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Generalized Symmetries

Aim: Discuss action of Generalized Symmetries on S-matrix and derive physical

consequences (Integrable examples, but conclusions more general!).
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Summary

O Categorical Symmetries act on (massive) kinks and lead to Ward identities for the
2 — 2 S-Matrix:

- (%) = (* % *)

O Imposing Symmetry (x), Unitarity (xx) and YBE (x x x) is incompatible with
standard Crossing. Instead:

dydc

SHORNE

She(im — 0)

O Categorical symmetries can be used efficiently in the Bootstrap program. (See
Lucia’s Lectures!)
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Example: Ising Symmetry

Consider the 141d Ising phase diagram: Ising Symmetry:

Ising = {1, n, N'}
Ising CFT

\
T
Z» ordered Z disordered”

W \/ Fusion algebra:

=1, gN=Nn=N
KW duality exchanges high and low T N2 =1+ n

KW
—
W \/ b — 1, dyr = V2.

At critical point O this becomes a sym-
metry NV.

The KW defect line A is non-invertible!
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valued matrix:
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a— = (ng)g b

Satisfying the algebra:

Z(ng) ”z’)b - Z Nﬁf’(nz”)ém
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This endows .# with the mathematical
structure of a module category over C.
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To understand symmetry action on kinks we descibe their Hilbert space #H, as the
Stl’ip Hilbert space with L > 1/Mkink and TQFT b.c. [Cordova, Garcia-Sepulveda, Holfester '24] :

% maps H,p — Hcg by downwards action: Composition of two lines .&, &’
c d

<z

= Vdz 2] 72

Gives the algebra:
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. and Topological Lines

The irreducible representations of this algebra are labelled by lines v € C*/,. For
M = Reg C*, =C. In this case the kink creation operator descends from the
v-twisted sector in the UV CFT.

KY,(x)
We call K}, the Kink multiplet.

The fusion algebra v x v/ =3 1 I\NI:‘Z v’ encodes the tensor product decomposition
of irreps —> kink bound states!
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Example: Tricritical Ising — Ising TQFT

The classical example is to study the —¢; 3 deformation of the My 3 minimal model.
[Zamolodchikov 89, ...]

This preserves an Ising symmetry and flows to three degenerate vacua |0),

1).

The kink multiplet is N
K+, Kok -

The literature proposes the following integrable S-matrix: [Bernard, Leclair '90; Zamolodchikov '91;
Fendley, Saleur, Zamolodchikov ‘93]

dadc . 0 . im— 6
S2b(9) = Z(0) |: g sinh (Z) Opg + sinh (”r4 )63c:|

The green factor enforces crossing symmetry. Otherwise

dad,
S30) = || 2% sts(in —0).

Including the green piece turns out to be incompatible with the Ising symmetry.
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Ward identities and the S-matrix

To derive the symmetry action we construct the S-matrix by analytic continuation
from a large disk:

<z

My 3 — lIsing:
N S%(0) = Sg2(0) + S2°(0) .
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Modified Crossing

To analyze crossing symmetry we assume that the Disk 4pf is crossing invariant. We
then introduce the in and out states:

v v

Their norms are schematically i (|9)in = d b= dv\/dpdy

v v
C

Using the normalized states in both channels the Disk crossing is continued to:

dadc .
S30) = | Zo Stitim = 6).
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» Other integrable point: cusp at
g =0, Potts S + S*-deformation

Symmetry Zy x Fib, {1, W, W' = nW n}. Kink is in W/ multiplet. But now:

W x W =1+W = BW, &KW xKY,.
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