospects

There are many avenues yet to pursue. For example:

- Physical observables related to modified crossing. Promising: TBA for twisted sector data along RG flow (WIP).
- Reconstructing UV CFT data from integrable IR. Haagerup - Double Haagerup symmetric CFTs? [Huang, Lin, Ohmori, Tachikawa, Tezuka '21; Van Hoove, Lootens, Van Damme, Wolf, Osborne '21]
- Applications to higher dimensions. (3d results [Mehta, Minwalla, Patel, Prakash, Sharma '22]) Monopole scattering in 4 d [Van Beest, Boyle Smith, Delmastro, Komargodski, Tong '23, ...] .
- Relationship between modified crossing and 't Hooft anomalies.

Future Prospects

There are many avenues yet to pursue. For example:

- Physical observables related to modified crossing. Promising: TBA for twisted sector data along RG flow (WIP).
- Reconstructing UV CFT data from integrable IR. Haagerup - Double Haagerup symmetric CFTs? [Huang, Lin, Ohmori, Tachikawa, Tezuka '21; Van Hoove, Lootens, Van Damme, Wolf, Osborne '21]
- Applications to higher dimensions. (3d results [Mehta, Minwalla, Patel, Prakash, Sharma '22]) Monopole scattering in 4 d [Van Beest, Boyle Smith, Delmastro, Komargodski, Tong '23, ...] .
- Relationship between modified crossing and 't Hooft anomalies.

