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Categorical Symmetries act on (massive) kinks and lead to Ward identities for the
2 → 2 S-Matrix:
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Imposing Symmetry (⋆), Unitarity (⋆⋆) and YBE (⋆ ⋆ ⋆) is incompatible with
standard Crossing. Instead:
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dc (θ) =

√
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dbdd
Sbc
ad (iπ − θ)

Categorical symmetries can be used efficiently in the Bootstrap program. (See
Lucia’s Lectures!)
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Example: Ising Symmetry

Consider the 1+1d Ising phase diagram:

Z2 ordered
T

Z2 disordered

Ising CFT

KW duality exchanges high and low T

KW⇐⇒

At critical point this becomes a sym-
metry N .

Ising Symmetry:

Ising = {1, η, N}

Fusion algebra:

η2 = 1 , ηN = N η = N

N 2 = 1 + η

dη = 1, dN =
√
2 .

The KW defect line N is non-invertible!
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C-symmetric TQFTs

We describe 1+1d TQFT M via a col-
lection of boundary conditions (states)
a, b, c, ... [Huang, Lin, Seifnashri ’21, ...]

a b

L

a

The symmetry action is described by topo-
logical junctions. Which satisfy associativ-
ity conditions

a c
b

L L ′

=
∑
L ′′

φa b c
L L ′ L ′′

a c
L ′′

L L ′

Parallel fusion is described by an integer-
valued matrix:

a

L

= (nL )ba b

Satisfying the algebra:∑
b

(nL )ba(nL ′ )cb =
∑
L ′′

NL ′′
L L ′ (nL ′′ )ca ,

This endows M with the mathematical
structure of a module category over C.
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Example: Ising TQFT

As an example let us study a TQFT with
Ising symmetry.
We are familiar with the TQFTs with Z2

symmetry:

|+⟩ |−⟩ |0⟩

The KW symmetry interchanges the two
sets in a Z2-neutral way:

N|0⟩ = |+⟩+ |−⟩, N|±⟩ = |0⟩ .

One can check that there are no consistent
TQFTs with 1 or 2 vacua.

|0⟩ = |N⟩, |+⟩ = |1⟩, |−⟩ = |η⟩

This is a special case of the Regular rep-
resentation. One identifies {a, b, c...} =
{L ,L ′,L ′′...} and:
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= 1
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This enforces:

φL1L2L3
L L ′L ′′ =
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FL1L L3

L ′

]
L2L ′′

.

And describes the complete SSB of the
symmetry C.
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Kink Multiplets ...

To understand symmetry action on kinks we descibe their Hilbert space Hab as the
strip Hilbert space with L ≫ 1/Mkink and TQFT b.c. [Cordova, Garcia-Sepulveda, Holfester ’24] :

Ha,b ≃

a b

L maps Hab → Hcd by downwards action:

a

c

b

d

L⇝ =
√
dL [L ]cdab

c d

Composition of two lines L , L ′

⇒ ⇒

⇒ ⇒

Gives the algebra:[
L ′]ef

cd
· [L ]cdab =

∑
L ′′

φace
L L ′L ′′φ

cdf
L L ′L ′′

[
L ′′]ef

ab
.
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... and Topological Lines

The irreducible representations of this algebra are labelled by lines v ∈ C∗
M . For

M = Reg C∗
M = C. In this case the kink creation operator descends from the

v -twisted sector in the UV CFT.

ba

K v
ab(x)

v

We call K v
ab the Kink multiplet.

The fusion algebra v × v ′ =
∑

v′′ Ñ
v′′
vv′ v

′′ encodes the tensor product decomposition
of irreps −→ kink bound states!
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Example: Tricritical Ising −→ Ising TQFT

The classical example is to study the −ϕ1,3 deformation of the M4,3 minimal model.
[Zamolodchikov ’89, ...]

This preserves an Ising symmetry and flows to three degenerate vacua |0⟩, |±⟩.

The kink multiplet is
KN
±0, K

N
0± .

The literature proposes the following integrable S-matrix: [Bernard, Leclair ’90; Zamolodchikov ’91;

Fendley, Saleur, Zamolodchikov ’93]

Sab
dc (θ) =

(
dadc

dbdd

)iθ/2π

Z(θ)

[√
dadc

dbdd
sinh

(
θ

4

)
δbd + sinh

(
iπ − θ

4

)
δac

]

The green factor enforces crossing symmetry. Otherwise

Sab
dc (θ) =

√
dadc

dbdd
Sbc
ad (iπ − θ) .

Including the green piece turns out to be incompatible with the Ising symmetry.
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Ward identities and the S-matrix

To derive the symmetry action we construct the S-matrix by analytic continuation
from a large disk:
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Modified Crossing

To analyze crossing symmetry we assume that the Disk 4pf is crossing invariant. We
then introduce the in and out states:

|ψ⟩in =
d b

cv v

⟨ψ|out =
d b

av v

Their norms are schematically in⟨ψ|ψ⟩in =

v

v
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v

= dv
√
dbdd
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d b

Using the normalized states in both channels the Disk crossing is continued to:

Sab
dc (θ) = Sbc

ad (iπ − θ) .
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Bootstrap for Fibonacci symmetry

To conclude let me flash some results coming from the S-matrix Bootstrap.

Unitarity + Analiticity + Modified Crossing + Symmetry

▶ C = Fibonacci (two vacua)

1,W W 2 = 1 +W .

▶ g2: cubic coupling KK̄ → B.

▶ Fat dot: integrable flow M4,3 + ϕ2,1
[Smirnov ’91; Colomo, Koubek, Mussardo ’92; ...]

▶ Other integrable point: cusp at
g = 0, Potts S + S∗-deformation

Symmetry Z2 × Fib, {1,W ,W ′ ≡ ηW , η}. Kink is in W ′ multiplet. But now:

W ′ ×W ′ = 1 +W =⇒ BW ′
W ,W ̸∈ KW ′

W ,1 × KW ′
1,W .
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Future Prospects

There are many avenues yet to pursue. For example:

▶ Physical observables related to modified crossing. Promising: TBA for twisted
sector data along RG flow (WIP).

▶ Reconstructing UV CFT data from integrable IR. Haagerup - Double Haagerup
symmetric CFTs? [Huang, Lin, Ohmori, Tachikawa, Tezuka ’21; Van Hoove, Lootens, Van Damme, Wolf, Osborne ’21]

▶ Applications to higher dimensions. (3d results [Mehta, Minwalla, Patel, Prakash, Sharma ’22])
Monopole scattering in 4d [Van Beest, Boyle Smith, Delmastro, Komargodski, Tong ’23, ...] .

▶ Relationship between modified crossing and ’t Hooft anomalies.
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