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simple parametrization in terms of Higgs mechanism


“by hand:” 


? minimum away from origin


? 246 GeV scale


? stable against radiative corrections




Simple parametrization in terms of Higgs mechanism
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? stable against radiative corrections


 


   eg (weakly coupled): supersymmetric extensions of SM


         stop mass + top Yukawa —> minimum away from origin   


    origin of scale: new dynamics: dynamical supersymmetry breaking  




2012


  h

1890s     


      beta decay


EFT  footprints of W

1982
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?  
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EFTs (bottom-up constructions)

SM fields:  most general  

consistent with symmetries (global, gauge)

ℒ

ℒ = ∑
i

ci𝒪i(ϕ1, …, ϕn)
1,p1

2,p2

 n, pn

∝ ci
1-1 correspondence

on-shell bootstrap: SM particles: most general  

consistent with symmetries (global, gauge)

𝒜
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to interpret these: SM + ? BSM


- precision  (“known unknowns”)


- parametrize possible BSM effects  (“unknown unknowns”)    EFFECTIVE THEORIES

LHC: wealth of new measurements—never done before!            physics heaven



many EFT operators/amplitudes; many measurements

ℒ = ∑
i

ci𝒪i(ϕ1, …, ϕn)
1,p1

2,p2

 n, pn ∝ ci
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amplitudes: direct mapping

SMEFT: 



d = 6 :∼ 103 (102 for Ng = 1)

d = 8 :∼ 104 (103 for Ng = 1)



most general EFT amplitude

• model independent

• no issues of field redefinitions,

    basis dependence, coupling redefinition


• natural approach as we try to 

       go beyond SM

• directly in terms of physical quantities

   —>   construct sensitive observables

—>      𝒜SM + 𝒜EFT

rediscover SM


(more generally: elements of QFT)
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bootstrapping amplitudes:

Eg:  De Angelis Accettulli-Huber ’21

comprehensive analysis



—>      𝒜SM + 𝒜EFT

rediscover SM


(more generally: elements of QFT)
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bootstrapping amplitudes:

standard QFT textbook example (Schwartz):    spin-1 interactions —> Lie groups

Benincasa Cachazo   ’08



1, a

2, b

 3, c

completely antisymmetric 

Durieux Kitahara YS Weiss ’19

Liu Yin ‘22

Cabc (⟨12⟩[23]⟨31⟩ + [12]⟨23⟩[31] + perm)

Cabc—>              completely antisymmetric 

structure constants! 


( factorization of 4-pt: Jacobi id )
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massive version



1, a

2, b

 3, c

completely antisymmetric 

Durieux Kitahara YS Weiss ’19

Liu Yin ‘22

Cabc (⟨12⟩[23]⟨31⟩ + [12]⟨23⟩[31] + perm)

Cabc—>              completely antisymmetric 

structure constants! 


( factorization of 4-pt: Jacobi id )
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massive version

power of Lorentz  



—>      𝒜SM + 𝒜EFT

rediscover SM


(more generally: elements of QFT)
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bootstrapping amplitudes:

standard QFT textbook example (Schwartz):    spin-1 interactions —> Lie group


 Higgs mechanism Arkani-Hamed Huang Huang  ’17
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Plan:


anatomy of the Higgs mechanism at the amplitude level


application: on-shell derivation of SMEFT, HEFT amplitudes at low-energy




On-shell Higgsing 
Balkin Durieux Kitahara YS Weiss ‘21
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main focus: contact-term part + Bachu ’23

IR unification of UV amplitudes


N=4 Coulomb branch amplitudes

Arkani-Hamed Huang Huang ‘17

Craig Elvang Kiermaier Slatyer ‘11

(rediscovering SM/QFT 1)



anatomy of on-shell Higgsing   
Balkin Durieux Kitahara YS Weiss ‘21
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massless amplitudes of unbroken theory —>  “Higgs” to get low-energy massive amplitudes   

extra Higgs legs non-dynamical: soft:   


                                                                                                                          


 matching at high energy:


 

H(qi) qi → 0

Mn(1,…, n) = An(1,…, n) + v lim
q∼v→0

An+1(1,…, n; H(q)) + ⋯

·
.

probe field space 

E ≫ q ∼ m ( ∼ VEV v)

+ Cheung Helset Parra-Martinez’23



anatomy of on-shell Higgsing 
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massless spinor structures get bolded: 
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(a) Origin of the di�erent components of a massive structure associated with an external fermion.
The |÷] factor is associated with the n-point blob.
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(b) Origin of the di�erent components of a massive structure associated with an external vector
(transverse helicity category). The |÷] |÷] factor is associated with the n-point blob.
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(c) Origin of the di�erent components of a massive structure associated with an external vector
(longitudinal helicity category). The |÷] |÷Í factor is associated with the n-point blob.

Figure 2: High-energy origins of the leading and subleading, helicity-flipped, spinor com-
ponents of massive fermions, transverse and longitudinal vectors. The ellipsis stands for
amplitudes with additional Higgs legs.

leg, and q is the momentum of the extra Higgs leg, which is frozen such that (k +q)2 = m2

f
.

In the small (k + q)2 = m2

f
mass limit,

v An+1(kh=≠1/2, 2, . . . , n; H(q)) = v y Èk÷Í
1

(k + q)2
cn[÷ · · · )

= ≠y v cn

Èk(k + q) · · · )
ÈkqÍ[qk] = ≠y v cn

[q · · · )
[qk] , (2.10)

where ÷ = ≠(k + q). Here we used the fact that v isolates the pole piece in An+1, and the
residue is given by the product of the fermion-fermion-Higgs amplitude and the n-point
contact An = cn[÷ · · · ). Using yv = mf = ÈkqÍ = ≠[kq], this simply becomes

v An+1(kh=≠1/2, 2, . . . , n; H(q)) = ≠cn [q · · · ) = cn[pI=2
· · · ) . (2.11)

Together with the leading order term cn[k · · · ) = cn[pI=1
· · · ), we get the full LE structure

with a massive fermion cn[p · · · ), and identify its Wilson coe�cient as Cn = cn + O(m).
One can also easily check that cnÈpI=1

· · · ) is obtained as a subleading component of the
LE amplitude from An(kh=≠1/2, 2, . . . , n) = cnÈk · · · ) with an extra Higgs leg.

– 9 –

∝ ( 1
(k + q)2

=
1

m2 ) × (A3 ∝ g)

→ 0
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with external 


massive vector n


soft Higgs leg supplies

second lightlike 


momentum to form 

massive momentum


p = k + q
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second lightlike 


momentum to form 

massive momentum


p = k + q
symmetrization over LG indices: exchanging k, q in Higgs legs
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massless spinor structure gets bolded      k]k] → p]p]
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just as for gauge symmetry: 


Higgs mechanism <—> Lorentz symmetry


from Lorentz symmetry pov:  


bolding the massless spinor structure = covariantizing wrt full massive LG   

anatomy of on-shell Higgsing 

power of Lorentz  



massless fermion:   


massless vector     


massless scalar with momentum insertion    


—> 1. massive scalar CT with momentum insertion   


—> 2. massive vector CT        

                                                                            ( longitudinal vector from Goldstone boson )

                                                     

i] → i]

i]i] → i]i]

pi = i]⟨i

pi

pi = i]⟨i → i]⟨i
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anatomy of on-shell Higgsing 

contact terms:



anatomy of on-shell Higgsing 

n ≠ 1

.

.

.

2

1

n

cn

+

n ≠ 1

.

.

.

2

1

n

cn+1

+

n ≠ 1

.

.

.

2

1

n

cn+2

+ · · · ≠≠≠æ

n ≠ 1

.

.

.

2

1

n

Cn

n ≠ 1

.

.

.

2

1

n

Cn

Figure 1: The di�erent terms in the v/� expansion of the LE contact-term coe�cient Cn

are generated by HE contact terms with additional soft Higgs legs (some cn’s may vanish
because of gauge invariance).

product, e.g., Èjik]. These HE structures are then bolded as,

sij æ Èiji], Èjik] æ ÈjiÍ[ik] . (2.5)

No prior knowledge is required about whether the scalar leg is a Goldstone mode. This
information is encoded in the amplitude: only scalar amplitudes with a momentum in-
sertion can be bolded into longitudinal vectors. This is consistent with Goldstones being
derivatively coupled in the Lagrangian picture. A HE contact term of this type gives rise
to two di�erent LE contact terms with equal Wilson coe�cients: one corresponding to a
longitudinal vector, and the second corresponding to a physical Higgs. The latter includes
a momentum insertion.

So far, we discussed the contributions of K{h}

n+nH
for nH = 0. These generate the full

set of LE contact terms in M
ct
n that are allowed by gauge invariance in the HE theory,

and give their Wilson coe�cients to leading order in the v/� expansion. Generically, M
ct
n

contains additional terms, suppressed by powers of v. As illustrated in fig. 1, these are
generated from K{h}

n+nH
in the limit that the nH additional Higgs momenta are soft,

vnH cn+nH
K{h}

n+nH
(1, 2, .., n; 0, .., 0) æ vnH cn+nH

K{I}

n (1, 2, .., n) . (2.6)

Here, the zeros on the left-hand-side stand for the nH Higgs momenta. After setting
these momenta to zero, the massless structure is bolded, just as described above for nH =
0. Only contact terms with no insertion of extra Higgs momenta survive this soft limit.
The factor of vnH is required on dimensional grounds, to compensate for the dimension
of the (n + nH)-point amplitude. As in the Lagrangian picture, the EFT expansion of
the amplitude depends on the combination v + h: each contact term featuring h and no
associated momentum insertion is accompanied by v times the same contact term with h

removed.
Several comments are now in order. First, a massless spinor structure can usually be

bolded in several di�erent ways. These are equivalent however, since two massive structures
that yield the same massless structure in the HE limit are equal up to subleading mass-
suppressed terms [30]. These di�erent choices merely correspond to di�erent LE amplitude
bases. Second, to determine the LE contact terms, we rely on matching them to the HE
contact terms. The physical quantities are however the full amplitudes, which are the
sum of the factorizable and contact-term pieces. Thus, one could worry that the matching
of contact terms is a�ected by factorizable pieces. We show that this is not the case
in appendix A.

– 6 –

couplings get  corrections:𝒪(v)

Cn = cn + # vcn+1 + # v2cn+2 + …
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gauge invariance <—> perturbative unitarity     


 low-E SM + perturbative unitarity —> SU(3)xSU(2)xU(1) SM 


 relation between gauge symmetry invariance & perturbative unitarity completely transparent


 with amplitudes written with LG covariant spinors

(rediscovering SM/QFT 2)
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Liu Ma YS Waterbury ’23



(I, J) = (1,1) ∝
p1⟩
M

= finite : spurious spinor

W p]p], p⟩p⟩, p]p⟩/M

(I, J) = (1,2) ∼
E2

M2

low-E amplitude featuring massive vector:  

  <— Lorentz  

p]p⟩
M

≡
p]{I p⟩J}

M
problematic terms feature   
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(HE : p]1 ∼ E p⟩1 ∼ M/ E)

Liu Ma YS Waterbury ’23



(I, J) = (1,1) ∝
p1⟩
M

= finite : spurious spinor

W p]p], p⟩p⟩, p]p⟩/M

(I, J) = (1,2) ∼
E2

M2

low-E amplitude featuring massive vector:  

  <— Lorentz  

p]p⟩
M

≡
p]{I p⟩J}

M
problematic terms feature   

(HE : p]1 ∼ E p⟩1 ∼ M/ E)

Liu Ma YS Waterbury ’23

reference spinor of massless gauge boson polarization

  cancellation of bad energy growth   <—>   cancellation of spurious spinor dependence  



(I, J) = (1,1) ∝
p1⟩
M

= finite : spurious spinor

W p]p], p⟩p⟩, p]p⟩/M

(I, J) = (1,2) ∼
E2

M2

low-E amplitude featuring massive vector:  

  <— Lorentz  

p]p⟩
M

≡
p]{I p⟩J}

M
problematic terms feature   

(HE : p]1 ∼ E p⟩1 ∼ M/ E)

Liu Ma YS Waterbury ’23

reference spinor of massless gauge boson polarization

  cancellation of bad energy growth   <—>   cancellation of spurious spinor dependence  

power of Lorentz  



EFT applications



On-shell applications to EFTs (massless)

selection rules: explain zeros in 


• matrix of anomalous dimensions of EFT operators (loop cuts & generalized cuts)


• interference of SM x EFT amplitudes (tree)


derive anomalous dimensions of EFT operators (loop cuts & generalized cuts)


Barratella Fernandez von Harling Pomarol ’20

Bern Parra-Martinez Sawyer ’20


Jiang Ma Shu ’20

De Angelis Accettulli-Huber ’21


Barratella  ’22

…

Azatov Contino Machado Riva ‘16

Cheung Shen ’15

Bern Parra-Martinez Sawyer ’20 
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count (& construct ) bases of EFT operators: 


  

    


UV matching   

                …

YS Weiss ’18

Ma Shu Xiao ’19


Remmen Rodd ’19

Li Ren Shu Xiao Yu Zheng ’20


Durieux Machado ’20

…


also used in Henning Melia Murayama ‘15
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On-shell applications to EFTs (massless + massive)

De Angelis Durieux ‘23



amplitude

ℒ
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in many of these:



amplitude

ℒ

amplitude LHC
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different EFTs:

low-E: SM particles only      /   SM + new light particle(s)


- SMEFT:   SU(3)xSU(2)xU(1)  at       


                           massless SM fields,  h in Higgs doublet    large scale separation possible:  


- otherwise:  only SU(3)xU(1)EM  at  ;    massive W, Z, h   “HEFT” 


                                           full symmetry realized non-linearly;      no scale separation:  

Λ

Λ ≫ v

Λ

Λ ∼ v
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recent: Cohen Craig Lu Sutherland ’20

…
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SMEFT: to derive predictions:


• basis of operators in unbroken theory


• turn on Higgs VEV  —>  Lagrangian in broken theory:  SM fields, couplings shift


• derive Feynman rules of broken theory in some gauge 


• redefine parameters from “input” physical masses, couplings


amplitudes: working with physical dof’s, couplings only
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HEFT: 

“sick” EFT : eg, integrated out fields with masses from EWSB


<—> no scale separation 


UV matching ambiguous 


amplitudes: make concrete

Dawson Fontes Quezada-Calonge Sanz-Cillero ‘23



amplitude construction: bottom-up:

• 3-points (renormalizable + higher-dim): dictated by little group, symmetries


• factorizable parts of higher-point amplitudes (determined by 3-pts..)


• higher-point contact terms: dictated by little group, symmetries  

—>  starting with the massive (and massless) particles we know: 

construct most general amplitudes
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YS Weiss ‘18

Durieux Kitahara YS Weiss ’19


Durieux Kitahara Machado YS Weiss ’20

…

𝒜 =
[ ⋅ ⋅ ] ⋅ ⋅ ⟨ ⋅ ⋅ ⟩

Λ#
P ( sij

Λ2 )
local: no poles

contact-term part of amplitude:
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𝒜 =
[ ⋅ ⋅ ] ⋅ ⋅ ⟨ ⋅ ⋅ ⟩

Λ#
P ( sij

Λ2 )
carries LG weight; “stripped” off 


all Lorentz invariants 

“stripped contact term”   SCT

sij
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different SCTs can come from integrating out

 different UV fields — different suppressions

Chang Chen Liu Luty ’22 



𝒜 =
[ ⋅ ⋅ ] ⋅ ⋅ ⟨ ⋅ ⋅ ⟩

Λ#
P ( sij

Λ2 )
carries LG weight; “stripped” of 


all Lorentz invariants 

“stripped contact term”   SCT

sij

polynomial in Lorentz

invariants  


subject to kinematical constraints,

eg, 

sij

s12 + s13 + s23 = ∑ m2

derivative expansion
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𝒜 =
[ ⋅ ⋅ ] ⋅ ⋅ ⟨ ⋅ ⋅ ⟩

Λ#
P ( sij

Λ2 )
carries LG weight; “stripped” of 


all Lorentz invariants 

“stripped contact term”   SCT

sij

polynomial in Lorentz

invariants  


subject to kinematical constraints,

eg, 

sij

s12 + s13 + s23 = ∑ m2

derivative expansion
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  bottom up construction; input: physical particles  

SU(3)xU(1) 


higgs = gauge singlet


gives  HEFT amplitudes




What about (low-energy) SMEFT amplitudes?


use on-shell Higgsing
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EWSB m ∼ v

EFT: new fields  Λ massless      impose full  SU(3)xSU(2)xU(1)  𝒜

derive massive 


(contact term part only) 

ℳ
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results:   HEFT,   SMEFT



• all HEFT 3-points  (+matching to SMEFT)                                                Durieux Kitahara YS Weiss ‘19 

• [all generic 3-points for spins up to 3                      

• all generic 4-pt SCTs for spins 0, 1/2, 1  ]                                Durieux Kitahara Machado YS Weiss’20 

• HEFT 4-points: hggg, Zggg,  ffVh, WWhh                  Shadmi et al ’18, Durieux  et al ’19, Balkin et al ’21 

  + some full amplitudes (factorizable + contact terms): ffWh, ffZh, WWhh 

•  5V (4W+Z etc)                                                                                                      De Angelis  ‘21 

• Higgs, top 4pts in terms of momenta+polarizations                                   Chang et al ’22, ‘23    

• all HEFT 4pts up to d=8                                                                         Liu Ma YS Waterbury ’23

HEFT inventory       (observables; many more results on operators, anomalous dim’s via on-shell)
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• dimension counting: classify contact terms by energy growth
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all HEFT 4-pts up to d=8

• most relevant for collider studies: 2 to 2

Liu Ma YS Waterbury ’23

[Dong Ma Shu Zhou ’22   HEFT operators]



can be viewed as dimension-six, since it generates E
2 terms. Alternatively, it can be

viewed as dimension-four, since it corresponds to the operator V
2
h
2. In any case, the

physical quantity is the numerical coefficient of each kinematic structure, and these
differences are just a matter of theory interpretation. Moreover, there is no sharp
distinction in the HEFT between the cutoff ⇤̄ and the electroweak mass scale v, with
⇤̄ ⇠ v. In the following, when we refer to HEFT dimensions, we will refer to the
dimension of the corresponding operator. The contact terms h12i[12] and h13i[23]

are then dimension-4 and 5 respectively. Furthermore, it is easy to read off the minimal
dimensions of these operators in the SMEFT. To leading order in the v expansion,
⇤̄�2 = ⇤�2, and ⇤̄�1 = v⇤�2. Therefore, both of these contact terms can be first
generated at dimension-six in the SMEFT. This is consistent with the fact that the
factorizable fermion-fermion-vector-higgs amplitudes only feature E/M growth (see
Table 4), so C

±⌥0,fac
ffV h

= 0. Indeed, as was shown in [33], perturbative unitarity of
this amplitude only implies relations between SM couplings, specifically, the relation
between the fermion mass, the Yukawa coupling, and the Higgs VEV.

Massive amplitudes E
2 contact terms

M(WWhh) C
00
WWhh

h12i[12], C±±
WWhh

(12)2

M(ZZhh) C
00
ZZhh

h12i[12], C±±
ZZhh

(12)2

M(gghh) C
±±
gghh

(12)2

M(��hh) C
±±
��hh

(12)2

M(�Zhh) C
±
�Zhh

(12)2

M(hhhh) Chhhh

M(f c
fhh) C

±±
ffhh

(12)

M(f c
fWh) C

+�0
ffWh

[13]h23i , C�+0
ffWh

h13i[23] , C±±±
ffWh

(13)(23)

M(f c
fZh) C

+�0
ffZh

[13]h23i , C�+0
ffZh

h13i[23] , C±±±
ffZh

(13)(23)

M(f c
f�h) C

±±±
ff�h

(13)(23)

M(qcqgh) C
±±±
qqgh

(13)(23)

M(f c
ff

c
f)

C
±±±±,1
ffff

(12)(34), C��++
ffff

h12i[34], C�+�+
ffff

h13i[24], C�++�
ffff

h14i[23]

C
±±±±,2
ffff

(13)(24), C++��
ffff

[12]h34i, C+�+�
ffff

[13]h24i, C+��+
ffff

[14]h23i

Table 1: Contact terms with E
2 growth. The C’s stand for independent HEFT coefficients,

and are mostly generated at ⇤̄�2, corresponding to d = 6 operators. The only exceptions
are C

00
WWhh

and C
±⌥0
ffV h

which appear with M
�2
V

and (MV ⇤̄)�1 respectively, corresponding
to d = 4 and d = 5 operators (for details see text). Color structures and indices are not
shown but can be added unambiguously. For identical Majorana neutrinos, the structures
C

±±±
ffZh

(13)(23) and C
±±±
ff�h

(13)(23) do not appear.

10

full set of EFT contact terms with  growth:  (mostly dim-6 operators)E2

(12) = [12] or ⟨12⟩

most suppressed by 

(amplitude dim-less)

Λ̄2

’s: Wilson coefficientsC

Shadmi                                                  Amplitudes 24                                                     June 24

Ma Liu YS Waterbury 2301.11349

LOW ENERGY 

AMPLITUDES
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• similarly: derived full set of  CTs with  growth


• corresponding to  HEFT operators


• clear identification of operator dimension from dim-analysis:


                   factors of     (external massive vector)     


                  any extra powers  of   compensated by powers of    

 

                    —>  read off dimension  of operator      

E3, E4

d ≤ 8

p]p⟩ → p]p⟩/M

E Λ

but recall  ;       terms in amplitudes reflect non-locality of HEFT 


(cancel in SMEFT amplitudes: gauge invariance <—> perturbative unitarity)

Λ ∼ v E/v



Massive d = 6 amplitudes SMEFT Wilson coefficients
M(W+

L
W

�
L
hh) = C

00
WWhh

h12i[12] C
00
WWhh

= (c(+)
(H†H)2 � 3c(�)

(H†H)2)/2

M(W+
±W

�
± hh) = C

±±
WWhh

(12)2 C
±±
WWhh

= 2c±±
WWHH

M(ZLZLhh) = C
00
ZZhh

h12i[12] C
00
ZZhh

= �2c(+)
(H†H)2

M(Z±Z±hh) = C
±±
ZZhh

(12)2 C
±±
ZZhh

= c
2
W
c
±±
WWHH

+ s
2
W
c
±±
BBHH

+ cW sW c
±±
BWHH

M(g±g±hh) = C
±±
gghh

(12)2 C
±±
gghh

= c
±±
GGHH

M(�±�±hh) = C
±±
��hh

(12)2 C
±±
��hh

= s
2
W
c
±±
WWHH

+ c
2
W
c
±±
BBHH

� cW sW c
±±
BWHH

M(�±Zhh) = C
±
�Zhh

(12)2 C
±
�Zhh

= sW cW c
±±
WWHH

� sW cW c
±±
BBHH

+ 1
2(s

2
W

� c
2
W
)c±±

BWHH

M(hhhh) = Chhhh Chhhh = �3c(H†H)2 + 45 v
2
c(H†H)3

M(f c

±f±hh) = C
±±
ffhh

(12) C
±±
ffhh

= 3c±±
  HHH

v/(2
p
2)

M(f c

+f
0
�WLh) = C

+�0
ffWh

[13]h23i C
+�0
ffWh

= (c+�,(+)
  HH

� c
+�,(�)
  HH

)/2

M(f c

�f
0
+WLh) = C

�+0
ffWh

h13i[23] C
�+0
ffWh

= c
�+
 R 

0
RHH

M(f c

±f
0
±W±h) = C

±±±
ffWh

(13)(23) C
±±±
ffWh

= c
±±±
  WH

/2

M(f c

+f�ZLh) = C
+�0
ffZh

[13]h23i C
+�0
eLeLZh

= �i
p
2c+�,(+)
  HH

, C+�0
⌫L⌫LZh

= �i(c+�,(+)
  HH

+ c
+�,(�)
  HH

)/
p
2

M(f c

�f+ZLh) = C
�+0
ffZh

h13i[23] C
�+0,CT
ffZh

= �i
p
2c�+
  HH

M(f c

±f±Z±h) = C
±±±
ffZh

(13)(23) C
±±±
ffZh

= �(sW c
±±±
  BH

+ cW c
±±±
  WH

)/
p
2

M(f c

±f±�±h) = C
±±±
ff�h

(13)(23) C
±±±
ff�h

= (�sW c
±±±
  WH

+ cW c
±±±
  BH

)/
p
2

M(qc±q±g
A

±h) = C
±±±
qqgh

�
A(13)(23) C

±±±
qqgh

= c
±±±
  GH

/
p
2

Table 3: The low-energy E
2 contact terms (left column) and their d = 6 coefficients in

the SMEFT (right column). c(H†H)2 without a superscript is the renormalizable four-Higgs
coupling. The mapping for four fermion contact terms is trivial, so we do not include them
here.

Four-fermion contact terms are not shown here because their matching to the high-
energy amplitudes is straightforward. Each of the Wilson coefficients C in Table 3 is d =

6, and is suppressed by ⇤2. As explained in Section 3.1, the low-energy amplitudes may
also contain mass-suppressed contact terms in longitudinal vector helicity categories,
which are associated with the factorizable part of the amplitude. Thus for example,
the structure h12i[12] in the WWhh amplitude has two pieces: one comes with a
coefficient C

00,fac
WWhh

, which is determined by three-point couplings, and one which is an
independent SMEFT d = 6 four-point coupling, C00,CT

WWhh
. Only the latter is given in

Table 3, but we omit the superscript CT for simplicity.
Note furthermore that high-energy four-point contact terms with Higgs legs may

also correct the three-point couplings. The d = 6 SMEFT corrections to the three-
points were derived in Ref. [33] by matching to the Feynman diagram result obtained
using Ref. [65]. These corrections can also be obtained by on-shell Higgsing. For an

14

SMEFT 4-pts 

full list of CTs from  SMEFT d ≤ 6

Ma Liu YS Waterbury 2301.11349
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to get these:


start with massless dim-6 SMEFT amplitudes


and Higgs these to get massive amplitudes


Ma Shu Xiao ‘19

Amplitude Contact term Warsaw basis operator Coefficient
A(Hc

i
H

c

j
H

c

k
H

l
H

m
H

n) T
+ lmn

ijk
OH/6 c(H†H)3

A(Hc

i
H

c

j
H

k
H

l) s12T
+ kl

ij
OHD/2 +OH ⇤/4 c

(+)
(H†H)2

A(Hc

i
H

c

j
H

k
H

l) (s13 � s23)T
� kl

ij
OHD/2�OH ⇤/4 c

(�)
(H†H)2

A(B±
B

±
H

c

i
H

j) (12)2�j
i

(OHB ± iO
HB̃

)/2 c
±±
BBHH

A(B±
W

I±
H

c

i
H

j) (12)2(�I)j
i

OHWB ± iO
HW̃B

c
±±
BWHH

A(W I+
W

J+
H

c

i
H

j) (12)2�IJ�j
i

(OHW ± iO
HW̃

)/2 c
±±
WWHH

A(gA±
g
B±

H
c

i
H

j) (12)2�AB
�
j

i
(OHG ± iO

HG̃
)/2 c

±±
GGHH

A(Lc

i
eH

c

j
H

k
H

l) [12]T+ kl

ij
OeH/2 c

++
LeHHH

A(Qc

a,i
d
b
H

c

j
H

k
H

l) [12]T+ kl

ij
�
b

a
OdH/2 c

++
QdHHH

A(Qc

a,i
u
b
H

c

j
H

c

k
H

l) [12]"imT
+ml

jk
�
b

a
OuH/2 c

++
QuHHH

A(eceHc

i
H

j) h142]�j
i

OHe/2 c
�+
eeHH

A(uc

a
u
b
H

c

i
H

j) h142]�j
i
�
b

a
OHu/2 c

�+
uuHH

A(dc
a
d
b
H

c

i
H

j) h142]�j
i
�
b

a
OHd/2 c

�+
ddHH

A(uc

a
d
b
H

i
H

j) h142]✏ij�b
a

OHud/2 c
�+
udHH

A(Lc

i
L
j
H

c

k
H

l) [142iT+ jl

ik

⇣
O

(1)
HL

+O
(3)
HL

⌘
/8 c

+�,(+)
LLHH

A(Lc

i
L
j
H

c

k
H

l) [142iT� jl

ik

⇣
O

(1)
HL

�O
(3)
HL

⌘
/8 c

+�,(�)
LLHH

A(Qc

a,i
Q

b,j
H

c

k
H

l) [142iT+ jl

ik
�
b

a

⇣
3O(1)

HQ
+O

(3)
HQ

⌘
/8 c

+�,(+)
QQHH

A(Qc

a,i
Q

b,j
H

c

k
H

l) [142iT� jl

ik
�
b

a
(O(1)

HQ
�O

(3)
HQ

)/8 c
+�,(�)
QQHH

A(Lc

i
eB

+
H

j) [13][23]�j
i

�iOeB/(2
p
2) c

+++
LeBH

A(Qc

a,i
d
b
B

+
H

j) [13][23]�j
i
�
b

a
�iOdB/(2

p
2) c

+++
QdBH

A(Qc

a,i
u
b
B

+
H

c

j
) [13][23]✏ij�ba �iOuB/(2

p
2) c

+++
QuBH

A(Lc

i
eW

I+
H

j) [13][23](�I)j
i

�iOeW/(2
p
2) c

+++
LeWH

A(Qc

a,i
d
b
W

I+
H

j) [13][23](�I)j
i
�
b

a
�iOdW/(2

p
2) c

+++
QdWH

A(Qc

a,i
u
b
W

I+
H

c

j
) [13][23](�I)ik✏kj �

b

a
�iOuW/(2

p
2) c

+++
QuWH

A(Qc

a,i
d
b
g
A+

H
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Table 2: Massless d = 6 SMEFT contact terms [34] and their relations to Warsaw basis
operators [3]. For each operator (or operator combination) O in the third column, cO gen-
erates the structure in the second column with the coefficient c given in the fourth column.
c-superscripts denote charge conjugation.

For each amplitude in Table 2, we show the kinematic and group theory structure.
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Ma Liu YS Waterbury 2301.11349

for completeness provide full mapping 

of 4-pt  EFT amplitudes

to Warsaw basis 


d ≤ 6



on to dim-8 SMEFT    

can have interesting effects (eg example here) 

~ 1000 operators;  with amplitudes, easy to concentrate on the relevant ones for a given observable 


example: WW, ZZ .. production  (sensitive probe of EWSB)        


all relevant 4-pt CTs first generated at dim-8            (dim-6 SMEFT merely corrects SM-3pts)


  from VVVV, VVHH etc:  easy to see at amplitude level:   8 powers of     —>  


                                                                                      or  6 powers in ffVV —>  SMEFT:  


p] ( or p⟩ ) Λ4

Λ4
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Goldberg Liu YS 2406…



derived all low-energy 4-pt CTs generated by dim-8 SMEFT 


               ..     (massless fermions)


• nonzero mass “resurrect” vanishing SM-SMEFT interference 


• good at           (not just high-E where EFT not reliable)


• sensitivity to anomalous Higgs self couplings 


• up/down quark SU(2) relations broken (first happens at dim-8)

VV → VV f̄f → VV

∝ MW , MZ

MV ∼ E ≪ Λ
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Goldberg Liu YS 2406…

VV pair production from dim=8 SMEFT:               V = W, Z, γ, g



 +  distinguish HEFT vs SMEFT:


• various coupling relations in SMEFT


• some SMEFT zeros  (due to hypercharge or accidental)

VV pair production from dim=8 SMEFT:               V = W, Z, γ, g

Goldberg Liu YS 2406…



? construct observables to isolate novel SCTs not appearing in SM


? systematize directly in terms of SCT bases
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𝒜 =
[ ⋅ ⋅ ] ⋅ ⋅ ⟨ ⋅ ⋅ ⟩

Λ#
P ( s

Λ2
,

t
Λ2 )

SCT


scattering 
angle 

and 


decay angles

scattering 
angle

2 to 2 amplitudes:

in progress: De Angelis Durieux Grojean YS



EFT of electroweak precision measurements & spurion analysis 

Z- and W-pole measurements: 3-points — simple & “exact” (no kinematic expansion)
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M(Q̄i Qj V) = Ci
j

[13]⟨23⟩
MV

Julian Northey, YS, Yotam Soreq, in progress



EFT of electroweak precision measurements & spurion analysis 
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Note that both Eq. (51) and Eq. (52) are triplets of SU(2)W , while Eq. (52) also carries a
hypercharge Y = +1. Eq. (51) breaks SU(2)W in one direction, and Eq. (52) breaks both
SU(2)W and U(1)Y in another. Considering the charge conjugate of Eq. (67), we can also write
a third direction with: H†

⌧
aH̃ ! 1/2

�
�
a1 + i�

a2
�
, a SU(2)W triplet with Y = �1. Together

these correspond to the three broken generators of SU(2)W ⇥ U(1)Y , and there are no more
independent Higgs-spurion combinations we can write without breaking U(1)EM. We do not
consider a single power H, since we are in the limit of massless fermions, and the Yukawa cou-
plings are taken to vanish.

Let us now apply the Higgs-spurion combinations to the EW 3-point amplitudes. The unbroken
amplitudes of the SM respect the global part of the SU(2)W ⇥U(1)Y symmetry. Specifically in
the case of LH-quarks; M

�
Q

i
, Qj , B

�
transforms as a singlet combination of a doublet and anti-

doublet, while M
�
Q

i
, Qj ,W

a
�

transforms as triplet combination of a doublet and anti-doublet.
Therefore the SMEFT, which also respects this symmetry, can only deform the amplitudes via
combinations of H which preserve these transformation properties. Thus, our Higgs-spurion

combinations can appear in the 3-point amplitude involving LH quark doublets Qj =

✓
UL

DL

◆

as follows,

M
�
Q

i
, Qj , B

�
⇠ cQ1�

i

j + cQ2(⌧
a) i

j

�
H†

⌧
aH

�
, (53)

M
�
Q

i
, Qj ,W

a
�
⇠ cQ3(⌧

a) i

j + cQ4�
i

j

�
H†

⌧
aH

�
+ cQ5i"

abc(⌧ b) i

j

�
H†

⌧
cH

�
, (54)

and for RH quark singlets UR and DR,

M
�
UR, UR, B

�
⇠ cU1 , (55)

M
�
UR, UR,W

a
�
⇠ cU2

�
H†

⌧
aH

�
, (56)

M
�
DR, DR, B

�
⇠ cD1 , (57)

M
�
DR, DR,W

a
�
⇠ cD2

�
H†

⌧
aH

�
(58)

M
�
UR, DR,W

a
�
⇠ cUD

�
H̃†

⌧
aH

�
. (59)

Note that the structure of lepton-doublet amplitudes is identical to Eq. (53) and Eq. (54)
(replacing the subscripts Q ! L). For the RH lepton singlet ER, the amplitude is of the same
structure as Eq. (55) or Eq. (57) and Eq. (56) or Eq. (58) (replacing the subscripts U orD ! E).
There is no leptonic version of Eq. (59), because there are no RH neutrinos in the SMEFT.

It is important to notice that we did not include H†H or other singlet combinations with
H, since these are trivial deformations, modifying coefficients that we already have, specifically
those which span the EWSB pattern of the SM. Indeed, we can regard these singlet terms
with no hypercharge, such as H†H, Higgs-spurion combinations in the "0-direction" of EWSB.
Considering the "spurion coefficients" of Eqs. (53)-(59), we count 10 parameters which must be
determined. This is one parameter more than the couplings (observables) of Sec. 3.2, since in
Sec. 3.1 we chose to neglect Eq. (19), corresponding to Eq. (59).

To obtain the broken phase amplitudes we rotate to the mass basis,

Z = �sWB + cWW
3
, (60)

W
+ =

1p
2

�
W

1 � iW
2
�
, (61)
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5 structures


C’s functions of H†H

SU(2) structure to all orders via “spurion” analysis        spurion = normalized Higgs VEV
Julian Northey, YS, Yotam Soreq, in progress

simple-minded (amplitude!) version of GeoSMEFT Helset Martin Trott ‘20
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Note that both Eq. (51) and Eq. (52) are triplets of SU(2)W , while Eq. (52) also carries a
hypercharge Y = +1. Eq. (51) breaks SU(2)W in one direction, and Eq. (52) breaks both
SU(2)W and U(1)Y in another. Considering the charge conjugate of Eq. (67), we can also write
a third direction with: H†

⌧
aH̃ ! 1/2

�
�
a1 + i�

a2
�
, a SU(2)W triplet with Y = �1. Together

these correspond to the three broken generators of SU(2)W ⇥ U(1)Y , and there are no more
independent Higgs-spurion combinations we can write without breaking U(1)EM. We do not
consider a single power H, since we are in the limit of massless fermions, and the Yukawa cou-
plings are taken to vanish.

Let us now apply the Higgs-spurion combinations to the EW 3-point amplitudes. The unbroken
amplitudes of the SM respect the global part of the SU(2)W ⇥U(1)Y symmetry. Specifically in
the case of LH-quarks; M

�
Q

i
, Qj , B

�
transforms as a singlet combination of a doublet and anti-

doublet, while M
�
Q

i
, Qj ,W

a
�

transforms as triplet combination of a doublet and anti-doublet.
Therefore the SMEFT, which also respects this symmetry, can only deform the amplitudes via
combinations of H which preserve these transformation properties. Thus, our Higgs-spurion

combinations can appear in the 3-point amplitude involving LH quark doublets Qj =
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as follows,
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and for RH quark singlets UR and DR,

M
�
UR, UR, B

�
⇠ cU1 , (55)

M
�
UR, UR,W

a
�
⇠ cU2
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H†
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M
�
DR, DR, B
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�
UR, DR,W
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⌧
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Note that the structure of lepton-doublet amplitudes is identical to Eq. (53) and Eq. (54)
(replacing the subscripts Q ! L). For the RH lepton singlet ER, the amplitude is of the same
structure as Eq. (55) or Eq. (57) and Eq. (56) or Eq. (58) (replacing the subscripts U orD ! E).
There is no leptonic version of Eq. (59), because there are no RH neutrinos in the SMEFT.

It is important to notice that we did not include H†H or other singlet combinations with
H, since these are trivial deformations, modifying coefficients that we already have, specifically
those which span the EWSB pattern of the SM. Indeed, we can regard these singlet terms
with no hypercharge, such as H†H, Higgs-spurion combinations in the "0-direction" of EWSB.
Considering the "spurion coefficients" of Eqs. (53)-(59), we count 10 parameters which must be
determined. This is one parameter more than the couplings (observables) of Sec. 3.2, since in
Sec. 3.1 we chose to neglect Eq. (19), corresponding to Eq. (59).

To obtain the broken phase amplitudes we rotate to the mass basis,

Z = �sWB + cWW
3
, (60)

W
+ =

1p
2

�
W

1 � iW
2
�
, (61)
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examine on-shell Higgsing to see:


start @ dim-6

SU(2) structure to all orders via “spurion” analysis        spurion = Higgs VEV

(a) (b)

Figure 2: The two 4-point contact-terms contributing at d = 6.
(a) 4-point contact term including two fermions of opposite helicity, and two scalars.
(b) 4-point contact term including two vectors of the same polarisation, and two scalars.
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, (71)

and for RH quarks which label collectively as QR = UR, DR,

M
�
QR, QR, B

�
= g

0
YQR

[23]2

[12]
. (72)

We can go to the broken phase by assigning indices to the gauge group structures, expressing
the EW bosons in the mass basis (Eqs. (60)-(61)) and Higgsing the Lorentz structure (detailed
in the Appendix A). This leads us to the following massive 3-points amplitudes at d = 4,

M(4)
�
uL, uL, Z
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, (76)
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h13i[32]
mZ

, (77)

M(4)
�
uR, dR,W

+
�
= 0 . (78)

4.2.1 Dimension-6 contributions

We now consider the contributions to the massive 3-points coming from d > 4 SMEFT operators.
These are generated by higher-point amplitudes. Ref. [49] classified the generic massless contact
terms for spins  1. At d = 6, there are two massless contact terms that can contribute to the
massive 3-points of interest: a 4-point contact term with two fermions and two scalars, and a
4-point with two vectors and two scalars (see Fig. 2).

The SMEFT amplitude corresponding to Fig. 2a (see also [19, 20]) for LH quarks is,
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and for RH quarks,
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, (80)
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Figure 2: The two 4-point contact-terms contributing at d = 6.
(a) 4-point contact term including two fermions of opposite helicity, and two scalars.
(b) 4-point contact term including two vectors of the same polarisation, and two scalars.
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We can go to the broken phase by assigning indices to the gauge group structures, expressing
the EW bosons in the mass basis (Eqs. (60)-(61)) and Higgsing the Lorentz structure (detailed
in the Appendix A). This leads us to the following massive 3-points amplitudes at d = 4,
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4.2.1 Dimension-6 contributions

We now consider the contributions to the massive 3-points coming from d > 4 SMEFT operators.
These are generated by higher-point amplitudes. Ref. [49] classified the generic massless contact
terms for spins  1. At d = 6, there are two massless contact terms that can contribute to the
massive 3-points of interest: a 4-point contact term with two fermions and two scalars, and a
4-point with two vectors and two scalars (see Fig. 2).

The SMEFT amplitude corresponding to Fig. 2a (see also [19, 20]) for LH quarks is,
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Note that both Eq. (51) and Eq. (52) are triplets of SU(2)W , while Eq. (52) also carries a
hypercharge Y = +1. Eq. (51) breaks SU(2)W in one direction, and Eq. (52) breaks both
SU(2)W and U(1)Y in another. Considering the charge conjugate of Eq. (67), we can also write
a third direction with: H†

⌧
aH̃ ! 1/2

�
�
a1 + i�

a2
�
, a SU(2)W triplet with Y = �1. Together

these correspond to the three broken generators of SU(2)W ⇥ U(1)Y , and there are no more
independent Higgs-spurion combinations we can write without breaking U(1)EM. We do not
consider a single power H, since we are in the limit of massless fermions, and the Yukawa cou-
plings are taken to vanish.

Let us now apply the Higgs-spurion combinations to the EW 3-point amplitudes. The unbroken
amplitudes of the SM respect the global part of the SU(2)W ⇥U(1)Y symmetry. Specifically in
the case of LH-quarks; M

�
Q

i
, Qj , B

�
transforms as a singlet combination of a doublet and anti-

doublet, while M
�
Q

i
, Qj ,W

a
�

transforms as triplet combination of a doublet and anti-doublet.
Therefore the SMEFT, which also respects this symmetry, can only deform the amplitudes via
combinations of H which preserve these transformation properties. Thus, our Higgs-spurion

combinations can appear in the 3-point amplitude involving LH quark doublets Qj =
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as follows,
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, (53)
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a
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⌧
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H†

⌧
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and for RH quark singlets UR and DR,

M
�
UR, UR, B

�
⇠ cU1 , (55)

M
�
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a
�
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H†
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(58)
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⌧
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. (59)

Note that the structure of lepton-doublet amplitudes is identical to Eq. (53) and Eq. (54)
(replacing the subscripts Q ! L). For the RH lepton singlet ER, the amplitude is of the same
structure as Eq. (55) or Eq. (57) and Eq. (56) or Eq. (58) (replacing the subscripts U orD ! E).
There is no leptonic version of Eq. (59), because there are no RH neutrinos in the SMEFT.

It is important to notice that we did not include H†H or other singlet combinations with
H, since these are trivial deformations, modifying coefficients that we already have, specifically
those which span the EWSB pattern of the SM. Indeed, we can regard these singlet terms
with no hypercharge, such as H†H, Higgs-spurion combinations in the "0-direction" of EWSB.
Considering the "spurion coefficients" of Eqs. (53)-(59), we count 10 parameters which must be
determined. This is one parameter more than the couplings (observables) of Sec. 3.2, since in
Sec. 3.1 we chose to neglect Eq. (19), corresponding to Eq. (59).

To obtain the broken phase amplitudes we rotate to the mass basis,

Z = �sWB + cWW
3
, (60)

W
+ =

1p
2

�
W

1 � iW
2
�
, (61)
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examine on-shell Higgsing to see:


start @ dim-8

SU(2) structure to all orders via “spurion” analysis        spurion = Higgs VEV

Figure 4: A 5-point of a massless amplitude of two fermions of opposite helicity, two scalars
and a vector of positive polarisation, contributing at d = 8.

To obtain the massive contact term, we take p5 ! 0. The remaining kinematic structure
reduces to [13]h23i at low energies. Again, since we are only interested in cQ5 we look at the
contribution of the "

abc term in Eq. (99), which yields,

cQ5 ⇠
v
4

⇤4
. (100)
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to conclude:


amplitudes in terms of LG covariant spinors: power of Lorentz: uniform description of amplitudes


          of different spins; Higgsing of massless amplitudes into massive ones


mature(ing) methods for on-shell derivations of low-energy EFT amplitudes:


• EFT parametrization directly in terms of physical particles, couplings


• operator bases—> kinematic spinor structures bases: promising starting point for isolating novel 


            effects in experiment 


• clear distinction between HEFT, SMEFT

Thank you!


