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Why N=4 sYM?

N = 4 Super Yang-Mills is a wonderful laboratory for studying
strongly coupled quantum field theories.

AdS/CFT: dual to type IIB string theory on AdS5 × S5. Teaches us
about the duality and the dual string theory using integrability,
conformal bootstrap, susy localization, etc!
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N = 4 super Yang-Mills
N = 4 super Yang-Mills at conformal point is a maximally
supersymmetric conformal field theory with gauge group SU(Nc).

It has two parameters: the number of colors Nc and the t’Hooft
coupling g2 = g2YMNc/(16π

2) (also λ = g2YMNc).

The dual parameters in string theory are the string tension,
T = R2/2πα′ and the string coupling gstr:

g2 = T 2/4
1

Nc
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gstr
4π2T 2
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Figure: source: review of integrability in AdS/CFT, 1012.3982.
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N = 4 super Yang-Mills in the Planar Limit:

Can we solve N = 4 SYM in the planar limit at the conformal point?

To solve a conformal field theory, we need the spectrum of local
operators and their OPE coefficients!

▶ Spectrum of single-trace operators is solved with integrability many
years ago! [Beisert, Bajnok,Gromov, Kazakov, Minahan, Korchemsky, Vieira. . . ]

▶ But obtaining the OPE coefficient remains a hard problem even to this
date!
[Alday, Basso, Chester, Coronado, Dempsey, Eden, Fleury, Goncalves, Hansen, Komatsu, Pufu, Paul, Pereira,

Silva, Vieira . . . ]

For this, we introduce and use a tailored toolkit for determining the
OPE coefficients in the theory through combining Conformal
Bootstrap and Integrability:
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Setup

N = 4 SYM in planar limit and finite t’Hooft coupling

g2YM → 0 Nc → ∞,
g2YMNc

16π2
= g2

In the limit, we consider the simplest half-BPS operator, the
stress-tensor multiplet:

O(x, y) ∝ Tr[(y · ϕ(x))2]

y is a null vector ensuring that O(x, y) transforms as a symmetric
traceless tensor under SO(6)R.

In our analysis we will focus on multiple couplings ranging from
g = 0.1 (weak coupling) to g = 3.7 (strong couplings).
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Correlator

The 4-pt function of this half-bps operator using superconformal ward
identities can be written as:

⟨O(x1, y1) . . . O(x4, y4)⟩ = Free theory
g2→0

+

1

c
(z − α)(z̄ − ᾱ)(z̄ − α)(z − ᾱ)H(z, z̄)

Here, z and z̄ are spacetime cross ratios and α and ᾱ are R-charge

cross ratios and c ≡ N2
c−1
4 .

The prefactors of H(z, z̄) is to impose superconformal ward identities:
the correlator is protected when z = α.

In the planar limit H is Nc-independent and it effectively becomes like
a correlator of four scalar primaries with ∆ = 4 with nice properties.

The reduced correlator, H, is dual to Virasoro-Shapiro amplitude in
AdS5 × S5.
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Here, z and z̄ are spacetime cross ratios and α and ᾱ are R-charge
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Properties of reduced correlator
It admits an operator product expansion (OPE) and can be
decomposed in sum of conformal blocks.

▶ The operators showing up in the OPE are single trace and double trace
operators

single-traces double-traces

=

H(u, v) =
∑

Single & Double Traces

λ2
∆,JG

N=4
∆,J (u, v)

GN=4
∆,J (u, v) = u−4G∆+4,J

▶ The spectrum of single-trace operators, (∆, J) is known from
integrability for any t’Hooft coupling but the OPE coefficient, λ∆,J is
not known.
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Properties of reduced correlator

The OPE can be separated into parts which are protected by
supersymmetry and parts that are not

H(u, v) = Hprotected(u, v) +
∑
(∆,J)

unprotected DT & ST

λ2
∆,JG

N=4
∆,J (u, v)

Crossing:

H(u, v) = H(v, u) = u−4H(
1

u
,
v

u
)

Regge Limit: as z, z̄ → ∞ with z
z̄ = fixed, we have: H ∼ zJ∗−4

Assumption from bound of chaos: J∗ ≤ 2
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Our Question

We focus on the reduced correlator of four stress tensor.

Our goal: use bootstrap to bound the OPE coefficient of the lightest
unprotected single-trace operators in the spectrum (Konishi operator).

What is known:
▶ in weak coupling regime: perturbatively to five loops, independently

from bootstrap+localization
[Eden, Paul, Goncalves, Fleury, Pereira . . . ;Chester, Dempsey, Pufu]

▶ in strong coupling regime (dual to massive string mode): known from
bootstrapping AdS Virasoro-Shapiro amplitude (analytically)

[Alday, Hansen, Silva;2022-2023]

No results on the OPE away from the weak and strong coupling!
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Attempts to Bootstrap (Conventional Method):

Bootstrap method is a way of imposes consistency constraints such as
crossing at the level of OPE to bound spectrum and OPE coefficients
of the operators. For example s ↔ u-channel crossing gives:

H(u, v)− u−4H(
1

u
,
v

u
) = 0∑

ST and DT

λ2
∆,JF∆,J(u, v) + F protected(u, v) = 0

For

F∆,J(u, v) = GN=4
∆,J (u, v)− u−4GN=4

∆,J

(
1

u
,
v

u

)

We can then think of F⃗∆,ℓ as infinite dimensional vectors in the
infinite dimensional vector space of functions of u and v.
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Attempts to Bootstrap:
To bootstrap, we then consider a functional α such that

α[F⃗Konishi] = ±1

α[F⃗∆,ℓ] ≥ 0

Then if we have λ2
∆,J ≥ 0, by maximizing α[F protected] we have:∑

DT & ST ̸=Konishi

λ2
∆,Jα[F⃗∆,ℓ] = ∓λ2

Konishi − α[F protected] ≥ 0

Dependig on the sign of λ2
Konishi, we can get lower bounds or upper

bounds.

But this does not work: double-traces do not enter with positive
coefficient (Leading order OPE coefficient of DTs enters in the free
part!)

For DT: λ2
∆,J ≱ 0

We need to eliminate double traces to do bootstrap!

Zahra Zahraee (CERN) Bootstrapping N = 4 sYM using integrability. June 10, 2024 13 / 50



Attempts to Bootstrap:
To bootstrap, we then consider a functional α such that

α[F⃗Konishi] = ±1

α[F⃗∆,ℓ] ≥ 0

Then if we have λ2
∆,J ≥ 0, by maximizing α[F protected] we have:∑

DT & ST ̸=Konishi

λ2
∆,Jα[F⃗∆,ℓ] = ∓λ2

Konishi − α[F protected] ≥ 0

Dependig on the sign of λ2
Konishi, we can get lower bounds or upper

bounds.

But this does not work: double-traces do not enter with positive
coefficient (Leading order OPE coefficient of DTs enters in the free
part!)

For DT: λ2
∆,J ≱ 0

We need to eliminate double traces to do bootstrap!

Zahra Zahraee (CERN) Bootstrapping N = 4 sYM using integrability. June 10, 2024 13 / 50



Attempts to Bootstrap:
To bootstrap, we then consider a functional α such that

α[F⃗Konishi] = ±1

α[F⃗∆,ℓ] ≥ 0

Then if we have λ2
∆,J ≥ 0, by maximizing α[F protected] we have:∑

DT & ST ̸=Konishi

λ2
∆,Jα[F⃗∆,ℓ] = ∓λ2

Konishi − α[F protected] ≥ 0

Dependig on the sign of λ2
Konishi, we can get lower bounds or upper

bounds.

But this does not work: double-traces do not enter with positive
coefficient (Leading order OPE coefficient of DTs enters in the free
part!)

For DT: λ2
∆,J ≱ 0

We need to eliminate double traces to do bootstrap!

Zahra Zahraee (CERN) Bootstrapping N = 4 sYM using integrability. June 10, 2024 13 / 50



Method
We need to eliminate double traces to do bootstrap: can we?

Indeed, we will show we can!
Below are the summary of steps we take to set up the bootstrap problem:

Build sum rules that acts on this OPE expansion and are only
sensitive to the single-trace operators in the expansion: single trace
enter in OPE with positive coefficients and their scaling dimensions
are computable using integrability.

Get the spectrum of single-trace data from integrability.

Use these sum rules in numerical bootstrap to get bounds on OPE
coefficients.

Zahra Zahraee (CERN) Bootstrapping N = 4 sYM using integrability. June 10, 2024 14 / 50



Method
We need to eliminate double traces to do bootstrap: can we?

Indeed, we will show we can!

Below are the summary of steps we take to set up the bootstrap problem:

Build sum rules that acts on this OPE expansion and are only
sensitive to the single-trace operators in the expansion: single trace
enter in OPE with positive coefficients and their scaling dimensions
are computable using integrability.

Get the spectrum of single-trace data from integrability.

Use these sum rules in numerical bootstrap to get bounds on OPE
coefficients.

Zahra Zahraee (CERN) Bootstrapping N = 4 sYM using integrability. June 10, 2024 14 / 50



Method
We need to eliminate double traces to do bootstrap: can we?

Indeed, we will show we can!
Below are the summary of steps we take to set up the bootstrap problem:

Build sum rules that acts on this OPE expansion and are only
sensitive to the single-trace operators in the expansion: single trace
enter in OPE with positive coefficients and their scaling dimensions
are computable using integrability.

Get the spectrum of single-trace data from integrability.

Use these sum rules in numerical bootstrap to get bounds on OPE
coefficients.

Zahra Zahraee (CERN) Bootstrapping N = 4 sYM using integrability. June 10, 2024 14 / 50



Outline

1 Setup

2 Attempts to Bootstrap:

3 How to kill the double-trace: a menu of sum rules

4 Numerical Results

5 Strong Coupling & Flat Space

Zahra Zahraee (CERN) Bootstrapping N = 4 sYM using integrability. June 10, 2024 15 / 50



How to kill the double-trace: double discontinuity
We need to decouple double-traces from the OPE sum.

We can do this by defining the dDisc of the correlator (similar to
imaginary part of amplitudes).

dDiscsH(z, z̄) = H(z+, z̄−)−
1

2
H(z−, z̄−)−

1

2
H(z+, z̄+)

with z± = z ± i0
dDisc systematically kills all the double traces in the OPE sum since it
acts on the blocks as:

dDiscsG∆,J(z, z̄) = 2 sin2
(
∆− J − 2∆exteral

2
π

)
G∆,J(z, z̄)

For DT ∆− J = 2∆external +
γ∆,J

NC

For DT dDisctG∆,J(z, z̄) ∝
1

N2
c
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Dispersion Relation

However dDisc picks a channel (again similar to imaginary part of
amplitudes)! It’s not crossing symmetric.

But we can use the dDisc inside the dispersion relation to get back
the crossing symmetric correlator.

H(u, v) =

∫
du′dv′K(u, v, u′, v′)dDisc[H(u′, v′)]

OPE expanding H(u′, v′) inside the dDisc gives a new expansion
including only stress-tensor multiplet and single traces.

dDisc[H(u, v)] = dDisc[Hprotected(u, v)]+
∑
(∆,J)
Long ST

λ2
∆,J2 sin

2
(
π∆−J

2

)
GN=4

∆,J (u, v)
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We define the Polyakov-Regge blocks which are dispersive transforms
of a single blocks:

PN=4
u,v [∆, J ] ≡

∫
s
du′dv′K(u, v, u′, v′)dDiscs[G

N=4
∆,J (u′, v′)]

In addition, we have dDisc[Hprotected(u′, v′)] = dDisc[Hstrong] since
at g → ∞, all non-protected single traces become heavy and
decouple.

We can now express the correlator as:

H(u, v) = Hstrong(u, v) +
∑
(∆,J)
Long ST

λ2
∆,JPN=4

u,v [∆, J ]

This is the key formula in our analysis. We can now use this expansion of
the correlator to obtain various sum rules that are only sensitive to
single-trace data.
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Dispersive Sum Rules

The different types of sum rules we get from this expansion are
categorized as follows:

Sum rules to imposes crossing symmetry (both in position space and
Mellin space)

Sum rules to impose consistency between dispersion relations with
different kernels (both in position space and Mellin space).

sum rules to impose the integrated constraints: relate certain
integrations of the correlator to the known functions of the couplings.
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Integrated Sum Rules

Integrated sum rules relate the integrated stress-tensor correlators to
derivatives of the free energy of the mass deformed theory placed on a
sphere, ∂4

mF (m, τ, τ̄) and ∂2
m∂τ∂τ̄F (m, τ, τ̄) (here τ = θ

2π + i 4π2

g2Y M
).

The free energy can be calculated from supersymmetry localization.

In the planar limit, schematically they look:

Integrated(H(u, v)) = C(g)

C(g) is calculated from supersymmetry localization and in the planar
limit is given in the literature.

[Binder, Chester, Pufu, Wang;2019], [Chester, Pufu; 2020], [Dorigoni,Green, Wen; 2021], [Wen, Zhang; 2022]
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Rigorous Results for OPE

Doing numerical bootstrap with the discussed set of dispersive sum
rules gives us our final results for the OPE of Konishi: rigorous bound
from weak to strong coupling.
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Rigorous Results for OPE: Zoomed in

Focusing close to the breaking point to see the validity of analytic
expansions:
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The Results

The blue curve is the state of the art at small t’Hooft coupling and is
within the rigorous numerical window for g < 0.15. However, it is
fully breaking down at g ∼ 0.25.

The red curve is a strong coupling analytic result from expanding the
AdS Virasoro-Shapiro amplitude around flat space keeping the first 2
curvature corrections: the bound is inside the allowed rigorous
numerical window for g > 0.75 and although invalid but it remains
close to the correct value down to g ∼ 0.25!
[Chester, Dempsey, Pufu, Eden, Paul, Goncalves, Fleury, Pereira, Alday, Hansen, Silva, . . . ][See Tobias’s Talk]

For g = 0.1, the highest loop result is λ5−loop
Konishi = 0.30067(1), 6-loop

error is the size of our window. Predict higher loops?

Saturating Lower bounds are only possible once we give additional
data on the t’Hooft coupling to the bootstrap problem using the
integrated sum rules.
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Flat Space Limit: g ≫ 1
To go to very large coupling it is useful to think of the flat space limit
of the dual AdS amplitude. Using Mellin space variables s, t, u:

4πg =
R2

AdS

α′ → ∞, s, t, u → ∞ with
s

4πg
= fixed

Leading order OPE coefficient at g ≫ 1 comes from the flat space
Virasoro-Shapiro amplitude:

2 sin2(π∆K/2)λ2
K =

π4g2

2
λ2,free
∆K

(1 +O(1/g))

In this limit, all the sum rules can also be mapped to a flat space
dispersive sum rules up to a normalization!

[Caron-Huot,Duong,2017]

Thus at g ≫ 1 our numerical bootstrap becomes equivalent to the
flat space numerical bootstrap: well-understood and serves as a toy
model.
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Summary

We find rigorous sandwiching lower bounds and upper bounds for
OPE coefficient of the Konishi operator using numerical bootstrap,
itegrated constraints and integrability for weak and strong couplings
with error.

By comparing our numerical result with strong coupling and weak
coupling analytics, we see the exact breaking points of these
expansions.

Expanding AdS Virasoro-Shapiro amplitude around flat space
correctly predicts OPE (confirmed by rigorous numerical result) down
to g ∼ 0.75. Can this be pushed to g ∼ 0.25 by keeping more
curvature corrections?

[Alday, Hansen, Silva2022-2024: See Tobias’s Talk]

At very strong coupling our numerical bootstrap analysis becomes the
same as flat space problem.

We find bounds for the OPE coefficients of the other heavier single
trace operators.
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Next Steps:

With all the OPE data at hand, can we guess/fix AdS
Virasoro-Shapiro amplitude at finite t’Hooft coupling?

Go beyond linear optimization: Finding approximation for the
∆−dependence of dispersive sum rules is expected to improve the
numerics.

Apply these methods to mixed correlation functions with higher kk
mode?

Apply these methods to other theories, For example ABJM in the
planar limit?
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Thank you!
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Exclusion Plot
Since integrated sum rules input additional information on coupling,
we might think that inputting data for the coupling in other ways,
would still gives us a lower bound for Konishi.

Indeed, we can check this for g = 0.1, that we have perturbative data
for the OPE coefficient of other operators. See the exclusion plot for
OPE of Konishi in terms of OPE of next operator in the trajectory,
the operator with spin 2.
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Some Properties:

The bound has a dependence on the leading trajectory single-trace
data: for example if we impose positivity on the interval that includes
points close to spin 2 operator but not the exact spin 2 operator of
the theory, we can rule out the theory. See in the plot the bound only
stabilizes after we include spin 2.

4.14 4.16 4.18 4.20
0.25

0.26

0.27

0.28

0.29

0.30

0.31

This is not the case for operators on the subleading trajectories
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Xu,v:

u ↔ v crossing symmetry (symmetry between s & t-channel) is
ensured by choosing a crossing symmetric kernel:

PN=4
∆,J (u, v) = PN=4

∆,J (v, u)

However imposing crossing symmetry between s and u-channel gives
us infinitely non-trivial constraints:

0 =
∑
(∆,J)
Long ST

λ2
∆,J

(
PN=4
∆,J (u, v)− u−4PN=4

∆,J (1/u, v/u)
)︸ ︷︷ ︸

Xu,v [∆,J ]

Here, we also introduced the notation Xu,v[∆, J ] for the action of
sum rules on different conformal blocks.
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Bt & Bv Family of Sum Rules

The dispersion relation kernel is not unique

The difference between dispersion relations with different kernels gives
non-trivial sum rules, the B sum rules.

These sum rules can be written in either position space or Mellin
space and schematically, they look like:

0 = B̂protected
t +

∑
(∆,J)
Long ST

λ2B̂t[∆, J ]

This gives set of 2 continuous families of sum rules tailored for N=4
SYM.
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Projective Sum Rules

We want to define projection sum rules that solve the 1-loop problem
analytically.

At weak coupling dispersive sum rules delays the contribution of ST
operators with twists 4 + 2m+O(g) ≥ 4 for m ≥ 0 using dDisc to
two loop (order g2)

The only single trace operators that survive at one-loop are operators
with twist τ = 2 +O(g). We want to build sum rules that singles out
the contribution of a single spin at those twists. We do this by finding
the kernel to integrate B̂t against:

W [∆, J ] ≡
∫

dt

4πi
W [t]B̂t[∆, J ]
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Projective Sum Rule: Φℓ,ℓ+2 & Ψℓ

The projective sum rules that we build are:

lim
τ→2

Ψℓ[τ + J, J ] = δℓ,J(1 + (τ − 2)βℓ) +O((τ − 2)2)

lim
τ→2

Φℓ,ℓ+2[τ + J, J ] = 0 + (τ − 2)

(
δℓ,J − Φ∞

ℓ

Φ∞
ℓ+2

δℓ+2,J

)
+O((τ − 2)2)

Here β and Φ∞
ℓ is known.

Acting with Ψℓ on the correlator then relates the anomalous ope
coefficient and anomalous dimension for spin ℓ operator at one loop.

Acting with Φℓ,ℓ+2 on the correlator then relates the anomalous
dimension for spin ℓ operator to anomalous dimension of spin ℓ+ 2 at
one loop.

If we give the anomalous dimension of Konishi operator as input,
these 2 functionals together solve the one-loop problem analytically!

[Caron-Huot, Coronado, Trinh, ZZ;2022]
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Overview of the Optimization Problem

Each dispersive sum rule discussed gives and infinite dimensional
vector similar to the naive functional discussed previously.

To setup a practical bootstrap problem, we consider a finite linear
combinations of different types of sum rules:

0 =
∑
k

αk(W
protected
k +

∑
(∆,J)ST

λ2
∆,JWk[∆, J ])

Similar to the previous discussion, we separate the protected part and
the target OPE coefficient we want to bound (λ2

Konishi) and impose
that all other terms are positive:∑

k

αkWk[∆
′, J ′] ≥ 0 ∀ (∆′, J ′) in single-trace spectrum,

Side: Integrability will enter in determining the (∆′, J ′) that we need
to impose positivity on.
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Overview of the Optimization Problem

The optimal bound is then found by solving a linear optimization
problem on the αk parameters:

maximize
∑
k

αkW
protected
k

such that
∑
k

αkWk[∆Konishi, 0] = ±1 and positivity holds.

We find similar looking equation to the original bootstrap attempt we
had but now since we killed the double traces, it holds.

−
∑
k

αkW
protected
k ± λ2

Konishi ≥ 0 .
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Positivity on Single-Trace Spectrum
With data available from combination of integrability methods such
as Quantum Spectral Curve data, large spin, etc, we estimate the
leading trajectory single-trace data, large spin gap and spin 0 gap.
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Figure: spectrum at g=0.3 as a reference

We then impose positivity on the leading Regge trajectory and
everywhere above the gap. We assume the large spin gap all the way
to spin 2.
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Functionals in Mellin Space:

To introduce the rest of the functionals, we need to introduce the Mellin
representation for identical-dimension operators:

H(u, v) =

∫ ∫
dsdt

(4πi)2
u

s
2
−∆v

t
2
−∆Γ(∆− s

2
)2Γ(∆− t

2
)2Γ(∆− u

2
)2Ms,t

with s+ t+ u = 4∆ for ∆ = 4.
The poles of the Mellin amplitude, according to the s-channel OPE occur
at descendants of primaries:

M(s, t) ∼
λ2
∆,JQm

∆+4,J(t)

s− (∆ + 4− J + 2m)

Importantly Qm
∆+4,J(t) ∝ 2 sin2

(
τ−2∆

2 π
)
. The Mellin amplitude readily

has double-zero on double traces.
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Dispersion Relation for Mellin Amplitudes

Let us now move towards defining the dispersive functionals by
writing dispersion relation for M(s, t):

Using lims′→∞M(s′, t′) ∼ sJ∗−4, where J∗ < 2, we can write the
following fixed-u dispersion relations:

M(s, t) =

∮
ds′

2πi

M(s′, t′)

s− s′

M(s, t) =

∮
ds′

2πi

(s′ − s0)(t
′ − s0)

(s− s0)(t− s0)

M(s′, t′)

s− s′

More subtraction would cancel the zero in dDisc and makes us
sensitive to double traces.
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Mellin Amplitudes
Assuming the same spectrum in the s- and t- channel, we can deform the
contour to pick up the poles and write their combined contribution a:

M(s, t) = M(s, t)strong +
∑
(∆,J)
Long ST

λ2
∆,J P̂N=4

s,t [∆, J ]

with Polyakove-Regge block given as:

P̂N=4
s,t [∆, J ] =

∞∑
m=0

Qm
∆+4,J(16− s− t)

[
1

s− (τ + 2m+ 4)
+

1

t− (τ + 2m+ 4)

]

t-channel poles

16− u− τ − 4− 2m

S

s-channel poles

τ + 4 + 2m

S’

S

S’

1
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Φ0,2 Functional
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Necessary criteria for numerical bootstrap

Our functionals need to satisfy the following properties to be suitable for
numerical bootstrap:

swappability

Asymptotic positivity of finite linear combination

Completeness
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Weak Coupling (g = 0.1): Finding the Spectrum

Next we discuss a nice feature about our optimized functional for this
value of coupling:

It has double zeroes close to the single trace operator for the first few
spin! We illustrate this double zero for spin 2:
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Weak Coupling: Finding the Spectrum

This means that if we look at our upper bound as a function of ∆2we
see a kink as a function of upper end or lower end of the window. If
we vary the lower end:

4.14 4.16 4.18 4.20
0.25

0.26

0.27

0.28

0.29

0.30

0.31

Zahra Zahraee (CERN) Bootstrapping N = 4 sYM using integrability. June 10, 2024 48 / 50



if we vary the upper end:
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Some Comments:

High Spin and high twist data must be used to stabilize the bounds.
High spin extrapolation is necessary for our analysis

The funtional is quite stable against adding X(u,v) but it is not stable
against adding B functionals: Bs are more sensitive to high twist data.

Asymptotically in spin for low twist we see that our optimized
functional is as power low.
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