

(credit:Vitor Cardoso \& Paolo Pani)

(credit: Peter Shawhan)

Gravitational-Wave Astronomy: Post-Minkowskian Theory Meets the Effective-One-Body Approach

Alessandra Buonanno
 Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Potsdam

Deutsche Forschungsgemeinschaft Forschungsgemeinsch
 -

- As today, GWs were observed by LIGO-Virgo detectors from 90 coalescences, plus tens of events pulled out from public data with independent analysis. (Abbott+PRX 13 (2023) 4,04I039)
(Nitz+23, Mehta+23, Wadekar+23)

GWI50914

GWI708I7

GW230529

Masses in the Stellar Graveyard

GWI9052I

- Ongoing LIGO-Virgo-KAGRA observing run O4 has already announced I 05 signal candidates.

Motivations/Outline/Collaborators

- What role do waveform models play in detecting and interpreting LIGO-Virgo-KAGRA signals?
- With ever more sensitive observational runs (O5,A\#) and future detectors (LISA, Einstein Telescope, Cosmic Explorer), precision GW astronomy will require ever more accurate waveforms, with all physical effects (generic orbits, beyondGR, matter/environment). Can scattering amplitudes and worldline methods help to address the accuracy challenge?
- Very encouraging results for bound-orbit waveforms and scattering by informing the effective-one-body approach with current post-Minkowskian results.

(AB, Jakobsen \& Mogull arXiv: 2402.I 2342)

Properties of Astrophysical Sources via Gravitational Waves

we infer distance
from time of arrival, amplitude and phase at detectors we infer sky location

from modulations of amplitude and phase we infer spins and eccentricity

from differences in late inspiral and merger of BBHs we infer tidal deformation, and NS composition

By comparing to waveforms with deviations from GR, we can probe the theory of gravity

Solving Two-Body Problem in General Relativity

- GR is non-linear theory. $\quad R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=\frac{8 \pi G}{c^{4}} T_{\mu \nu}$
- Einstein's field equations can be solved:
-approximately, but analytically (fast way)
-accurately, but numerically on supercomputers (slow way)
- Synergy between analytical and numerical relativity is crucial to provide GW detectors with templates to use for searches and inference analyses.
- Post-Newtonian (large separation, and slow motion)
expansion in
$\mathrm{v}^{2} / c^{2} \sim G M / r c^{2}$
(Droste, Lorentz, Einstein, Infeld, Hoffmann, ... Blanchet, Damour, lyer, Jaranowski, Schäfer, Will, ... Goldberger, Porto, Rothstein, ...)
- Post-Minkowskian (large separation, and fast motion)
expansion in G
 Rothstein, Solon, Shen, Zeng ... Khälin, Porto, ... Mogull, Jakobsen, Plefka, Steinhoff ... Damgaard, Vanhove ... Brandhuber, Travaglini ...)

- Gravitational self-force (strong field) expansion in m_{2} / m_{1}

(Barack, Deitweiler, Mino, Poisson, Pound, Quinn, Sasaki, Tanaka, van de Meent, Wald, Warburton, Wardell, Whiting, .
- GR is non-linear theory. $\quad R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=\frac{8 \pi G}{c^{4}} T_{\mu \nu}$
- Einstein's field equations can be solved:
-approximately, but analytically (fast way)
-accurately, but numerically on supercomputers (slow way)
- Synergy between analytical and numerical relativity is crucial to provide GW detectors with templates to use for searches and inference analyses.
- Effective-one-body (EOB) theory (combines results from all methods, i.e., for entire coalescence)
(AB, Damour, ... Barausse, Bohé, Cotesta, Estellés, Khalil, Mihaylov, Ossokine, Pan, Pompili, Pürrer, Ramos-Buades, Shao, Taracchini, .. Nagar, Bernuzzi,Agathos, Albanese, Gamba, Messina, Rettegno, Riemenschneider,.... lyer, Jaranowski, Schäfer)

- GR is non-linear theory. $\quad R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=\frac{8 \pi G}{c^{4}} T_{\mu \nu}$
- Einstein's field equations can be solved:
-approximately, but analytically (fast way)
-accurately, but numerically on supercomputers (slow way)
- Synergy between analytical and numerical relativity is crucial to provide GW detectors with templates to use for searches and inference analyses.

- Phenomenological frequency-domain waveforms (Phenom) built fitting to EOB, PN and NR .
(Ajith, Hannam, Husa, Ohme, ... Bohé, Colleoni, García, Hamilton, Khan, London, Estellés, Pratten, Pürrer, Ramos-Buades, Quirós, Santamaria, Schmidt, Shrobana, Thompson, ...)

Frequency-domain GW phase derivative

- We calibrate models to inspiral-merger-ringdown NR waveforms.

(NQC: non-quasi-circular corrections)
- Matched filtering employed in LIGO/Virgo searches.

(SXS: Simulating eXtreme Spacetime)
(SEOBNR: Pompili+23, van de Meent+23, Ramos-Buades+23, Mihaylov+23, Khalil+23)
(IMRPhenom: Pratten+20, García-Quíros+20, Estélles+2 I, Thompson+23)
(TEOBResumS: Akcay+2I, Gamba+22, Nagar+23)
(NRSur: Blackman+l7,Varma+l9,Yoo+23)

Cosmic Explorer (CE)

Observe BHs at much larger distance, when first stars formed, and more massive.

- Exquisite characterization of binary BHs (NSs): the number of events/yr with signal-to-noise ratio >100 will be $\sim 9,500$ (380).
(Borhanian \& Sathyaprakash 22; Gupta et al. 23)
- LISA adopted as mission by ESA踊 in Jan 2024; launch ~ 2035.
- GW signals will be loud and last for weeks/months.

- BH binary GWI908|4-like ($q \sim 10$), but highly precessing.

$$
\mathrm{SNR}_{\mathrm{O} 5}=119, \mathrm{SNR}_{\mathrm{A} \#}=219, \mathrm{SNR}_{\mathrm{XG}}=2490
$$

- Massive BH binary with moderate mass ratio and spins. Lemaitre parameter (expansion
MWMWMWMWMOMONOMD\|\|! rate of the Universe) is measured.

Hubble-Lemaitre
flow velocity luminosity distance
$\mathrm{v}_{\mathrm{H}}=H_{0} d$

- Due to systematics, false deviations from GR in the quasi-normal-mode frequency and decay time of the ringdown are measured.

$$
\mathrm{SNR}_{\mathrm{LISA}}=228
$$

(Toubiana, Pompili, AB, Gair \& Katz arXiv:2307.I 5086)

Theoretical Advances to Enable Precision GW Astronomy

- The accuracy of current waveform models (for comparable mass binaries) would need to be improved by 2 orders of magnitude. Numerical-relativity simulations would also need to become more accurate, for BBHs and especially BNS/ NSBHs.
(Pürrer \& Halster 19, Samajdar \& Dietrich I8, Gamba et al 21 , Dhani et al. 24)
- All physical effects would need to be included in waveform models (generic orbits, astrophysical environmental effects, new physics beyond-GR, gravitational lensing, etc.) to avoid wrong scientific conclusions.

(credit:Ana Carvalho)

Theoretical Advances to Enable Precision GW Astronomy (contd.)

- PN, PM, GSF should be pushed at higher order and combined in EOB approach more effectively and in novel ways to largely improve analytical solutions of two-body problem. Calibration to NR should be made more effective.
- Scattering-amplitude/effective-field-theory/quantum-field-theory methods from highenergy physics have brought new tools to solve two-body problem in classical gravity.
(Bjerrum-Bohr+18,Vines+18, Cheung+19; Bern+19, Kosower+19, Cristofoli+19, Damgaard+19, Blümlein+20, Bern+20, Kälin+20, Cheung \& Solon 20, Parra-Martinez+20, Mogull+2I, Brandhuber+2I, Bern+2I, Dlapa+2I, Liu+2I, Jakobsen+22, Bern+23, Jakobsen+23, Driesse+24, Dlapa+24, Bern+24, Bini+24)

Frontier of GW modeling: eccentricity

- The PM approximation is more accurate than PN for scattering encounters at large velocities, or equivalently large eccentricities at fixed periastron distance.

- Two-body dynamics is mapped into dynamics of one-effective body moving in deformed blackhole spacetime, deformation being the mass ratio.

$$
\mu=m_{1} m_{2} / M \quad M=m_{1}+m_{2} \quad \nu=\mu / M \quad 0 \leq \nu \leq 1 / 4
$$

$$
H_{\mathrm{EOB}}=M \sqrt{1+2 \nu\left(\frac{H_{\mathrm{eff}}}{\mu}-1\right)}
$$

(AB \& Damour 99; Damour 00;AB, Chen \& Damour 05; Damour, Jaranowski \& Schafer 08; Barausse, Racine \& AB IO; Barausse \& AB II; Damour \& Nagar 14; Balmelli \& Damour 15; Khalil, Steinhoff, Vines \& AB 20; Khalil, AB, Estelles, Pompili, Ossokine \& Ramos-Buades 23)

$$
\mathbf{a}_{i}=0 \quad i=1,2 \quad g_{\mathrm{eff}}^{\mu \nu} p_{\mu} p_{\nu}+\mu^{2}+\cdots=0 \quad G=1=c
$$

-Historically, effective Hamiltonian based on PN results:

-The SEOB-PM Hamiltonian is a deformation of the Kerr Hamiltonian, it is informed by available PM results, and it is complemented by PN bound-orbit corrections.
(Bini+ I 7-I8, Antonelli, $A B+19$, Khalil, $A B+22$, Khali, $A B+23, A B$, Jakobsen \& Mogull 24)
(AB, Mogull, Patil \& Pompili arXiv: 2405.1918I)

$$
\left.\begin{array}{l}
H_{\mathrm{eff}}=\frac{M p_{\phi}\left(g_{a_{+}} a_{+}+g_{a_{-}} \delta a_{-}\right)}{r^{3}+a_{+}^{2}(r+2 M)}+\sqrt{A\left(\mu^{2}+\frac{p_{\phi}^{2}}{r^{2}}+\left(1+B_{\mathrm{np}}^{\mathrm{Kerr}}\right) p_{r}^{2}+B_{\mathrm{npa}}^{\mathrm{Kerr}} \frac{p_{\phi}^{2} a_{+}^{2}}{r^{2}}\right)} \quad H_{\mathrm{EOB}}=M \sqrt{1+2 \nu\left(\frac{H_{\mathrm{eff}}}{\mu}-1\right)} \\
A=\frac{\left(1-2 u+\chi_{+}^{2} u^{2}+\Delta A\right)}{\left[1+\chi_{+}^{2} u^{2}(2 u+1)\right]}
\end{array} g_{a_{ \pm}}=\frac{\Delta g_{a_{ \pm}}}{u^{2}} \quad u=M / r \quad \mu=m_{1} m_{2} / M \quad a_{i}=m_{i} \chi_{i} \quad M \chi_{ \pm}=a_{1} \pm a_{2} \quad 0 \leq \chi_{i} \leq 1\right)
$$

$$
B_{\mathrm{npa}}^{\mathrm{Kerr}}=-(1+2 u) /\left[r^{2}+a_{+}^{2}(1+2 u)\right] \quad B_{\mathrm{np}}^{\mathrm{Kerr}}=\chi_{+}^{2} u^{2}-2 u
$$

(Guevara, Ochirov \& Vines 19, Chen, Chung, Huang, \& Kim 22, Bern, Kosmopoulos, Luna, Roiban \& Teng 23,Aoude, Haddad \& Helset 23, Bautista 23)
(Bern, Cheung, Roiban, Shen, Solon \& Zeng 19, Kälin, Liu \& Porto 20, Cheung \& Solon 20, Di Vecchia, Heissenberg, Russo \& Veneziano 20, Jakobsen \& Mogull 22, 23, Febres Cordero, Kraus, Lin, Run \& Zeng 23, Brandhuber+2I)
(Bern, Parra-Martinez, Roiban, Ruf, Shen, Solon et al. 22, Dlapa, Kälin, Liu \& Porto 22, Jakobsen, Mogull, Plefka, Sauer \& Xu 23, Jakobsen, Mogull, Plefka \& Sauer 23, Dlapa, Kälin, Liu \& Porto 24, Damour \& Bini 24) (Driesse, Jakobsen, Mogull, Plefka, Sauer \& Usovitsch 24)

/M			(AB, Jakobsen \& Mogull arXiv: 2402.12342)			
	$\underset{(\text { Spin-0) }}{S^{0}}$	$\underset{(\text { SSin-12 }}{ }$	$\underset{(\text { Spin-1) }}{ }$	$\underset{(S \sin -3 / 2)}{S^{3}}$	$\underset{(\text { Spin-2 }}{ }{ }^{4}$	$\underset{(\text { SSin-52 })}{S^{5}}$
$\underset{\text { (rree evere) }}{\text { IPM }}$	G	G^{2}	G^{3}	G^{4}	G^{5}	G^{6}
$\underset{(1 \text { l loop }}{2 \mathrm{LPM}}$	G^{2}	G^{3}	G^{4}	G^{5}	G^{6}	G^{7}
$\left.\begin{array}{c} 3 P M \\ (2 \text { (2 lops) } \end{array}\right)$	G^{3}	G^{4}	G^{5}	G^{6}	G^{7}	G^{8}
$\begin{gathered} \text { 4PM } \\ (3 \text { loops }) \end{gathered}$	G^{4}	G^{5}	G^{6}	G^{7}	G^{8}	G^{9}
$\underset{(4 \text { liops })}{\text { 5PM }}$	G^{5}	G^{6}	G^{7}	G^{8}	G^{9}	G^{10}

-The SEOB-PM Hamiltonian is a deformation of the Kerr Hamiltonian, it is informed by available PM results, and it is complemented by PN bound-orbit corrections.
(Bini + I 7-I 8, Antonelli, $A B+19$, Khalil, $A B+22$, Khali, $A B+23, A B$, Jakobsen \& Mogull 24)
(AB, Mogull, Patil \& Pompili arXiv: 2405./9।8I)

$$
\begin{aligned}
& H_{\mathrm{eff}}=\frac{M p_{\phi}\left(g_{a_{+}} a_{+}+g_{a_{-}} \delta a_{-}\right)}{r^{3}+a_{+}^{2}(r+2 M)}+\sqrt{A\left(\mu^{2}+\frac{p_{\phi}^{2}}{r^{2}}+\left(1+B_{\mathrm{np}}^{\mathrm{Kerr}}\right) p_{r}^{2}+B_{\mathrm{npa}}^{\mathrm{Kerr}} \frac{p_{\phi}^{2} a_{+}^{2}}{r^{2}}\right)} \quad H_{\mathrm{EOB}}=M \sqrt{1+2 \nu\left(\frac{H_{\mathrm{eff}}}{\mu}-1\right)} \\
& A=\frac{\left(1-2 u+\chi_{+}^{2} u^{2}+\Delta A\right)}{\left[1+\chi_{+}^{2} u^{2}(2 u+1)\right]}
\end{aligned} \quad g_{a_{ \pm}}=\frac{\Delta g_{a_{ \pm}}}{u^{2}} \quad u=M / r \quad \mu=m_{1} m_{2} / M \quad a_{i}=m_{i} \chi_{i} \quad M \chi_{ \pm}=a_{1} \pm a_{2} \quad 0 \leq \chi_{i} \leq 1 .
$$

$$
B_{\mathrm{npa}}^{\mathrm{Kerr}}=-(1+2 u) /\left[r^{2}+a_{+}^{2}(1+2 u)\right] \quad B_{\mathrm{np}}^{\mathrm{Kerr}}=\chi_{+}^{2} u^{2}-2 u
$$

we complement with 4PN corrections for bound orbits, including tails
$\Delta A=\sum_{n=2}^{5} u^{n} \Delta A^{(n)}+\Delta A^{\downarrow \mathrm{PN}}$
$\Delta g_{a_{ \pm}}=\sum_{n=2}^{5} u^{n} \Delta g_{a_{ \pm}}^{(n)}$
odd-in-spin PM corrections (through 5PM)

	$\delta=\left(m_{1}-m_{2}\right) / M$			(AB, Jakobsen \& Mogull arXiv: 2402.12342)			
		$\left.\underset{(\text { Spin-0) }}{S^{0}}\right)$	$\underset{(\text { Spin-1/2) }}{S^{1}}$	$\underset{(\text { Spin-1) }}{S^{2}}$	$\underset{(S \sin -32)}{S^{3}}$	$\underset{(S \text { Sin-2 } 2}{ }$	$\underset{(S \sin -52)}{S^{5}}$
	$\underset{\text { (rree evere) }}{\text { IPM }}$	G	G^{2}	G^{3}	G^{4}	G^{5}	G^{6}
	$\underset{\left(\text { (l l lop }_{2}\right)}{ }$	G^{2}	G^{3}	G^{4}	G^{5}	G^{6}	G^{7}
	$\underset{(2 \text { (2 lops })}{\text { 3PM }}$	G^{3}	G^{4}	G^{5}	G^{6}	G^{7}	G^{8}
$\underline{\square}$	$\underset{(3 \text { looss })}{4 \mathrm{PM}}$	G^{4}	G^{5}	G^{6}	G^{7}	G^{8}	G^{9}
+	$\underset{(4 \text { (40ops) }}{\text { SPM }}$	G^{5}	G^{6}	G^{7}	G^{8}	G^{9}	G^{10}

-The SEOB-PM Hamiltonian is a deformation of the Kerr Hamiltonian, it is informed by available PM results, and it is complemented by PN bound-orbit corrections.
(Bini + I 7-I 8, Antonelli, $A B+19$, Khalil, $A B+22$, Khali, $A B+23, A B$, Jakobsen \& Mogull 24)
(AB, Mogull, Patil \& Pompili arXiv: 2405.1918I)

$$
\begin{aligned}
& H_{\mathrm{eff}}=\frac{M p_{\phi}\left(g_{a_{+}} a_{+}+g_{a_{-}} \delta a_{-}\right)}{r^{3}+a_{+}^{2}(r+2 M)}+\sqrt{A\left(\mu^{2}+\frac{p_{\phi}^{2}}{r^{2}}+\left(1+B_{\mathrm{np}}^{\mathrm{Kerr}}\right) p_{r}^{2}+B_{\mathrm{npa}}^{\mathrm{Kerr}} \frac{p_{\phi}^{2} a_{+}^{2}}{r^{2}}\right)} \quad H_{\mathrm{EOB}}=M \sqrt{1+2 \nu\left(\frac{H_{\mathrm{eff}}}{\mu}-1\right)} \\
& A=\frac{\left(1-2 u+\chi_{+}^{2} u^{2}+\Delta A\right)}{\left[1+\chi_{+}^{2} u^{2}(2 u+1)\right]}
\end{aligned} \quad g_{a_{ \pm}}=\frac{\Delta g_{a_{ \pm}}}{u^{2}} \quad u=M / r \quad \mu=m_{1} m_{2} / M \quad a_{i}=m_{i} \chi_{i} \quad M \chi_{ \pm}=a_{1} \pm a_{2} \quad 0 \leq \chi_{i} \leq 1, ~ M=m_{1}+m_{2} \quad \nu=\mu / M \quad 0 \leq \nu \leq 1 / 4 \quad G=1=c
$$

- Coefficients of effective Hamiltonian determined by computing the EOB scattering angle and matching to PM results (only conservative sector):
$p_{r}^{2}=\frac{1}{\left(1+B_{\text {np }}^{\text {Kerr }}\right)}\left\{\frac{1}{A}\left[E_{\text {eff }}-\frac{M L\left(g_{a_{+}} a_{+}+g_{a_{-}} \delta a_{-}\right)}{r^{3}+a_{+}^{2}(r+2 M)}\right]^{2}-\left(\mu^{2}+\frac{L^{2}}{r^{2}}+B_{\text {npa }}^{\text {Kerd }} \frac{L^{2} a_{+}^{2}}{r^{2}}\right)\right\}$
$\theta+\pi=-2 \int_{r_{\text {min }}}^{+\infty} d r \frac{\partial p_{r}}{\partial L} \quad p_{\infty}=\mu \sqrt{\gamma^{2}-1}, \quad \gamma=\frac{E_{\mathrm{eff}}}{\mu}>1$
-The SEOB-PM Hamiltonian is a deformation of the Kerr Hamiltonian, it is informed by available PM results, and it is complemented by PN bound-orbit corrections.
(Bini+ I 7-I8, Antonelli, $A B+19$, Khali, $A B+22$, Khali, $A B+23, A B$, Jakobsen \& Mogull 24)
(AB, Mogull, Patil \& Pompili arXiv: 2405.1918I)
$H_{\mathrm{eff}}=\frac{M p_{\phi}\left(g_{a_{+}} a_{+}+g_{a_{-}} \delta a_{-}\right)}{r^{3}+a_{+}^{2}(r+2 M)}+\sqrt{A\left(\mu^{2}+\frac{p_{\phi}^{2}}{r^{2}}+\left(1+B_{\mathrm{np}}^{\mathrm{Kerr}}\right) p_{r}^{2}+B_{\mathrm{npa}}^{\mathrm{Kerr}} \frac{p_{\phi}^{2} a_{+}^{2}}{r^{2}}\right)}$
$H_{\mathrm{EOB}}=M \sqrt{1+2 \nu\left(\frac{H_{\mathrm{eff}}}{\mu}-1\right)}$
$A=\frac{\left(1-2 u+\chi_{+}^{2} u^{2}+\Delta A\right)}{\left[1+\chi_{+}^{2} u^{2}(2 u+1)\right]} \quad g_{a_{ \pm}}=\frac{\Delta g_{a_{ \pm}}}{u^{2}} \quad u=M / r$

$$
\begin{array}{llll}
\mu=m_{1} m_{2} / M & a_{i}=m_{i} \chi_{i} & M \chi_{ \pm}=a_{1} \pm a_{2} & 0 \leq \chi_{i} \leq 1 \\
M=m_{1}+m_{2} & \nu=\mu / M & 0 \leq \nu \leq 1 / 4 & G=1=c
\end{array}
$$

$\Delta A^{(n)}=\sum_{s=0}^{\lfloor(n-1) / 2\rfloor} \sum_{i=0}^{2 s} \alpha_{(2 s-i, i)}^{(n)} \delta^{\sigma(i)} \chi_{+}^{2 s-i} \chi_{-}^{i} \quad \begin{gathered}\alpha_{s}^{(n)} \rightarrow \text { are function of } \gamma, \nu \\ \text { (logarithms, dilogarithms, and elliptic }\end{gathered}$
$\Delta g_{a_{+}}^{(n)}=\sum_{s=0}^{\lfloor(n-2) / 2\rfloor} \sum_{i=0}^{s} \alpha_{(2(s-i)+1,2 i)}^{(n)} \chi_{+}^{2(s-i)} \chi_{-}^{2 i}$
$\Delta g_{a_{-}}^{(n)}=\sum_{s=0}^{\lfloor(n-2) / 2\rfloor} \sum_{i=0}^{s} \alpha_{(2(s-i), 2 i+1)}^{(n)} \chi_{+}^{2(s-i)} \chi_{-}^{2 i}$ functions of the first and second kind)

$$
\begin{gathered}
\gamma=\frac{E_{\text {eff }}}{\mu} \\
\gamma=\gamma_{\text {Kerr }}+\sum_{n \geq 2} \sum_{s \geq 0} \Delta_{(s)}^{(n)}\left(\gamma_{\text {Kerr }}\right)^{\frac{n}{\bar{J}}}
\end{gathered}
$$

$\delta=\left(m_{1}-m_{2}\right) / M$			(AB, Jakobsen \& Mogull arXiv: 2402.12342)			
	S^{0}	$\underset{\left(S \sin ^{1}-12\right)}{S^{1}}$	S^{2}	S^{3}	$\underset{\left(S^{4}\right.}{ }$	S^{5}
$\begin{gathered} \text { (tre) ever) } \\ \text { (tree } \end{gathered}$	G	G^{2}	G^{3}	G^{4}	G^{5}	G^{6}
$\underset{(\text { (l loop })}{\text { 2PM }}$	G^{2}	G^{3}	G^{4}	G^{5}	G^{6}	G^{7}
$\underset{(2 \text { (2lops) }}{3 \mathrm{PM}}$	G^{3}	G^{4}	G^{5}	G^{6}	G^{7}	G^{8}
$\underset{(3 \text { loops })}{4 \mathrm{APM}}$	G^{4}	G^{5}	G^{6}	G^{7}	G^{8}	G^{9}
5PM	G^{5}	G^{6}	G^{7}	G^{8}	G^{9}	G^{10}

Inspiral-Plunge SEOB-PM Dynamics

$$
\begin{gathered}
\dot{r}=\frac{\partial H_{\mathrm{SEOB}-\mathrm{PM}}}{\partial p_{r}} \quad \dot{p}_{r}=-\frac{\partial H_{\mathrm{SEOB}-\mathrm{PM}}}{\partial r}+\frac{p_{r}}{p_{\phi}} \mathscr{F}_{\phi} \\
M \Omega=\dot{\phi}=\frac{\partial H_{\mathrm{SEOB}-\mathrm{PM}}}{\partial p_{\phi}} \\
\text { ward merger } \\
\dot{p}_{\phi}=\mathscr{F}_{\phi}
\end{gathered}
$$

- SEOB-PM Hamiltonian, dynamics and waveforms are developed using the flexible and efficient Python code (pySEOBNR). (Mihaylov, ... $A B+23$)
https://git.ligo.org/waveforms/software/pyseobnr

Comparing SEOB-PM Binding Energy with Numerical Relativity

$G=1=c$

- Binding energy is computed along quasi-circular inspiral (and a circular orbit):

$$
\mathscr{E}=\frac{H_{\mathrm{EOB}}-M}{\mu} \quad v=(M \dot{\phi})^{1 / 3}
$$

SEOBNRv5 \rightarrow state-of-the-art waveform model (from SEOBNR family) based on PN/GSF, developed for the ongoing LVK run (O4)
(Pompili, $A B+23$, van de Meent, $A B+23$, Ramos-Buades, $A B+23$, Khalil, $A B+23$)

NR \rightarrow waveform from the Simulating eXtreme Spacetimes (SXS) Collaboration
(Boyle + 19, Ossokine +20)

- SEOB-PM binding energy has excellent agreement with NR without resummation or calibration.

Comparing SEOB-PM Binding Energy with Numerical Relativity (contd.)

- Despite not being calibrated to NR, SEOB-PM shows excellent agreement with NR, with a clear convergence. Its accuracy is somewhat better than SEOBNRv5, despite the latter being calibrated in the non-spinning (a_{6}) and spin-orbit coupling (d_{SO}) sectors.

Inspiral-Plunge SEOB-PM Waveform \& Frequency

- EOB equations of motion
non-precessing spins

$$
\dot{r}=\frac{\partial H_{\mathrm{SEOB}-\mathrm{PM}}}{\partial p_{r}} \quad \dot{p}_{r}=-\frac{\partial H_{\mathrm{SEOB}-\mathrm{PM}}}{\partial r}+\frac{p_{r}}{p_{\phi}} \mathscr{F}_{\phi} \quad h_{+}-i h_{\times}=\sum_{\ell, m}{ }_{-2} Y_{\ell m}(\varphi, l) h_{\ell m}(t)
$$

$$
\dot{\phi}=\frac{\partial H_{\mathrm{SEOB}-\mathrm{PM}}}{\partial p_{\phi}} \quad \dot{p}_{\phi}=\mathscr{F}_{\phi}
$$

- Evolve two-body dynamics up to close to light ring (or photon orbit) and then
$h_{22}^{\text {insp-plunge }}(t)=h_{22}^{\text {Newt }} S_{\text {eff }} T_{22} f_{22} e^{i \delta_{22}} h_{22}^{\mathrm{NQC}}$ (Damour+09, Pan, $A B+$ I I,Pompili, $A B+23$, van de Meent, $A B+23$)
- EOB equations of motion
non-precessing spins

$$
\begin{array}{ll}
\dot{r}=\frac{\partial H_{\text {SEOB }-\mathrm{PM}}}{\partial p_{r}} & \dot{p}_{r}=-\frac{\partial H_{\text {SEOB }-\mathrm{PM}}}{\partial r}+\frac{p_{r}}{p_{\phi}} \mathscr{F}_{\phi} \\
\dot{\phi}=\frac{\partial H_{\text {SEOB-PM }}}{\partial p_{\phi}} & \dot{p}_{\phi}=\mathscr{F}_{\phi}
\end{array}
$$

$$
h_{22}^{\text {merger-RD }}(t)=\nu \tilde{A}_{22}(t) e^{i \tilde{\phi}_{22}(t)} e^{-i \sigma_{220}\left(t-t_{22}^{\text {peak }}\right)}
$$

(Baker+08, Damour \& Nagar l 4, London+ 14 ,
Bohé, ... AB+ I7, Cotesta, $A B+19$, Pompili, $A B+23$)

- ... attach a function representing quasi-normal mode ringing of remnant BH .

$$
t_{22}^{\text {peak }}=t_{\mathrm{ISCO}}+\Delta t_{\mathrm{NR}}
$$

$$
h_{22}(t)=h_{22}^{\text {insp-plunge }}(t) \theta\left(t_{22}^{\text {peak }}-t\right)+h_{22}^{\text {merger-RD }}(t) \theta\left(t-t_{22}^{\text {peak }}\right)
$$

$G=1=c$
pySEOBNR

- Calibrating only the time to merger Δt_{NR} (Pompili+23):
$\mathscr{M}=1-\max _{t_{0}, \phi_{0}} \frac{\left(h_{\text {model }}, h_{\mathrm{NR}}\right)}{\sqrt{\left(h_{\text {model }}, h_{\text {model }}\right)\left(h_{\mathrm{NR}}, h_{\mathrm{NR}}\right)}} \quad(h, g)=4 \operatorname{Re}\left[\int_{f_{\text {min }}}^{f_{\max }} \frac{h(f) g^{*}(f) d f}{S_{n}(f)}\right]$

$$
h_{22}(t)=h_{22}^{\mathrm{insp}-\text { plunge }}(t) \theta\left(t_{22}^{\text {peak }}-t\right)+h_{22}^{\text {merger-RD }}(t) \theta\left(t-t_{22}^{\text {peak }}\right)
$$

Mismatch $\mathscr{M}=0$ implies models \& NR match perfectly

$$
t_{22}^{\text {peak }}=t_{\mathrm{ISCO}}+\Delta t_{\mathrm{NR}} \quad \text { - Mismatch against 44I NR SXS waveforms }
$$

- SEOBNR-PM has remarkably good agreement with NR. When calibrating only Δt_{NR}, the accuracy of both SEOBNR-PM and SEOBNRv5 tends to degrade for large positive spins, but much more for the latter.

PM Theory Meets the EOB Approach for Scattering

$\frac{E_{\mathrm{eff}}}{E^{2}-m_{1}^{2}-m_{2}^{2}} \frac{\Gamma=\frac{E}{M} \quad\left(w_{\mathrm{PM}} \rightarrow \quad \text { Damour \& Rettegno 23, Rettegno+23) (SEOB-PM } \rightarrow \text { AB, Jakobsen \& Mogull 24) }\right.}{1}$

- Here, deformation coefficients of SEOB-PM Hamiltonian also depend on dissipative terms of PM scattering angle.

$$
M \chi_{+}=a_{1}+a_{2}
$$

- Important to complete 5PM and push spin results at higher PM order.

Summary \& Outlook

- To correctly interpret future GW observations, and avoid drawing wrong scientific conclusions, the precision of theoretical GW predictions in vacuum GR must improve by two orders of magnitude or more, depending on the binary's parameter space, and must include all physical effects (generic orbits, beyond-GR, matter/environment).
- To address the accuracy challenge, perturbative calculations (PN, PM, GSF), should be pushed at higher orders, and combined in EOB approach more effectively and in novel ways.
- Built the first inspiral-merger-ringdown EOB waveform model (SEOBNR-PM) for aligned/antialigned-spin BHs that uses a PM-informed Hamiltonian (i.e., expanded in G, but at all orders in the velocity).
- SEOB-PM non-spinning binding energy, computed along an inspiraling trajectory, at 4PM, and its spin-orbit and spin-spin contributions through 5PM, agree remarkably well with the NR data up to about 1 GW cycle before merger.
- When calibrated to NR by adjusting the time to merger, SEOBNR-PM performs better than the state-of-the-art SEOBNR based on PN.
- Future: resum PM-EOB potentials, fully calibrate SEOB-PM to NR, include PM results in EOB RR force and gravitational modes when available at high PM order, extend to eccentricity ... use new PM results in EOB potentials when available!

