Recursive Landau Analysis

Mathieu Giroux (McGill)

with Simon Caron-Huot and Miguel Correia
ArXiv: 2406.05241

Let's first set up the stage

Let's first set up the stace

Let's first set up the stage

A function of $X_{G}=\left\{p_{i} \cdot p_{j}\right\}_{i, j=1}^{n-1}$ and internal masses on the kinematic space

$$
\begin{aligned}
p_{I} & \equiv \sum_{i \in I} p_{i} \\
s_{I} & \equiv p_{I}^{2}
\end{aligned}
$$

What's the analytic structure of G ?

Let's first set up the stage

In other words, where are its kinematic singularities?

Let us make sure we are on the same page
Normal threshold
(\pm branches)

Well understood at one-loop; can be much harder beyond!

Having good control over this question would be enormously useful for

Differential equations and numerical integration of Feynman integrals (boundary conditions, analytic continuation and contour deformations)
[See Franziska's, Hayden's and Samuel's talks]

Symbol calculus and bootstrap of Feynman integrals (singularities constrain the letters)
[See Andrew's, Francois's and Xiaofeng's talks]

Knowing singularities beforehand has proven central for state-of-the-art phenomenological applications - e.g.,

Computing Feynman Integrals: Alphabets and Letters

$$
d \overrightarrow{\mathcal{J}}(x, \epsilon)=\epsilon\left(\sum_{i} A_{i} d \log W_{i}(x)\right) \overrightarrow{\mathcal{J}}(x, \epsilon)
$$

* Getting diff. eq. relies on IBPs: difficult to do analytically...
* If the W_{i} are known, determine the A_{i} from numerical IBPs!
\checkmark removes the IBP bottleneck, allows to attack multi-scale problems
* The W_{i} give singularities of Feynman integrals \Rightarrow Landau conditions
\checkmark Factorisation of work: determine W_{i} without computing the differential equation!
\checkmark Active area of research in Amplitudes area: coactions, solving Landau conditions, principal A-determinants, Gram determinants, Schubert problem, ...
\checkmark Two highlights: [2311.14669, Fevola, Mizera, Telen], [2401.07632, Jiang, Liu, Xu, Yang, 24]
* Baikovletter [2401.07632] misses one of the new five-point roots
\checkmark Not really an issue, we know it's there

[^0]
What's our goal?

Singularities are written as a list $\mathcal{L}(G)$ of polynomials in X_{G}

$$
\underset{\mathcal{J}}{\mathcal{L}(G)_{i}}=0
$$

The product over i is called the Landau discriminant
[Fevola, Mizera, Telen (2023)]

What's our goal?

Singularities are written as a list $\mathcal{L}(G)$ of polynomials in X_{G}

$$
\mathcal{L}(G)_{i}=0
$$

The goal of this talk is to learn how to compute these polynomials recursively in terms of those of subgraphs (we'll see that this is surprisingly efficient!)

Outline

Recursion via unitarity

Proof of principle examples:
Recursively finding singularities

Checks and new analytic predictions:
Leading singularities
(Generic kinematic pentabox)

(Three-loop $Q E D+Q C D$ boX) $?$

(Non-planar massive hexabox)
0

Outline

Recursion via unitarity

Checks and new analytic predictions:
Leading singularities

(Generic kinematic pentabox) ?

Proof of principle examples:

Recursively finding singularities

Unitarity and thresholds

Unitarity of the S-matrix implies that

$$
\begin{gathered}
S S^{\dagger}=\mathbb{1} \\
S=\mathbb{1}+i T
\end{gathered} \quad \Longrightarrow \quad \frac{1}{2 i}\left(T-T^{\dagger}\right)=\frac{1}{2} T T^{\dagger}
$$

Separation between free and interacting parts

Unitarity and thresholds

Unitarity of the S-matrix implies that

$$
\begin{gathered}
S S^{\dagger}=\mathbb{1} \\
S=\mathbb{1}+i T
\end{gathered} \quad \Longrightarrow \quad \begin{gathered}
\text { Im } T=\frac{1}{2} T T^{\dagger} \\
\text { For the experts: }
\end{gathered}
$$

Assuming (for now) reality of
momenta and Feynman's is

Unitarity and thresholds

Unitarity of the S-matrix implies that

$$
\begin{gathered}
S S^{\dagger}=\mathbb{1} \\
S=\mathbb{1}+i T
\end{gathered} \quad \Longrightarrow \quad \operatorname{Im} T=\frac{1}{2} T T^{\dagger}
$$

Positivity manifests, but singularities are not
[Hannesdóttir, Mizera (2022)]

Unitarity and thresholds

Unitarity of the S-matrix implies that

$$
\begin{gathered}
S S^{\dagger}=\mathbb{1} \\
S=\mathbb{1}+i T
\end{gathered} \quad \Longrightarrow \quad \operatorname{Im} T=\underset{\substack{X \\
\text { Inserta complete basis of } \\
\text { (on-shell) sates }}}{\underbrace{}_{\Gamma} T|X\rangle\langle X| T^{\dagger}}
$$

Unitarity and thresholds

At the level of the matrix elements $\mathcal{M}_{\text {in } \rightarrow \text { out }} \equiv\langle$ out $| T \mid$ in \rangle

$$
\operatorname{Im} \mathcal{M}_{n_{A} \rightarrow n_{B}}=\frac{1}{2} \sum_{X} \mathcal{M}_{n_{A} \rightarrow X} \mathcal{M}_{X \rightarrow n_{B}}^{*}
$$

In perturbation theory, this gives the Cutkosky equation

[^1]
Unitarity and thresholds

At the level of the matrix elements $\mathcal{M}_{\text {in } \rightarrow \text { out }} \equiv\langle$ out $| T \mid$ in \rangle

$$
\operatorname{Im} \mathcal{M}_{n_{A} \rightarrow n_{B}}=\text { Sum over unitarity cuts }
$$

The locations at which a cut starts contributing are called thresholds
Takeaway point
The imaginary part has support where cuts themselves have support

Unitarity and thresholds

At the level of the matrix elements $\mathcal{M}_{\text {in } \rightarrow \text { out }} \equiv\langle$ out $| T \mid$ in \rangle

$$
\operatorname{Im} \mathcal{M}_{n_{A} \rightarrow n_{B}}=\text { Sum over unitarity cuts }
$$

Takeaway point
The imaginary part has support where cuts themselves have support

At these locations the amplitude cannot be real analytic, and we say that it is singular

Necessary conditions for singularities (I)

Qualitative necessary conditions
Amplitudes can be singular when (i) the phase space of cuts opens up, and (ii) when cuts are singular

Necessary conditions for singularities (I)

Qualitative necessary conditions

Amplitudes can be singular when (i) the phase space of cuts opens up, and (ii) when cuts are singular

We will see that these can be phrased algebraically without reference to the reality of momenta

Necessary conditions for singularities (I)

Qualitative necessary conditions

Amplitudes can be singular when (i) the phase space of cuts opens up, and (ii) when cuts are singular

We will see that these can be phrased algebraically without reference to the reality of momenta

Our focus is on Feynman graphs $A B$ that can be disconnected into two subgraphs A and B two-particle cut

The invariants on each side are

$$
\begin{gathered}
X_{\xi}=\left\{q_{i} \cdot q_{j} \mid q_{\bullet} \in\{k\} \cup P_{\xi}\right\} \\
(\xi=A, B)
\end{gathered}
$$

Necessary conditions for singularities (I)

Qualitative necessary conditions

Amplitudes can be singular when (i) the phase space of cuts opens up, and (ii) when cuts are singular

We will see that these can be phrased algebraically without reference to the reality of momenta

Our focus is on Feynman graphs $A B$ that can be disconnected into two subgraphs A and B two-particle cut

We'll learn how to
compute singularities of
Standard Model processes like this one!

Two-particle cuts in Baikov form

As an integral over independent the scalar products between loop and external momenta

Ask me later to fill the details!

Two-particle cuts in Baikov form

(The details I am skipping over)

Two-particle cuts in Baikov form

As an integral over independent the scalar products between loop and external momenta

Necessary conditions for singularities (II)

Qualitative necessary conditions
Amplitudes can be singular when (i) the phase space of cuts opens up, and (ii) when cuts are singular

What does it mean for two-particle cut?

Necessary conditions for singularities (II)

Qualitative necessary conditions

Amplitudes can be singular when (i) the phase space of cuts opens up, and (ii) when cuts are singular

What does it mean for two-particle cut?
(i) At thresholds, the phase space Γ closes down to a single isolated point (only classical scattering is possible)

(i)

$$
\begin{gathered}
\text { Boundary } \partial \Gamma=\{\operatorname{det} G=0\} \text { collapses to a point } \\
\text { (i.e., from all directions) }
\end{gathered}
$$

Necessary conditions for singularities (II)

Qualitative necessary conditions
Amplitudes can be singular when (i) the phase space of cuts opens up, and (ii) when cuts are singular

What does it mean for two-particle cut?
(ii) Double discontinuities happen where the singular locus of A (or B) pinches Γ or hits $\partial \Gamma$

Necessary conditions for singularities (II)

Qualitative necessary conditions

Amplitudes can be singular when (i) the phase space of cuts opens up, and (ii) when cuts are singular

What does it mean for two-particle cut?
(ii) Double discontinuities happen where the singular locus of A (or B) pinches Γ or hits $\partial \Gamma$

Necessary conditions for singularities (III)

Algebraic necessary conditions for (i) and (ii') can be uniformly obtained as follows:

1) Pick a (possibly empty) subset $\mathcal{S} \subset \mathcal{L}(A) \cup \mathcal{L}(B)$ of singularities on the left and right

Necessary conditions for singularities (III)

Algebraic necessary conditions for (i) and (ii') can be uniformly obtained as follows:

1) Pick a (possibly empty) subset $\mathcal{S} \subset \mathcal{L}(A) \cup \mathcal{L}(B)$ of singularities on the left and right
2) Localizing on the two-particle cut and on the loci $\left\{\mathcal{S}_{i}=0\right\}$ fixes $\operatorname{dim}(\mathcal{S})$ variables from

Necessary conditions for singularities (III)

Algebraic necessary conditions for (i) and (ii) can be uniformly obtained as follows:

1) Pick a (possibly empty) subset $\mathcal{S} \subset \mathcal{L}(A) \cup \mathcal{L}(B)$ of singularities on the left and right
2) Localizing on the two-particle cut and on the loci $\left\{\mathcal{S}_{i}=0\right\}$ fixes $\operatorname{dim}(\mathcal{S})$ variables from

3) This leaves a set $X_{\mathcal{S}}$ of independent variables in terms of which $\partial \Gamma$ is

$$
0=\left.\operatorname{det} \tilde{G}\left(X_{\mathcal{S}}\right) \equiv \operatorname{det} G\right|_{\left\{\mathcal{S}_{i}=0\right\}}
$$

Necessary conditions for singularities (III)

Algebraic necessary conditions for (i) and (ii) can be uniformly obtained as follows:

To ensure that there are no direction along which we could deform the contour to avoid the singularity, we have

$$
\mathcal{L}(A B)_{\mathcal{S}}:\left[\begin{array}{l}
\operatorname{det} \tilde{G}=0 \\
\frac{\partial \operatorname{det} \tilde{G}}{\partial\left(k \cdot p_{i}\right)}=0
\end{array} \quad \text { for } k \cdot p_{i} \in X_{\mathcal{S}}\right.
$$

There is always one more equation than unknowns and so this system yields an algebraic constraint on kinematic space

$$
\mathcal{L}(A B)_{\mathcal{S}}=0
$$

Necessary conditions for singularities (III)

To find the remaining singularities of $A B$ contained in a two-particle cut, we loop over all sets \mathcal{S} of subamplitudes singularities (including subtopologies)

The focus of today is on the full graph
(leading singularities)

Recursion via unitarity

The necessary conditions for (e.g., leading) singularities require to know

$$
\mathcal{L}\left(A_{1}\right)=\mathcal{L}\left(B_{1}\right)=0
$$

Can these be constructed recursively?

Recursion via unitarity

The necessary conditions for (e.g., leading) singularities require to know

$$
\mathcal{L}\left(A_{1}\right)=\mathcal{L}\left(B_{1}\right)=0
$$

If either is two-particle-reducible, yes
(just repeat the same argument over the blobs!)

Recursion via unitarity

If B_{1} is two-particle-reducible,
just repeat the same argument

Means we take another
two-particle cut

Recursion via unitarity

Singular locus of B_{1} is given by solving

$$
\mathcal{L}\left(B_{1}\right)_{S}:\left[\begin{array}{l}
\operatorname{det} \tilde{G}_{2}=0 \\
\frac{\partial \operatorname{det} \tilde{G}_{2}}{\partial\left(k_{2} \cdot p_{i}\right)}=0
\end{array} \quad \text { for } k_{2} \cdot p_{i} \in X_{S}\right.
$$

Recursion via unitarity

Recursion via unitarity

At the end of the recursion, we are left with either:
Not the
(1) A collection of tree-level subgraphs [easy/systematic]
focus today
(2) A collection of subgraphs contains loop(s) [harder] (may need external inputs for non-2PR subgraphs)

Outline

Recursion via unitarity

Proof of principle examples:
Recursively finding singularities

Checks and new analytic predictions:
Leading singularities

(Generic kinematic pentabox) ©

(Three-loop QED+QCD boX) ©

(Non-planar massive hexabox)

Recursively finding singularities

The generic kinematic parachute graph

$\mathcal{D}_{1}=\left(k_{1}-p_{12}\right)^{2}-m_{1}^{2}, \quad \mathcal{D}_{2}=k_{1}^{2}-m_{2}^{2}$
$\mathcal{D}_{3}=\left(k_{1}+k_{2}+p_{3}\right)^{2}-m_{3}^{2}, \quad \mathcal{D}_{4}=k_{2}^{2}-m_{4}^{2}$

$$
\begin{gathered}
p_{i}^{2}=M_{i}^{2} \\
p_{12}^{2}=p_{34}^{2}=s, \quad p_{13}^{2}=p_{24}^{2}=t \\
p_{14}^{2}=p_{23}^{2}=\sum_{i=1}^{4} M_{i}^{2}-s-t
\end{gathered}
$$

What are the candidate leading singularities?

Recursively finding singularities

Let's look at a first two-particle cut

Recursively finding singularities

The generic kinematic parachute graph

$$
\mathcal{D}_{1}=\left(k_{1}-p_{12}\right)^{2}-m_{1}^{2}, \quad \mathcal{D}_{2}=k_{1}^{2}-m_{2}^{2}
$$

$$
\mathcal{D}_{3}=\left(k_{1}+k_{2}+p_{3}\right)^{2}-m_{3}^{2}, \quad \mathcal{D}_{4}=k_{2}^{2}-m_{4}^{2}
$$

$$
\begin{gathered}
p_{i}^{2}=M_{i}^{2} \\
p_{12}^{2}=p_{34}^{2}=s, \quad p_{13}^{2}=p_{24}^{2}=t \\
p_{14}^{2}=p_{23}^{2}=\sum_{i=1}^{4} M_{i}^{2}-s-t
\end{gathered}
$$

Let's look at a first two-particle cut

Recursively finding singularities

The generic kinematic parachute graph

$$
\mathcal{D}_{1}=\left(k_{1}-p_{12}\right)^{2}-m_{1}^{2}, \quad \mathcal{D}_{2}=k_{1}^{2}-m_{2}^{2}
$$

$$
\mathcal{D}_{3}=\left(k_{1}+k_{2}+p_{3}\right)^{2}-m_{3}^{2}, \quad \mathcal{D}_{4}=k_{2}^{2}-m_{4}^{2}
$$

$$
\begin{gathered}
p_{i}^{2}=M_{i}^{2} \\
p_{12}^{2}=p_{34}^{2}=s, \quad p_{13}^{2}=p_{24}^{2}=t \\
p_{14}^{2}=p_{23}^{2}=\sum_{i=1}^{4} M_{i}^{2}-s-t
\end{gathered}
$$

Let's look at a first two-particle cut

Recursively finding singularities

The generic kinematic parachute graph

$$
\mathcal{D}_{1}=\left(k_{1}-p_{12}\right)^{2}-m_{1}^{2}, \quad \mathcal{D}_{2}=k_{1}^{2}-m_{2}^{2}
$$

$$
\mathcal{D}_{3}=\left(k_{1}+k_{2}+p_{3}\right)^{2}-m_{3}^{2}, \quad \mathcal{D}_{4}=k_{2}^{2}-m_{4}^{2}
$$

$$
\begin{gathered}
p_{i}^{2}=M_{i}^{2} \\
p_{12}^{2}=p_{34}^{2}=s, \quad p_{13}^{2}=p_{24}^{2}=t \\
p_{14}^{2}=p_{23}^{2}=\sum_{i=1}^{4} M_{i}^{2}-s-t
\end{gathered}
$$

Let's look at a first two-particle cut

Recursively finding singularities

The generic kinematic parachute graph

$$
\mathcal{D}_{1}=\left(k_{1}-p_{12}\right)^{2}-m_{1}^{2}, \quad \mathcal{D}_{2}=k_{1}^{2}-m_{2}^{2}
$$

$$
\mathcal{D}_{3}=\left(k_{1}+k_{2}+p_{3}\right)^{2}-m_{3}^{2}, \quad \mathcal{D}_{4}=k_{2}^{2}-m_{4}^{2}
$$

$$
\begin{gathered}
p_{i}^{2}=M_{i}^{2} \\
p_{12}^{2}=p_{34}^{2}=s, \quad p_{13}^{2}=p_{24}^{2}=t \\
p_{14}^{2}=p_{23}^{2}=\sum_{i=1}^{4} M_{i}^{2}-s-t
\end{gathered}
$$

Let's look at a first two-particle cut

Recursively finding singularities

The generic kinematic parachute graph

$$
\mathcal{D}_{1}=\left(k_{1}-p_{12}\right)^{2}-m_{1}^{2}, \quad \mathcal{D}_{2}=k_{1}^{2}-m_{2}^{2}
$$

$$
\mathcal{D}_{3}=\left(k_{1}+k_{2}+p_{3}\right)^{2}-m_{3}^{2}, \quad \mathcal{D}_{4}=k_{2}^{2}-m_{4}^{2}
$$

$$
\begin{gathered}
p_{i}^{2}=M_{i}^{2} \\
p_{12}^{2}=p_{34}^{2}=s, \quad p_{13}^{2}=p_{24}^{2}=t \\
p_{14}^{2}=p_{23}^{2}=\sum_{i=1}^{4} M_{i}^{2}-s-t
\end{gathered}
$$

Let's look at a first two-particle cut

Recursively finding singularities

The generic kinematic parachute graph

$$
\mathcal{D}_{1}=\left(k_{1}-p_{12}\right)^{2}-m_{1}^{2}, \quad \mathcal{D}_{2}=k_{1}^{2}-m_{2}^{2}
$$

$$
\mathcal{D}_{3}=\left(k_{1}+k_{2}+p_{3}\right)^{2}-m_{3}^{2}, \quad \mathcal{D}_{4}=k_{2}^{2}-m_{4}^{2}
$$

$$
\begin{gathered}
p_{i}^{2}=M_{i}^{2} \\
p_{12}^{2}=p_{34}^{2}=s, \quad p_{13}^{2}=p_{24}^{2}=t \\
p_{14}^{2}=p_{23}^{2}=\sum_{i=1}^{4} M_{i}^{2}-s-t
\end{gathered}
$$

Let's look at a first two-particle cut

Recursively finding singularities

Singular locus of B_{1} is given by repeating the same argument over the bubble

$$
\Lambda^{\mu}=\left(p_{3}+k_{1}\right)^{\mu}
$$

Recursively finding singularities

Singular locus of B_{1} is given by repeating the same argument over the bubble

Recursively finding singularities

Singular locus of B_{1} is given by repeating the same argument over the bubble

Recursively finding singularities

Singular locus of B_{1} is given by repeating the same argument over the bubble

Recursively finding singularities

Singular locus of B_{1} is given by repeating the same argument over the bubble

Recursively finding singularities

Singular locus of B_{1} is given by repeating the same argument over the bubble

Imposing $\operatorname{det} \tilde{G}_{2}=0$ gives $\mathcal{L}\left(B_{1}\right)_{1}=0$
$k_{1} \cdot p_{3}=\frac{1}{2}\left[\left(m_{3} \pm m_{4}\right)^{2}-m_{2}^{2}-M_{3}^{2}\right]$

Recursively finding singularities

The generic kinematic parachute graph

What are the candidate leading singularities ?

Recursively finding singularities

What are the candidate leading singularities?

$$
\left|\begin{array}{ccc}
s & \frac{m_{2}^{2}-m_{1}^{2}+s}{2} & \frac{M_{4}^{2}-M_{3}^{2}-s}{2} \\
\frac{m_{2}^{2}-m_{1}^{2}+s}{2} & m_{2}^{2} & \frac{\left(m_{4} \pm m_{3}\right)^{2}-m_{2}^{2}-M_{3}^{2}}{2} \\
\frac{M_{4}^{2}-M_{3}^{2}-s}{2} & \frac{\left(m_{4} \pm m_{3}\right)^{2}-m_{2}^{2}-M_{3}^{2}}{2} & M_{3}^{2}
\end{array}\right|=0
$$

Recursively finding singularities

What are the candidate leading singularities?

Matches with PLD.j1! [Fevola, Mizera, Telen (2023)]

What about other singularities?

On the previous slide, we localized G_{1} on the bubble leading singularity
$\mathcal{S}=\left\{\mathcal{L}\left(B_{1}\right)_{1}=0\right\}$ fixed the remaining invariant:
$k_{1} \cdot p_{3}=\frac{1}{2}\left[\left(m_{3} \pm m_{4}\right)^{2}-m_{2}^{2}-M_{3}^{2}\right]$

$$
\left[\begin{array}{ccc}
p_{12}^{2} & p_{12} \cdot k_{1} & p_{12} \cdot p_{3} \\
p_{12} \cdot k_{1} & k_{1}^{2} & k_{1} \cdot p_{3} \\
p_{12} \cdot p_{3} & k_{1} \cdot p_{3} & p_{3}^{2}
\end{array}\right]
$$

What about other singularities?

But nothing stops us to localize on other singularities of B_{1} (e.g., second-type singularity at $\Lambda^{2}=0$)
$\mathcal{S}=\left\{\mathcal{L}\left(B_{1}\right)_{2}=0\right\}$ fixes the remaining invariant:
$k_{1} \cdot p_{3}=\frac{1}{2}\left[-m_{2}^{2}-M_{3}^{2}\right]$
$\left[\begin{array}{ccc}p_{12}^{2} & p_{12} \cdot k_{1} & p_{12} \cdot p_{3} \\ p_{12} \cdot k_{1} & k_{1}^{2} & k_{1} \cdot p_{3} \\ p_{12} \cdot p_{3} & k_{1} \cdot p_{3} & p_{3}^{2}\end{array}\right]$

$$
\left|\begin{array}{ccc}
s & \frac{m_{2}^{2}-m_{1}^{2}+s}{2} & \frac{M_{4}^{2}-M_{3}^{2}-s}{2} \\
\frac{m_{2}^{2}-m_{1}^{2}+s}{2} & m_{2}^{2} & -\frac{m_{2}^{2}+M_{3}^{2}}{2} \\
\frac{M_{4}^{2}-M_{3}^{2}-s}{2} & -\frac{m_{2}^{2}+M_{3}^{2}}{2} & M_{3}^{2}
\end{array}\right|=0
$$

(accessible on the max-cut)

What about other singularities?

But nothing stops us to localize on other singularities of B_{1} (e.g., second-type singularity at $\Lambda^{2}=0$)
$\mathcal{S}=\left\{\mathcal{L}\left(B_{1}\right)_{2}=0\right\}$ fixes the remaining invariant:
$k_{1} \cdot p_{3}=\frac{1}{2}\left[-m_{2}^{2}-M_{3}^{2}\right]$
$\left[\begin{array}{ccc}p_{12}^{2} & p_{12} \cdot k_{1} & p_{12} \cdot p_{3} \\ p_{12} \cdot k_{1} & k_{1}^{2} & k_{1} \cdot p_{3} \\ p_{12} \cdot p_{3} & k_{1} \cdot p_{3} & p_{3}^{2}\end{array}\right]$

L-LOOP RESULTS

The massive penta-ladder

L-LOOP RESULTS

The massive penta-ladder

L-LOOP RESULTS

The massive penta-ladder

The leading singularity of the L-loop penta-ladder is the same as for the ladder when t is replaced by

$$
\begin{aligned}
& \lambda\left(Z_{m, m, m, m}\right)^{L-1} \lambda\left(Z_{m, 0,0, m}\right)-\lambda\left(Z_{m, 0,0, \sqrt{t}}\right)=0 \\
& \left\lceil\lambda(z)=z+\sqrt{z^{2}-1}\right. \\
& Z_{a, b, c, d}=\frac{\sqrt{s_{45}}\left(s_{45}+2 d^{2}-2 a^{2}-b^{2}-c^{2}\right)}{\sqrt{s_{45}-4 a^{2}} \sqrt{s_{45}-(b+c)^{2}} \sqrt{s_{45}-(b-c)^{2}}} \\
& m^{4} s_{12} s_{23}\left(s_{12}+s_{23}-s_{45}\right)+s_{12} s_{23}\left[t^{2}\left(s_{12}+s_{23}-s_{45}\right)\right. \\
& \left.-s_{15} s_{34} s_{45}+t\left(s_{12}\left(s_{23}-s_{15}\right)-s_{23} s_{34}+\left(s_{15}+s_{34}\right) s_{45}\right)\right] \\
& +m^{2}\left[s_{12}^{2}\left(s_{15}^{2}-2 t s_{23}-s_{15} s_{23}\right)+\left(s_{23} s_{34}+\left(s_{15}-s_{34}\right) s_{45}\right)^{2}\right. \\
& +s_{12}\left(s_{23} s_{34}\left(s_{45}-s_{23}\right)-2 t s_{23}\left(s_{23}-s_{45}\right)-2 s_{15}^{2} s_{45}\right. \\
& \left.\left.+s_{15}\left(2 s_{34} s_{45}+s_{23}\left(2 s_{34}+s_{45}\right)\right)\right)\right]=0
\end{aligned}
$$

Outline

Checks and new analytic predictions:

Leading singularities

(Generic kinematic pentabox)

(Three-loop $Q E D+Q C D$ boX) ©

Proof of principle examples:

Recursively finding singularities

p_{3}

Explicit checks

Figure 2. A list of nontrivial examples checked against PLD. $j 1$ and [19] (for the massive ladder).

Explicit checks

Figure 2. A list of nontrivial examples checked against PLD.jl and [19] (for the massive ladder).

Explicit checks

Figure 2. A list of nontrivial examples checked against PLD. $j 1$ and [19] (for the massive ladder).

Explicit checks

Figure 2. A list of nontrivial examples checked against PLD. $j 1$ and [19] (for the massive ladder).

Explicit checks

Figure 2. A list of nontrivial examples checked against PLD. $j 1$ and [19] (for the massive ladder).

Explicit checks

Figure 2. A list of nontrivial examples checked against PLD.jl and [19] (for the massive ladder).

New Predictions

(Nonplanar H+J pentabox \#2) ©

(Massive Mercedes diagram) ©

(Massive pentaladder) ©

LEADING SINGULARITIES CAN GET QUITE COMPLICATED

LEADING SINGULARITIES CAN GET QUITE COMPLICATED

it first into a more commonly used measurement for file sizes: megabytes.
1 megabit is equal to $\frac{1}{8}$ megabytes. Therefore, 40.52 megabits is equivalent to:

$$
40.52 \text { megabits } \times \frac{1 \text { megabyte }}{8 \text { megabits }}=5.065 \text { megabytes }
$$

Now, let's compare this to the size of the full Harry Potter book series. The entire series contains approximately 1,084,170 words. Typically, an average English word uses about 6 bytes in a text file (including space for formatting and spaces between words). Thus, the total size of the full Harry Potter book series in a text file would be approximately:
$1,084,170$ words $\times 6$ bytes/word $=6,505,020$ bytes ≈ 6.505 magabytes
Therefore, a 5.065 megabytes (.txt) file, equivalent to your 40.52 megabits, is slightly smaller than the total size of the Harry Potter book series, which is about 6.505 megabytes.

$$
+\mathcal{O}\left(10^{6}\right) \text { terms }
$$

Conclusion

We introduced an efficient unitarity-based method to extract singularities of Feynman integrals Stress-tested the method against cutting-edge tools like HyperInt and PLD.jl

Made new predictions for multi-loop processes, including many examples in the Standard Model

Outlook

Many future directions... here are some pressing ones

Systematic way to include higher-cut subgraphs into the recursion without knowing a priori their singularities?
Recursively reconstructing Schwinger parameters?

Can we prove that this procedure captures all singularities of a diagram (and its subtopologies)?

Get better at solving systems of high-degree polynomial equations

Thank you!

Dirac at the IAS on his way to cut (actual) trees
[Credit: Shelby White and Leon Levy Archives Center]

Extra slides

TYPES OF SOLUTIONS

Leading or subleading singularities
When all or a subset of propagators are set on-shell
[Bjorken, Landau, Nakanishi (1954)]

Second- or mixed-type singularities
When all or a subset of loop momenta diverge $\left(\ell_{i} \rightarrow \infty\right)$
[Cutkosky (1960), Fairlie, Landshoff, Nuttall, Polkinghorne (1962)]
[Drummond (1963), Boyling (1967)]

Beyond the standard classification singularities
When a subset of loop momenta diverge $\left(\ell_{i} \rightarrow \infty\right)$ at different rates
[Berghoff, Panzer (2022), Fevola, Mizera, Telen (2023)]

Higher-cuts diagrams

Examples of (sub)graphs whose singularities cannot be resolved systematically by the two-particle cut recursion (may need to use, e.g., PLD.jl)

Figure 3. Examples of diagrams with no two-particle cuts splitting the graph in two disjoint subgraphs.

Recursively finding singularities

But wait! PLD.jl flags another leading singularity :

```
###################################
# Component 2
#####################################
D[2] = M[3]^2 - 2*M[3]*M[4] - 2*M[3]*s + M[4]^2 - 2*M[4]*s + s^2
İ#[2] = 16
weights[2] = [[-1, -1, -1, -1], [0, 0, 0, 0]]
computed_with[2] = ["PLD_num", "HyperInt"]
```

The singularity depends solely on external invariants

$$
\left|\begin{array}{ccc}
s & \frac{m_{2}^{2}-m_{1}^{2}+s}{2} & \frac{M_{4}^{2}-M_{3}^{2}-s}{2} \\
\frac{m_{2}^{2}-m_{1}^{2}+s}{2} & m_{2}^{2} & \frac{\left(m_{4} \pm m_{3}\right)^{2}-m_{2}^{2}-M_{3}^{2}}{2} \\
\frac{M_{4}^{2}-M_{3}^{2}-s}{2} & \frac{\left(m_{4} \pm m_{3}\right)^{2}-m_{2}^{2}-M_{3}^{2}}{2} & M_{3}^{2}
\end{array}\right|=0
$$

It is the expected (from C_{bub}) collinear divergence between p_{12} and p_{3} (supported even on the maximal cut)

L-LOOP RESULTS

Some times, this method makes it easy to make L-loop statements

Although the banana subgraph does not have a two-particle cut,
we can still find the parachute singularities because the analytic structure of the banana is known beforehand

$$
k_{1} \cdot p_{3}=\frac{1}{2}\left[\left(m_{3} \pm m_{4} \pm \ldots \pm m_{3+L}\right)^{2}-m_{2}^{2}-M_{3}^{2}\right]
$$

Bubble diagram

The solutions are

$$
\begin{aligned}
& \left(\alpha_{1}: \alpha_{2}\right)=\left(\frac{1}{m_{1}}: \pm \frac{1}{m_{2}}\right) \quad s=\left(m_{1} \pm m_{2}\right)^{2} \\
& \uparrow \\
& \text { Projective invariance in Schwinger parameters } \\
& \text { and kinematic variables separately } \\
& + \text { normal threshold } \\
& \text { - pseudo-normal threshold }
\end{aligned}
$$

[^0]: + related work by [Abreu, Caron-Huot, Chicherin, Dixon, Gehrmann, Henn, Ita, McLeod, Mitev, Moriello, Page, Presti, Sotnikov, Tschernow, von Hippel, Wasser, Wilhelm, Zhang, Zoia, ...]

[^1]: [Cutkosky (1961), Hannesdóttir, Mizera (2022)]

