Amplitudes for SM EFTS

Yael Shadmi, Technion

work with students Jared Goldberg, Julian Northey
\& postdocs: Hongkai Liu
Teng Ma, Michael Waterbury
Reuven Balkin, Gauthier Durieux, Teppei Kitahara

Jared Goldberg, Hongkai Liu, YS
Julian Northey, YS, Yotam Soreq
Hongkai Liu, Teng Ma, YS, Michael Waterbury '23
Reuven Balkin, Gauthier Durieux, Teppei Kitahara, YS, Yaniv Weiss '21
expanding on methods from:
YS Weiss '18
Durieux Kitahara YS Weiss '19

Amplítudes for SM EFTS EWSB
simple parametrization in terms of Higgs mechanism
"by hand:"
? minimum away from origin
? 246 GeV scale
? stable against radiative corrections

Simple parametrization in terms of Higgs mechanism

"by hand:"
? minimum away from origin

? 246 GeV scale

? stable against radiative correcti
eg (weakly coupled): supersymmetric extensions of SM stop mass + top Yukawa $->$ minimum away from origin
origin of scale: new dynamics: dynamical supersymmetry breaking

EFTs (bottom-up constructions)

SM fields: most general \mathscr{L} consistent with symmetries (global, gauge)
on-shell bootstrap: SM particles: most general \mathscr{A} consistent with symmetries (global, gauge)

LHC: wealth of new measurements-never done before!
to interpret these: SM + ? BSM

- precision ("known unknowns")
- parametrize possible BSM effects ("unknown unknowns") EFFECTIVE THEORIES

many EFT operators/amplitudes; many measurements

SMEFT:

$$
\begin{aligned}
& d=6: \sim 10^{3}\left(10^{2} \text { for } N_{g}=1\right) \\
& d=8: \sim 10^{4}\left(10^{3} \text { for } N_{g}=1\right) \\
& \qquad \mathscr{L}=\sum_{i} c_{i} \widehat{O}_{i}\left(\phi_{1}, \ldots, \phi_{n}\right)
\end{aligned}
$$

amplitudes: direct mapping
bootstrapping amplitudes:

$$
\rightarrow \mathscr{A}_{S M}+\mathscr{A}_{E F T}
$$

rediscover SM
 (more generally: elements of QFT)

Eg: De Angelis Accettulli-Huber '21 comprehensive analysis
most general EFT amplitude

- model independent
- no issues of field redefinitions, basis dependence, coupling redefinition
- natural approach as we try to go beyond SM
- directly in terms of physical quantities -> construct sensitive observables
bootstrapping amplitudes:

$$
\rightarrow \mathscr{A}_{S M}+\mathscr{A}_{E F T}
$$

\square
rediscover SM
(more generally: elements of QFT)
standard QFT textbook example (Schwartz): spin-1 interactions $->$ Lie groups

-> $\quad C^{a b c}$ completely antisymmetric
structure constants!
(factorization of 4-pt: Jacobi id)

bootstrapping amplitudes:

$$
\rightarrow \mathscr{A}_{S M}+\mathscr{A}_{E F T}
$$

\square
standard QFT textbook example (Schwartz): spin-1 interactions —> Lie group
Higgs mechanism

Plan:

o anatomy of the Higgs mechanism at the amplitude level
o application: on-shell derivation of SMEFT, HEFT amplitudes at low-energy

On-shell Higgsing

IR unification of UV amplitudes
Arkani-Hamed Huang Huang '17
N=4 Coulomb branch amplitudes Craig Elvang Kiermaier Slatyer '11

anatomy of on-shell Higgsing

massless amplitudes of unbroken theory \rightarrow "Higgs" to get low-energy massive amplitudes extra Higgs legs non-dynamical: soft: $\quad H\left(q_{i}\right) \quad q_{i} \rightarrow 0$

probe field space
matching at high energy:

$$
\begin{gathered}
E \gg q \sim m(\sim V E V \text { v) } \\
M_{n}(1, \ldots, n)=A_{n}(1, \ldots, n)+v \lim _{q \sim v \rightarrow 0} A_{n+1}(1, \ldots, n ; H(q))+\cdots
\end{gathered}
$$

anatomy of on-shell Higgsing

- massless spinor structures get bolded:
n-pt amplitude with external
vector n

$$
\begin{gathered}
(n+1) \text {-pt amplitude } \\
\text { with external } \\
\text { Higgses } n,(n+1)
\end{gathered}
$$

$$
\propto\left(\frac{1}{(k+q)^{2}}=\frac{1}{m^{2}}\right) \times\left(A_{3} \propto g\right)
$$

anatomy of on-shell Higgsing

- massless spinor structures get bolded:
n-pt amplitude with external
vector n

($\mathrm{n}+1$)-pt amplitude

 with externalHiggses $\mathrm{n},(\mathrm{n}+1)$

$\propto\left(\frac{1}{(k+q)^{2}}=\frac{1}{m^{2}}\right) \times\left(A_{3} \propto g\right)$

anatomy of on-shell Higgsing

- massless spinor structures get bolded:
n-pt amplitude with external
vector n

($\mathrm{n}+1$)-pt amplitude

 with externalHiggses n, (n+1)
n-pt amplitude with external massive vector n
soft Higgs leg supplies
second lightlike momentum to form massive momentum

$$
\mathbf{p}=k+q
$$

anatomy of on-shell Higgsing

- massless spinor structures get bolded:
n-pt amplitude with external
vector n
($\mathrm{n}+1$)-pt amplitude with external
Higgses n, (n+1)
symmetrization over LG indices: exchanging k, q in Higgs legs
n-pt amplitude with external massive vector n
soft Higgs leg supplies second lightlike momentum to form massive momentum

$$
\mathbf{p}=k+q
$$

anatomy of on-shell Higgsing

- massless spinor structures get bolded:
n-pt amplitude with external vector n
($n+1$)-pt amplitude with external Higgses $n,(n+1)$

n-pt amplitude with external massive vector n

$$
\text { massless spinor structure gets bolded } k] k] \rightarrow \mathbf{p}] \mathbf{p}]
$$

anatomy of on-shell Higgsing

just as for gauge symmetry:
Higgs mechanism <-> Lorentz symmetry
from Lorentz symmetry pov:
bolding the massless spinor structure = covariantizing wrt full massive LG

anatomy of on-shell Higgsing

contact terms:
massless fermion: $i] \rightarrow$ i]
massless vector $i] i] \rightarrow$ i]i]
massless scalar with momentum insertion $\left.p_{i}=i\right]\langle i$
$->$ 1. massive scalar CT with momentum insertion \mathbf{p}_{i}
\rightarrow 2. massive vector CT $\left.p_{i}=i\right]\langle i \rightarrow \mathbf{i}]\langle i$
(longitudinal vector from Goldstone boson)

anatomy of on-shell Higgsing

- couplings get $\mathcal{O}(v)$ corrections:

$$
C_{n}=c_{n}+\# v c_{n+1}+\# v^{2} c_{n+2}+\ldots
$$

low-E SM + perturbative unitarity $->$ SU(3)xSU(2)xU(1) SM
relation between gauge symmetry invariance \& perturbative unitarity completely transparent with amplitudes written with LG covariant spinors
low-E amplitude featuring massive vector:

$\mathbf{p}] \mathbf{p}], \quad \mathbf{p}\rangle \mathbf{p}\rangle, \mathbf{p}] \mathbf{p}\rangle / \mathbf{M}$
problematic terms feature
$(I, J)=(1,2) \sim \frac{E^{2}}{M^{2}}$
$(I, J)=(1,1) \quad \propto \frac{\left.p^{1}\right\rangle}{M}=$ finite : spurious spinor
low-E amplitude featuring massive vector:

$$
\frac{\mathbf{p}] \mathbf{p}\rangle}{M} \equiv \frac{\left.p]^{\{I} p\right\rangle^{J\}}}{M}
$$

$(I, J)=(1,2) \sim \frac{E^{2}}{M^{2}}$

$$
\left.\left.\left(\begin{array}{ll}
H E: & p
\end{array}\right]^{1} \sim \sqrt{E} \quad p\right\rangle^{1} \sim M / \sqrt{E}\right)
$$

$(I, J)=(1,1) \quad \propto \frac{\left.p^{1}\right\rangle}{M}=$ finite : spurious spinor
cancellation of bad energy growth $<->$ cancellation of spurious spinor dependence
reference spinor of massless gauge boson polarization
low-E amplitude featuring massive vector:

$(I, J)=(1,2) \sim \frac{E^{2}}{M^{2}}$

$$
\left.\left.(H E: \quad p]^{1} \sim \sqrt{E} \quad p\right\rangle^{1} \sim M / \sqrt{E}\right)
$$

$(I, J)=(1,1) \quad \propto \frac{\left.p^{1}\right\rangle}{M}=$ finite : spurious spinor
cancellation of bad energy growth $<->$ cancellation of spurious spinor dependence
reference spinor of massless gauge boson polarization

EFT applications

On-shell applications to EFTs (massless)

o selection rules: explain zeros in

- matrix of anomalous dimensions of EFT operators (loop cuts \& generalized cuts)

Cheung Shen '15
Bern Parra-Martinez Sawyer '20

- interference of SM x EFT amplitudes (tree)

> Azatov Contino Machado Riva ‘16
o derive anomalous dimensions of EFT operators (loop cuts \& generalized cuts)

On-shell applications to EFTs (massless + massive)

o count (\& construct) bases of EFT operators:
YS Weiss '18
Ma Shu Xiao '19
Remmen Rodd '19
Li Ren Shu Xiao Yu Zheng '20
Durieux Machado '20

- UV matching
in many of these:
amplitude

different EFTs:

low-E: SM particles only / SM + new light particle(s)

- SMEFT: $\operatorname{SU(3)xSU(2)xU(1)\text {at}\Lambda ~}$
massless SM fields, h in Higgs doublet large scale separation possible: $\Lambda \gg v$
- otherwise: only $\operatorname{SU}(3) \times \mathrm{XU}(1)_{\text {ем }}$ at Λ; massive $\mathrm{W}, \mathrm{Z}, \mathrm{h}$ "HEFT"
full symmetry realized non-linearly; no scale separation: $\Lambda \sim v$ recent: Cohen Craig Lu Sutherland '20

SMEFT: to derive predictions:

- basis of operators in unbroken theory
- turn on Higgs VEV \rightarrow Lagrangian in broken theory: SM fields, couplings shift
- derive Feynman rules of broken theory in some gauge
- redefine parameters from "input" physical masses, couplings
amplitudes: working with physical dof's, couplings only

HEFT:

"sick" EFT : eg, integrated out fields with masses from EWSB

<-> no scale separation
UV matching ambiguous
Dawson Fontes Quezada-Calonge Sanz-Cillero '23
amplitudes: make concrete

amplitude construction: bottom-up:

-> starting with the massive (and massless) particles we know: construct most general amplitudes

- 3-points (renormalizable + higher-dim): dictated by little group, symmetries
- factorizable parts of higher-point amplitudes (determined by 3-pts..)
- higher-point contact terms: dictated by little group, symmetries

$$
\mathscr{A}=\frac{[\cdots] \cdots\langle\cdots\rangle}{\Lambda^{\#}} P\left(\frac{s_{i j}}{\Lambda^{2}}\right)
$$

local: no poles

$$
\mathscr{A}=\frac{[\cdots] \cdots\langle\cdots\rangle}{\Lambda^{\#}} P\left(\frac{s_{i j}}{\Lambda^{2}}\right)
$$

carries LG weight; "stripped" off all Lorentz invariants $s_{i j}$ "stripped contact term" SCT

different SCTs can come from integrating out different UV fields — different suppressions

Chang Chen Liu Luty '22

$$
\mathscr{A}=\frac{[\cdots] \cdots\langle\cdots\rangle}{\Lambda^{\#}} P\left(\frac{s_{i j}}{\Lambda^{2}}\right)
$$

carries LG weight; "stripped" of all Lorentz invariants $s_{i j}$ "stripped contact term" SCT
polynomial in Lorentz invariants $s_{i j}$ subject to kinematical constraints, $\mathrm{eg}, s_{12}+s_{13}+s_{23}=\sum m^{2}$
derivative expansion

What about (low-energy) SMEFT amplitudes?

use on-shell Higgsing

massless \mathscr{A}
impose full $\operatorname{SU}(3) \times S U(2) \times U(1)$ $\stackrel{\rightharpoonup}{\square}$
derive massive \mathscr{M}
(contact term part only)

results: HEFT, SMEFT

HEFT inventory

(observables; many more results on operators, anomalous dim's via on-shell)

- all HEFT 3-points (+matching to SMEFT)
- [all generic 3-points for spins up to 3
- all generic 4-pt SCTs for spins 0, 1/2, 1]
- HEFT 4-points: hggg, Zggg, ffVh, WWhh

Durieux Kitahara Machado YS Weiss'20
Shadmi et al '18, Durieux et al '19, Balkin et al '21

+ some full amplitudes (factorizable + contact terms): ffWh, ffZh, WWhh
- $5 V(4 W+Z$ etc $)$

De Angelis '21

- Higgs, top 4pts in terms of momenta+polarizations
- all HEFT 4pts up to $d=8$

Chang et al '22, '23
Liu Ma YS Waterbury '23

- most relevant for collider studies: 2 to 2
- dimension counting: classify contact terms by energy growth
full set of EFT contact terms with E^{2} growth: (mostly dim-6 operators)

Massive amplitudes	E^{2} contact terms
$\mathcal{M}($ WWhh $)$	$C_{W W h h}^{00}\langle\mathbf{1 2}\rangle[\mathbf{1 2}], C_{W W h h}^{ \pm \pm}(\mathbf{1 2})^{2}$
$\mathcal{M}($ ZZhh $)$	$C_{Z Z h h}^{00}\langle\mathbf{1 2}\rangle[\mathbf{1 2}], C_{Z Z}^{ \pm \pm h h}(\mathbf{1 2})^{2}$
$\mathcal{M}(\mathrm{gghh})$	$C_{\text {gghh }}^{ \pm \pm}(12)^{2}$
$\mathcal{M}(\gamma \gamma h h)$	$C_{\gamma \gamma h h}^{ \pm \pm}(12)^{2}$
$\mathcal{M}(\gamma Z h h)$	$C_{\gamma Z h h}^{ \pm}(12)^{2}$
$\mathcal{M}($ hhhh $)$	$C_{\text {hhhh }}$
$\mathcal{M}\left(f^{c} f h h\right)$	$C_{f f f h}^{ \pm \pm}(12)$
$\mathcal{M}\left(f^{c} f W h\right)$	$C_{f f W h}^{+-0}[\mathbf{1 3}]\langle\mathbf{2 3}\rangle, C_{f f W h}^{-+0}\langle\mathbf{1 3 \rangle}\rangle \mathbf{2 3]}, C_{\text {ffWh }}^{ \pm \pm \pm}(\mathbf{1 3)} \mathbf{(2 3)}$
$\mathcal{M}\left(f^{c} f Z h\right)$	$C_{f f Z h}^{+-0}[\mathbf{1 3]}]\langle\mathbf{2 3}\rangle, C_{f f Z h}^{-+0}\langle\mathbf{1 3}\rangle\left[\mathbf{2 3]}, C_{f f Z h}^{ \pm \pm \pm}(\mathbf{1 3})(\mathbf{2 3})\right.$
$\mathcal{M}\left(f^{c} f \gamma h\right)$	$C_{f f \gamma h}^{ \pm \pm \pm}(13)(23)$
$\mathcal{M}\left(q^{c} q g h\right)$	$C_{\text {qqgh }}^{ \pm \pm \pm}$(13)(23)
$\mathcal{M}\left(f^{c} f f^{c} f\right)$	$C_{f f f}^{ \pm \pm \pm, 1}(\mathbf{1 2})(\mathbf{3 4}), C_{f f f}^{--++}\langle\mathbf{1 2}\rangle[\mathbf{3 4}], C_{f f f f}^{-+-+}\langle\mathbf{1 3}\rangle[\mathbf{2 4}], C_{f f f f}^{-++-}\langle\mathbf{1 4}\rangle[\mathbf{2 3}]$ $C_{f f f f}^{ + \pm \pm \pm 2}(\mathbf{1 3})(\mathbf{2 4}), C_{f f f f}^{+f--}[\mathbf{1 2}]\langle\mathbf{3 4}\rangle, C_{f f f f}^{+-+-}[\mathbf{1 3}]\langle\mathbf{2 4}\rangle, C_{f f f f}^{+--+}[\mathbf{1 4}]\langle\mathbf{2 3}\rangle$

$(12)=[12]$ or $\langle 12\rangle$

C's: Wilson coefficients
most suppressed by $\bar{\Lambda}^{2}$ (amplitude dim-less)

- similarly: derived full set of CTs with E^{3}, E^{4} growth
- corresponding to $d \leq 8$ HEFT operators
- clear identification of operator dimension from dim-analysis:

$$
\text { factors of } p] p\rangle \quad \text { (external massive vector) } \quad \rightarrow p] p\rangle / M
$$

any extra powers of E compensated by powers of Λ
-> read off dimension of operator
but recall $\Lambda \sim v ; \quad E / v$ terms in amplitudes reflect non-locality of HEFT
(cancel in SMEFT amplitudes: gauge invariance <-> perturbative unitarity)

SMEFT 4-pts

full list of CTs from $d \leq 6$ SMEFT

Massive $d=6$ amplitudes	SMEFT Wilson coefficients
$\mathcal{M}\left(W_{L}^{+} W_{L}^{-} h h\right)=C_{W W h h}^{00}\langle\mathbf{1 2}\rangle[\mathbf{1 2}]$	$\overline{C_{W W h h}^{00}}=\left(c_{\left(H^{\dagger} H\right)^{2}}^{(+)}-3 c_{\left(H^{\dagger} H\right)^{2}}^{(-)}\right) / 2$
$\mathcal{M}\left(W_{ \pm}^{+} W_{ \pm}^{-} h h\right)=C_{W W h h}^{ \pm \pm}(12){ }^{2}$	$C_{W W h h}^{ \pm \pm}=2 c_{W W H H}^{ \pm \pm}$
$\mathcal{M}\left(Z_{L} Z_{L} h h\right)=C_{Z Z h h}^{00}\langle\mathbf{1 2}\rangle[\mathbf{1 2}]$	$C_{Z Z h h}^{00}=-2 c_{\left(H^{\dagger} H\right)^{2}}^{(+)}$
$\mathcal{M}\left(Z_{ \pm} Z_{ \pm} h h\right)=C_{Z Z h h}^{ \pm \pm}(12)^{2}$	$C_{Z Z h h}^{ \pm \pm}=c_{W}^{2} c_{W W H H}^{ \pm \pm}+s_{W}^{2} c_{B B H H}^{ \pm \pm}+c_{W} s_{W} c_{B W H H}^{ \pm \pm}$
$\mathcal{M}\left(g_{ \pm} g_{ \pm} h h\right)=C_{g g h h}^{ \pm \pm}(12)^{2}$	$C_{g g h h}^{ \pm \pm}=c_{G G H H}^{ \pm \pm}$
$\mathcal{M}\left(\gamma_{ \pm} \gamma_{ \pm} h h\right)=C_{\gamma \gamma h h}^{ \pm \pm}(12)^{2}$	$C_{\gamma \gamma h h}^{ \pm \pm}=s_{W}^{2} c_{W W H H}^{ \pm \pm}+c_{W}^{2} c_{B B H H}^{ \pm \pm}-c_{W} s_{W} c_{B W H H}^{ \pm \pm}$
$\mathcal{M}\left(\gamma_{ \pm} Z h h\right)=C_{\gamma Z h h}^{ \pm}(12)^{2}$	$C_{\gamma Z h h}^{ \pm}=s_{W} c_{W} c_{W W H H}^{ \pm \pm}-s_{W} c_{W} c_{B B H H}^{ \pm \pm}+\frac{1}{2}\left(s_{W}^{2}-c_{W}^{2}\right) c_{B W H H}^{ \pm \pm}$
$\mathcal{M}(h h h h)=C_{h h h h}$	$C_{h h h h}=-3 c_{\left(H^{\dagger} H\right)^{2}}+45 v^{2} c_{\left(H^{\dagger} H\right)^{3}}$
$\mathcal{M}\left(f_{ \pm}^{c} f_{ \pm} h h\right)=C_{f f h h}^{ \pm \pm}(\mathbf{1 2})$	$C_{f f h h}^{ \pm \pm}=3 c_{\Psi \psi H H H}^{ \pm \pm} v /(2 \sqrt{2})$
$\mathcal{M}\left(f_{+}^{c} f_{-}^{\prime} W_{L} h\right)=C_{f f W h}^{+-0}[\mathbf{1 3}]\langle\mathbf{2 3}\rangle$	$C_{f f W h}^{+-0}=\left(c_{\Psi \Psi H H}^{+-,(+)}-c_{\Psi \Psi H H}^{+-,(-)}\right) / 2$
$\mathcal{M}\left(f_{-}^{c} f_{+}^{\prime} W_{L} h\right)=C_{f f W h}^{-+0}\langle\mathbf{1 3}\rangle[\mathbf{2 3}]$	
$\mathcal{M}\left(f_{ \pm}^{c} f_{ \pm}^{\prime} W_{ \pm} h\right)=C_{f f W h}^{ \pm \pm \pm}(\mathbf{1 3})(\mathbf{2 3})$	$C_{f f W h}^{ \pm \pm \pm}=c_{\Psi \psi W H}^{ \pm \pm \pm} / 2$
$\mathcal{M}\left(f_{+}^{c} f_{-} Z_{L} h\right)=C_{f f Z h}^{+-0}[\mathbf{1 3}]\langle\mathbf{2 3}\rangle$	$C_{e_{L} e_{L} Z h}^{+-0}=-i \sqrt{2} c_{\Psi \Psi H H}^{+-,(+)}, C_{\nu_{L} \nu_{L} Z h}^{+-0}=-i\left(c_{\Psi \Psi H H}^{+-,(+)}+c_{\Psi \Psi H H}^{+-,(-)}\right) / \sqrt{2}$
$\mathcal{M}\left(f_{-}^{c} f_{+} Z_{L} h\right)=C_{f f Z h}^{-+0}\langle\mathbf{1 3}\rangle[\mathbf{2 3}]$	$C_{f f Z h}^{-+0, \mathrm{CT}}=-i \sqrt{2} c_{\psi \psi H H}^{-+}$
$\mathcal{M}\left(f_{ \pm}^{c} f_{ \pm} Z_{ \pm} h\right)=C_{f f Z h}^{ \pm \pm \pm}(\mathbf{1 3})(\mathbf{2 3})$	$C_{f f Z h}^{ \pm \pm \pm}=-\left(s_{W} c_{\Psi \psi B H}^{ \pm \pm \pm}+c_{W} c_{\Psi \psi W H}^{ \pm \pm \pm}\right) / \sqrt{2}$
$\mathcal{M}\left(f_{ \pm}^{c} f_{ \pm} \gamma_{ \pm} h\right)=C_{f f \gamma h}^{ \pm \pm \pm}(\mathbf{1 3)}(\mathbf{2 3)}$	$C_{f f \gamma h}^{ \pm \pm \pm}=\left(-s_{W} c_{\Psi \psi W H}^{ \pm \pm \pm}+c_{W} c_{\Psi \psi B H}^{ \pm \pm \pm}\right) / \sqrt{2}$
$\mathcal{M}\left(q_{ \pm}^{c} q_{ \pm} g_{ \pm}^{A} h\right)=C_{q q g h}^{ \pm \pm \pm} \lambda^{A}(\mathbf{1} 3)(\mathbf{2} 3)$	$C_{q q g h}^{ \pm \pm \pm}=c_{\Psi \psi G H}^{ \pm \pm \pm} / \sqrt{2}$

Table 3: The low-energy E^{2} contact terms (left column) and their $d=6$ coefficients in the SMEFT (right column). $c_{\left(H^{\dagger} H\right)^{2}}$ without a superscript is the renormalizable four-Higgs coupling. The mapping for four fermion contact terms is trivial, so we do not include them here.

Ma Liu YS Waterbury 2301.11349

to get these:

start with massless dim-6 SMEFT amplitudes

and Higgs these to get massive amplitudes

for completeness provide full mapping of 4 -pt $d \leq 6$ EFT amplitudes to Warsaw basis

Ma Shu Xiao ‘19

Amplitude	Contact term	Warsaw basis operator	Coefficient
$\mathcal{A}\left(H_{i}^{c} H_{j}^{c} H_{k}^{c} H^{l} H^{m} H^{n}\right)$	$T_{i j k}^{+l m n}$	$\mathcal{O}_{H} / 6$	$c_{\left(H^{\dagger} H\right)^{3}}$
$\mathcal{A}\left(H_{i}^{c} H_{j}^{c} H^{k} H^{l}\right)$	$s_{12} T_{i j}^{+k l}$	$\mathcal{O}_{H D} / 2+\mathcal{O}_{H \square} / 4$	$c_{\left(H^{\dagger} H\right)^{2}}^{(+)}$
$\mathcal{A}\left(H_{i}^{c} H_{j}^{c} H^{k} H^{l}\right)$	$\left(s_{13}-s_{23}\right) T_{i j}^{-k l}$	$\mathcal{O}_{H D} / 2-\mathcal{O}_{H \square} / 4$	$c_{\left(H^{\dagger} H\right)^{2}}^{(-)}$
$\mathcal{A}\left(B^{ \pm} B^{ \pm} H_{i}^{c} H^{j}\right)$	$(12)^{2} \delta_{i}^{j}$	$\left(\mathcal{O}_{H B} \pm i \mathcal{O}_{H \tilde{B}}\right) / 2$	$c_{B B H H}^{ \pm \pm \pm}$
$\mathcal{A}\left(B^{ \pm} W^{I \pm} H_{i}^{c} H^{j}\right)$	$(12)^{2}\left(\sigma^{I}\right)_{i}^{j}$	$\mathcal{O}_{H W B} \pm i \mathcal{O}_{H \tilde{W} B}$	$c_{B W H H}^{ \pm \pm}$
$\mathcal{A}\left(W^{I+} W^{J+} H_{i}^{c} H^{j}\right)$	$(12)^{2} \delta^{I J} \delta_{i}^{j}$	$\left(\mathcal{O}_{H W} \pm i \mathcal{O}_{H \tilde{W}}\right) / 2$	$c_{W W H H}^{ \pm \pm}$
$\mathcal{A}\left(g^{A \pm} g^{B \pm} H_{i}^{c} H^{j}\right)$	$(12)^{2} \delta^{A B} \delta_{i}^{j}$	$\left(\mathcal{O}_{H G} \pm i \mathcal{O}_{H \tilde{G}}\right) / 2$	$c_{G G H H}^{ \pm \pm \pm}$
$\mathcal{A}\left(L_{i}^{c} e H_{j}^{c} H^{k} H^{l}\right)$	$[12] T_{i j}^{+k l}$	$\mathcal{O}_{e H} / 2$	$c_{\text {LeHHH }}^{++}$
$\mathcal{A}\left(Q_{a, i}^{c} d^{b} H_{j}^{c} H^{k} H^{l}\right)$	$[12] T_{i j}^{+k l} \delta_{a}^{b}$	$\mathcal{O}_{d H} / 2$	$c_{Q d H H H}^{++}$
$\mathcal{A}\left(Q_{a, i}^{c} u^{b} H_{j}^{c} H_{k}^{c} H^{l}\right)$	$[12] \varepsilon_{i m} T_{j k}^{+m l} \delta_{a}^{b}$	$\mathcal{O}_{u H} / 2$	$c_{Q u H H H}^{++}$
$\mathcal{A}\left(e^{c} e H_{i}^{c} H^{j}\right)$	$\langle 142] \delta_{i}^{j}$	$\mathcal{O}_{\text {He }} / 2$	$c_{e e H H}^{-+}$
$\mathcal{A}\left(u_{a}^{c} u^{b} H_{i}^{c} H^{j}\right)$	$\langle 142] \delta_{i}^{j} \delta_{a}^{b}$	$\mathcal{O}_{H u} / 2$	$c_{u u H H}^{-+}$
$\mathcal{A}\left(d_{a}^{c} d^{b} H_{i}^{c} H^{j}\right)$	$\langle 142] \delta_{i}^{j} \delta_{a}^{b}$	$\mathcal{O}_{H d} / 2$	$c_{d d H}^{-+}$
$\mathcal{A}\left(u_{a}^{c} d^{b} H^{i} H^{j}\right)$	$\langle 142] \epsilon^{i j} \delta_{a}^{b}$	$\mathcal{O}_{\text {Hud }} / 2$	$c_{u d H H}^{-+}$
$\mathcal{A}\left(L_{i}^{c} L^{j} H_{k}^{c} H^{l}\right)$	$[142\rangle T_{i k}^{+j l}$	$\left(\mathcal{O}_{H L}^{(1)}+\mathcal{O}_{H L}^{(3)}\right) / 8$	$c_{\text {LLHH }}^{+-,(+)}$
$\mathcal{A}\left(L_{i}^{c} L^{j} H_{k}^{c} H^{l}\right)$	$[142\rangle T_{i k}^{-j l}$	$\left(\mathcal{O}_{H L}^{(1)}-\mathcal{O}_{H L}^{(3)}\right) / 8$	$c_{L L H H}^{+-,(-)}$
$\mathcal{A}\left(Q_{a, i}^{c} Q^{b, j} H_{k}^{c} H^{l}\right)$	$[142\rangle T_{i k}^{+j l} \delta_{a}^{b}$	$\left(3 \mathcal{O}_{H Q}^{(1)}+\mathcal{O}_{H Q}^{(3)}\right) / 8$	$c_{Q Q H H}^{+-,(+)}$
$\mathcal{A}\left(Q_{a, i}^{c} Q^{b, j} H_{k}^{c} H^{l}\right)$	$[142\rangle T_{i k}^{-j l} \delta_{a}^{b}$	$\left(\mathcal{O}_{H Q}^{(1)}-\mathcal{O}_{H Q}^{(3)}\right) / 8$	$c_{Q Q H H}^{+-,(-)}$
$\mathcal{A}\left(L_{i}^{c} e B^{+} H^{j}\right)$	[13] 233$] \delta_{i}^{j}$	$-i \mathcal{O}_{e B} /(2 \sqrt{2})$	$c_{\text {LeBH }}^{+++}$
$\mathcal{A}\left(Q_{a, i}^{c} d^{b} B^{+} H^{j}\right)$	[13][23] $\delta_{i}^{j} \delta_{a}^{b}$	$-i \mathcal{O}_{d B} /(2 \sqrt{2})$	$c_{Q d B H}^{+++}$
$\mathcal{A}\left(Q_{a, i}^{c} u^{b} B^{+} H_{j}^{c}\right)$	[13][23] $\epsilon_{i j} \delta_{a}^{b}$	$-i \mathcal{O}_{u B} /(2 \sqrt{2})$	$c_{Q u B H}^{+++}$
$\mathcal{A}\left(L_{i}^{c} e W^{I+} H^{j}\right)$	[13][23] $\left(\sigma^{I}\right)_{i}^{j}$	$-i \mathcal{O}_{e W} /(2 \sqrt{2})$	$c_{\text {LeW }}^{+++}$
$\mathcal{A}\left(Q_{a, i}^{c} d^{b} W^{I+} H^{j}\right)$	[13][23] $\left(\sigma^{I}\right)_{i}^{j} \delta_{a}^{b}$	$-i \mathcal{O}_{d W} /(2 \sqrt{2})$	$c_{Q d W H}^{+++}$
$\mathcal{A}\left(Q_{a, i}^{c} u^{b} W^{I+} H_{j}^{c}\right)$	[13][23] $\left(\sigma^{I}\right)_{i k} \epsilon_{j}^{k} \delta_{a}^{b}$	$-i \mathcal{O}_{u W} /(2 \sqrt{2})$	$c_{Q u W H}^{+++}$
$\mathcal{A}\left(Q_{a, i}^{c} d^{b} g^{A+} H^{j}\right)$	[13][23] $\delta_{i}^{j}\left(\lambda^{A}\right)_{a}^{b}$	$-i \mathcal{O}_{d G} /(2 \sqrt{2})$	$c_{Q d G H}^{+++}$
$\mathcal{A}\left(Q_{a, i}^{c} u^{b} g^{A+} H_{j}^{c}\right)$	[13][23] $\epsilon_{i j}\left(\lambda^{A}\right)_{a}^{b}$	$-i \mathcal{O}_{u G} /(2 \sqrt{2})$	$c_{Q u G H}^{+++}$
$\mathcal{A}\left(W^{I \pm} W^{J \pm} W^{K \pm}\right)$	(12)(23)(31) $\epsilon^{I J K}$	$\left(\mathcal{O}_{W} \pm i \mathcal{O}_{\tilde{W}}\right) / 6$	$c_{W W W}^{ \pm \pm \pm}$
$\mathcal{A}\left(g^{A \pm} g^{B \pm} g^{C \pm}\right)$	$(12)(23)(31) f^{A B C}$	$\left(\mathcal{O}_{G} \pm i \mathcal{O}_{\tilde{G}}\right) / 6$	$c_{G G G}^{ \pm \pm \pm}$

Table 2: Massless $d=6$ SMEFT contact terms [34] and their relations to Warsaw basis operators $[3]$. For each operator (or operator combination) \mathcal{O} in the third column, $c \mathcal{O}$ generates the structure in the second column with the coefficient c given in the fourth column.
c-superscripts denote charge conjugation.

on to dim-8 SMEFT

can have interesting effects (eg example here)
~ 1000 operators; with amplitudes, easy to concentrate on the relevant ones for a given observable example: WW, ZZ .. production (sensitive probe of EWSB)
all relevant 4-pt CTs first generated at dim-8
(dim-6 SMEFT merely corrects SM-3pts) from VVV, VVHH etc: easy to see at amplitude level: 8 powers of p] (or $p\rangle$) $->\Lambda^{4}$ or 6 powers in ffVV \rightarrow SMEFT: Λ^{4}

VV pair production from dim=8 SMEFT: $V=W, Z, \gamma, g$

derived all low-energy 4-pt CTs generated by dim-8 SMEFT
$V V \rightarrow V V \quad \overline{f f} \rightarrow V V \quad$.. (massless fermions)

- nonzero mass "resurrect" vanishing SM-SMEFT interference $\propto M_{W}, M_{Z}$
- good at $M_{V} \sim E \ll \Lambda$ (not just high-E where EFT not reliable)
- sensitivity to anomalous Higgs self couplings
- up/down quark $\operatorname{SU}(2)$ relations broken (first happens at dim-8)

VV pair production from dim=8 SMEFT: $V=W, Z, \gamma, g$

Goldberg Liu YS 2406.

+ distinguish HEFT vs SMEFT:
- various coupling relations in SMEFT
- some SMEFT zeros (due to hypercharge or accidental)

2 to 2 amplitudes:

$$
\mathscr{A}=\underbrace{\frac{[\cdots] \cdots\langle\cdots\rangle}{\Lambda^{\#}}}_{\substack{\text { scattering } \\
\text { angle } \\
\text { and } \\
\text { decay angles }}} P \underbrace{P\left(\frac{s}{\Lambda^{2}}, \frac{t}{\Lambda^{2}}\right)}_{\begin{array}{c}
\text { scattering } \\
\text { angle }
\end{array}}
$$

? construct observables to isolate novel SCTs not appearing in SM
? systematize directly in terms of SCT bases
in progress: De Angelis Durieux Grojean YS

EFT of electroweak precision measurements \& spurion analysis

Julian Northey, YS, Yotam Soreq, in progress

Z- and W-pole measurements: 3-points - simple \& "exact" (no kinematic expansion)

$$
M\left(\bar{Q}^{i} Q^{j} V\right)=C_{j}^{i} \frac{[13]\langle 23\rangle}{M_{V}}
$$

EFT of electroweak precision measurements \& spurion analysis

EFT of electroweak precision \& spurion analysis

SU(2) structure to all orders via "spurion" analysis spurion = Higgs VEV

examine on-shell Higgsing to see: start @ dim-6

EFT of electroweak precision \& spurion analysis

> SU(2) structure to all orders via "spurion" analysis spurion = Higgs VEV

$$
\begin{gathered}
\mathcal{M}\left(\bar{Q}^{i}, Q_{j}, B\right) \sim c_{Q 1} \delta_{j}{ }^{i}+c_{Q 2}\left(\tau^{a}\right)_{j}{ }^{i}\left(\mathcal{H}^{\dagger} \tau^{a} \mathcal{H}\right), \\
\mathcal{M}\left(\bar{Q}^{i}, Q_{j}, W^{a}\right) \sim c_{Q 3}\left(\tau^{a}\right)_{j}{ }^{i}+c_{Q 4} \delta_{j}{ }^{i}\left(\mathcal{H}^{\dagger} \tau^{a} \mathcal{H}\right)+c_{Q 5} \varepsilon^{a b c}\left(\tau^{b}\right)_{j}{ }^{i}\left(\mathcal{H}^{\dagger} \tau^{c} \mathcal{H}\right),
\end{gathered}
$$

examine on-shell Higgsing to see:
start @ dim-8
to conclude:

- amplitudes in terms of LG covariant spinors: power of Lorentz: uniform description of amplitudes of different spins; Higgsing of massless amplitudes into massive ones
- mature(ing) methods for on-shell derivations of low-energy EFT amplitudes:
- EFT parametrization directly in terms of physical particles, couplings
- operator bases $->$ kinematic spinor structures bases: promising starting point for isolating novel
effects in experiment
- clear distinction between HEFT, SMEFT

Thank you!

