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Abstract
U-duality imposes strong constraints on the structure of UV divergences in supergravity 

But Gaillard-Zumino symplectic Sp(2n, R) duality in 4D has more symmetries than U-duality
(n is a number of vectors)

For example, in N=8, Sp(56) has a dimension of 1596, whereas the dimension of its U-duality
subgroup E7(7) is 133.

In comparison, in D > 4 maximal duality symmetry is U-duality, there are no enhanced dualities

We argue that the extra dualities, enhancing U-dualities, determine the properties of 
perturbative quantum supergravity, being implemented into a Hamiltonian  path integral

The presence/absence of enhanced dualities suggests a possible explanation of known
amplitude loop computations in D-dimensional N > 4 supergravities and of the special status 
of D = 4 in this respect 
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U-duality imposes strong constraints on the structure of UV divergences in supergravity 

But Gaillard-Zumino symplectic Sp(2n, R) duality in 4D has more symmetries than U-duality
(n is a number of vectors)

For example, in N=8, Sp(56) has a dimension of 1596, whereas the dimension of its U-duality
subgroup E7(7) is 133.

In comparison, in D > 4 maximal duality symmetry is U-duality, there are no enhanced dualities

We argue that the extra dualities, enhancing U-dualities, determine the properties of 
perturbative quantum supergravity, being implemented into a Hamiltonian  path integral

The presence/absence of enhanced dualities suggests a possible explanation of known
amplitude loop computations in D-dimensional N > 4 supergravities and of the special status 
of D = 4 in this respect 

More 4D supergravity amplitude computations are desirable. New amplitude 
computations will show that either perturbative 4D supergravity is as bad as D > 4, 
or it continues to be special due to 4D enhanced symmetries!

Enhanced duality explains enhanced cancellations in N>4 supergravity in 4D



Geometric Superinvariants, candidate counterterms, at the critical loop order
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2 UV divergences and broken local H and global G symmetries

An on-shell superspace construction of D-dimensional G/H supergravity is based on local H-

symmetry and global G-symmetry. Local Lorentz symmetry, together with local H-symmetry,

form the set of symmetries of the tangent space of the on-shell superspace. In D = 4, detailed

constructions are available [10]; in higher D, construction is analogous.

The geometric on-shell superinvariants are available starting from the loop order Lcr.

We have defined Lcr as the loop order where local H-symmetry and global G-symmetry of

the candidate counterterms are available [1]. It was established there that for N � 5 D-

dimensional supergravity superinvariants with local H-symmetry and global G-symmetry are

available starting with

Lcr =
2N + n

(D � 2)
, n � 0 . (2.1)

In particular, in D = 4, Lcr = N and Lcr = 8, 6, 5 for N = 8, 6, 5 respectively [13]. In each

case in (2.1), we need to find a minimal value of n, which makes Lcr an integer2. The result for

Lcr for the case of maximal supergravity is shown below. We also show the computational data

in D-dimensional supergravities [14], at which loop order in each dimension UV divergence

was detected

D = 4, Lcr = 8 : 14
ˆ

d4 xD10R4 + . . . n = 0

D = 5, Lcr = 6 : 10
ˆ

d5 xD12R4 + . . . n = 2 LUV = 5 < Lcr = 6

D = 6, Lcr = 4 : 6
ˆ

d6 xD10R4 + . . . n = 0 LUV = 3 < Lcr = 4

D = 7, Lcr = 4 : 6
ˆ

d7 xD14R4 + . . . n = 4 LUV = 2 < Lcr = 4

D = 8, Lcr = 3 : 4
ˆ

d8 xD12R4 + . . . n = 3 LUV = 1 < Lcr = 3

D = 9, Lcr = 3 : 4
ˆ

d9 xD15R4 + . . . n = 5 LUV = 2 < Lcr = 3 (2.2)

The data has revealed a universal feature for all maximal D > 4 supergravities: UV diver-

gences appear at the loop order below critical. Thus, all UV divergences in maximal D > 4

supergravities imply that the local H-symmetry and global G-symmetry are broken: the su-

perinvariants supporting these UV divergences are given by the superspace integrals with the

volume of integration, which is a subspace of the total supervolume [1].

The loop computations tell us that so far, no UV divergences in 4D at N � 5 below

Lcr were found. For example, in N = 5 there is no UV divergence at L = 4 < Lcr = 5

[15]. There is a striking di↵erence between the D=4 and D>4 in the dimension of maximal

2
Supergraity actions with specific global G and local H symmetries are available only in integer dimensions.

– 3 –

G/H coset space 
supergravities
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All D>4 UV divergences are at loop order below critical!
Local H-symmetry and G-symmetry 
must have anomalies!
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Cremmer-Julia 1979 gauge-fixed local H=SU(8) of 4D maximal supergravity in 
the symmetric gauge

They also mention Iwaswa gauge: "The choice of gauge is up to the user; 11D people 
seem to like the "Iwasawa" or triangular gauge best (we have seen that it has a 
remarkable polynomiality). The canonical or symmetrical gauge is more familiar

In KSVP in 2024  we have gauge-fixed different versions of D-dimensional 
supergravities in various gauges.



However, quantum theory is consistent only if these gauges give the same 
S-matrix: the gauge equivalence of all these versions  has to be investigated. 

Cremmer-Julia 1979 gauge-fixed local H=SU(8) of 4D maximal supergravity in 
the symmetric gauge

They also mention Iwaswa gauge: "The choice of gauge is up to the user; 11D people 
seem to like the "Iwasawa" or triangular gauge best (we have seen that it has a 
remarkable polynomiality). The canonical or symmetrical gauge is more familiar

In KSVP in 2024  we have gauge-fixed different versions of D-dimensional 
supergravities in various gauges.

We agree with CJ, the choice of the gauge is up to the user 

The local H-symmetry must be anomaly-free for 
the S-matrix to be independent of the user’s choice!



A Tale of Two Supergravities in dimension D:
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D = 3 D = 4 D = 5 D = 6 D = 7 D = 8 D = 9 D = 10 D = 11

It is not widely recognized that there are two different types of supergravities in dimension D,  with 
the same amount of local supersymmetry.

B. Julia
Group      

Disintegrations

G



A Tale of Two Supergravities in dimension D:

I: Supergravities with global U-duality symmetry G and local H symmetry, where H is the maximal 
compact subgroup of G, physical scalars in  (G/H)D coset space 
all scalars in the action in symmetric H-gauge are  dilatons,
have non-polynomial dependence

4D: Cremmer Julia, 1979 de Wit, Nicolai 1982

6D Tanii,1984   Bergshoeff, Samtleben, Sezgin 2008
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D = 3 D = 4 D = 5 D = 6 D = 7 D = 8 D = 9 D = 10 D = 11

Supergravity I and supergravity II, KSVP

It is not widely recognized that there are two different types of supergravities in dimension D,  with 
the same amount of local supersymmetry.

B. Julia
Group      

Disintegrations

G



A Tale of Two Supergravities in dimension D:

I: Supergravities with global U-duality symmetry G and local H symmetry, where H is the maximal 
compact subgroup of G, physical scalars in  (G/H)D coset space 
all scalars in the action in symmetric H-gauge are  dilatons,
have non-polynomial dependence

II: SupergraviWes dimensionally reduced from higher dimensions D+n, without dualiza*on. These have 
less global and local symmetries: higher dimensions have smaller U-dualiWes and smaller maximal 
subgroups inherited from higher dimensions

Some of the scalars in the acWon necessarily have polynomial dependence: axions

4D: Cremmer Julia, 1979 de Wit, Nicolai 1982

6D Tanii,1984   Bergshoeff, Samtleben, Sezgin 2008
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D = 3 D = 4 D = 5 D = 6 D = 7 D = 8 D = 9 D = 10 D = 11

4D: Andrianopoli,  D’Auria, Ferrara and Lledo, 2002

Supergravity I and supergravity II, KSVP

It is not widely recognized that there are two different types of supergraviWes in dimension D,  with 
the same amount of local supersymmetry.

B. Julia
Group      

Disintegrations

G
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6D Cowdall, 1998



I: Supergravities where all scalars in the action in symmetric gauge 
(dilatons) have non-polynomial dependence

Marcus, 1985 natural physical parameterization of the scalar vielbein is
where      is in a noncompact part of the algebra
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�
any D

G/H coset space

Amplitudes!
Global H-symmetry

anomalies



I: Supergravities where all scalars in the action in symmetric gauge 
(dilatons) have non-polynomial dependence

Marcus, 1985 natural physical parameterization of the scalar vielbein is
where      is in a noncompact part of the algebra
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II: SupergraviQes where some of the scalars in the acQon (axions) necessarily have 
polynomial dependence. Dimensionally reduced (D+n) supergraviQes, no dualizaQon, 
less symmetries:

G/H coset space

Amplitudes!
Global H-symmetry

anomalies

no  global H-symmetry Marcus anomaly?
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Marcus, 1985 natural physical parameterizaWon of the scalar vielbein is
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Andrianopoli, D’Auria, Ferrara, Fr’e, Minasian, Trigiante, 1996

any D

II: SupergraviQes where some of the scalars in the acQon (axions) necessarily have 
polynomial dependence. Dimensionally reduced (D+n) supergraviQes, no dualizaQon, 
less symmetries:

Dimension of abelian nilpotent ideals = min number of axionic scalars in any D in partial Iwasawa gauges  

G/H coset space

Amplitudes!

translational symmetries 
of the scalar manifolds 

<latexit sha1_base64="3XPzrUbYoWGxgCbMlHElRzY8FZs=">AAAB73icdVDLSgMxFM3UV62vqks3wSIIwjApbafdFe3CZQX7gHYomTTThmYyY5IRytCfcONCEbf+jjv/xvQhqOiBwOGce8k9x485U9pxPqzM2vrG5lZ2O7ezu7d/kD88aqsokYS2SMQj2fWxopwJ2tJMc9qNJcWhz2nHn1zN/c49lYpF4lZPY+qFeCRYwAjWRuo2LlBfR7AxyBcc23HLJbcGHRuhYq1aNMR1HVQpQ2Q7CxTACs1B/r0/jEgSUqEJx0r1kBNrL8VSM8LpLNdPFI0xmeAR7RkqcEiVly7uncEzowxhEEnzhIYL9ftGikOlpqFvJkOsx+q3Nxf/8nqJDqpeykScaCrI8qMg4dBEnIeHQyYp0XxqCCaSmVshGWOJiTYV5UwJX0nh/6RdtFHFrtyUCvXLVR1ZcAJOwTlAwAV1cA2aoAUI4OABPIFn6856tF6s1+VoxlrtHIMfsN4+ASEVj2k=</latexit>

D + 1 ! D

Global H-symmetry
anomalies

For every D

no  global H-symmetry Marcus anomaly?



Cremmer Julia, 1979 de Wit, Nicolai 1982
4D supergravity I

4D supergravity II

Andrianopoli,  D’Auria, Ferrara and Lledo, 2002
Sezgin, Nieuwenhuizen, 1982
Cremmer, Scherk, Schwarz, 1979

5D  supergravity compactified on a circle,
in the limit of vanishing masses/gaugings
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Cremmer Julia, 1979 de Wit, Nicolai 1982
4D supergravity I

4D supergravity II

Andrianopoli,  D’Auria, Ferrara and Lledo, 2002
Sezgin, Nieuwenhuizen, 1982
Cremmer, Scherk, Schwarz, 1979

5D  supergravity compactified on a circle,
in the limit of vanishing masses/gaugings

Both have maximal 4D N=8 local supersymmetry
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Cremmer Julia, 1979 de Wit, Nicolai 1982
4D supergravity I

4D supergravity II

Andrianopoli,  D’Auria, Ferrara and Lledo, 2002
Sezgin, Nieuwenhuizen, 1982
Cremmer, Scherk, Schwarz, 1979

5D  supergravity compactified on a circle,
in the limit of vanishing masses/gaugings

Both have maximal 4D N=8 local supersymmetry

Non-BPS N=8 extremal
black holes: one of the 
N=8 aaractors with finite 
area of the horizon
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Symmetric, Iwasawa and partial Iwasawa unitary gauges 

Another version of 6D maximal supergravity was derived in [29] from 7D gauged maximal

supergravity in [32]. There are 2 steps involved in 7D! 6D in [29] comparing with 5D! 4D

in [30], [28]. First, in [29] the gauged theory was reduced to 6D, as in [30] from 5D to 4D.

Secondly, the limit to ungauged 6D supergravity was taken in [29], as in [28] in 4D. The

action in [29] still has a local SO(5) symmetry and 35=10+1+24 scalars are :

BIJ , �, ⇧ j
I (5.18)

The scalar part of the action is

1

e
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where

Pµij = ⇧�1 I
(i @µ⇧Ij) (5.20)

The action in [29] has SL(5,R) symmetry with 24 generators, inherited from 7D. The 10

axions BIJ originate from 7D vector AIJ
7 = BIJ , � is related to an extra circle, and 24 scalars

⇧ j
I represent a 7D SL(5,R) vielbein.

There are 5 2-index antisymmetric tensor potentials Cµ⌫ I and 16=10+5+1 vector fields

BµI
J , SµI , Aµ in 6D ungauged supergravity in [29] with kinetic terms depending on scalars in

(5.18).

The local SO(5) symmetry can be gauge-fixed, as we show later so that only 25 phys-

ical scalars remain, BIJ , � as well as 14 representatives of the coset space SL(5,R)
SO(5) . The

corresponding triangular and parabolic gauges will be presented below.

6 Symmetric, parabolic/triangular and partial Iwasawa unitary gauges

In supergravities with physical scalars in G/H coset space, the Lie algebra g of a group G can

be decomposed into two orthogonal subspaces: the Lie algebra h of a group H and a coset

space k. Here H is the maximal compact group in G.

g = h� k [h, h] ⇢ h ; [h, k] ⇢ k ; [k, k] ⇢ h� k (6.1)

The gauged supergravity reviews [9, 11–13, 15] which we will use here have the following

features. In [11, 12, 15] one starts with ungauged supergravity with a local H symmetry and

global G symmetry, both independent and linearly realized. The action depends on scalars

which form a fundamental representation of G, for example 133 in maximal 4D with G=E7(7) ,

and 45 scalars in 6D with G=E5(5) . These scalars parametrize a G-valued matrix V(x) which
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The local SO(5) symmetry can be gauge-fixed, as we show later so that only 25 phys-

ical scalars remain, BIJ , � as well as 14 representatives of the coset space SL(5,R)
SO(5) . The

corresponding triangular and parabolic gauges will be presented below.

6 Symmetric, parabolic/triangular and partial Iwasawa unitary gauges

In supergravities with physical scalars in G/H coset space, the Lie algebra g of a group G can

be decomposed into two orthogonal subspaces: the Lie algebra h of a group H and a coset

space k. Here H is the maximal compact group in G.

g = h� k [h, h] ⇢ h ; [h, k] ⇢ k ; [k, k] ⇢ h� k (6.1)

The gauged supergravity reviews [9, 11–13, 15] which we will use here have the following

features. In [11, 12, 15] one starts with ungauged supergravity with a local H symmetry and

global G symmetry, both independent and linearly realized. The action depends on scalars

which form a fundamental representation of G, for example 133 in maximal 4D with G=E7(7) ,

and 45 scalars in 6D with G=E5(5) . These scalars parametrize a G-valued matrix V(x) which
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1. Symmetric gauges
These correspond to  a generalization of the polar decomposition of a 
linear matrix into a product of the orthogonal and asymmetric matrix 

of the polar decomposition of a linear matrix into a product of the orthogonal and a symmetric

matrix

V = e�·⌃e✓·⇤ (6.3)

Here ⇤ are the generators of the H group and ⌃ are the coset generators. A symmetric gauge

is a choice

✓ = 0 (6.4)

We also discuss triangular, Iwasawa gauges, which can be also called parabolic gauges: these

include triangular gauges discussed in [1, 12] and presented in details with numerous examples

in [6]. The parabolic gauges which will be relevant in our discussion of D and D+1 super-

gravities come in two versions. These involve Borel subalgebra of the algebra of the group

G, or they can also be described in terms of the solvable Lie group and using the solvable

parametrization of the coset space G/H [13]. In [6] the definition of triangular gauges is that

all of the cosets are taken in the triangular form using Iwasawa decomposition.

There is also a class of gauges where not all of the cosets are taken in the triangular form

using Iwasawa decomposition. They are partially “Iwasawa” type.

We will see that the reason for these two type of parabolic gauges is the fact that in

dimension D+1, the scalars are in GD+1/HD+1. The local symmetry in D+1 is HD+1. One
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where Kr is a basis of the coset algebra All scalars occur in the action non-
polynomiallythe on shell Lagrangian has global H-invariance 

Coset 
generators
are not in a 
subalgebra of G 



Symmetric, Iwasawa and par<al Iwasawa unitary gauges 

Another version of 6D maximal supergravity was derived in [29] from 7D gauged maximal

supergravity in [32]. There are 2 steps involved in 7D! 6D in [29] comparing with 5D! 4D

in [30], [28]. First, in [29] the gauged theory was reduced to 6D, as in [30] from 5D to 4D.

Secondly, the limit to ungauged 6D supergravity was taken in [29], as in [28] in 4D. The

action in [29] still has a local SO(5) symmetry and 35=10+1+24 scalars are :

BIJ , �, ⇧ j
I (5.18)

The scalar part of the action is

1

e
Lsc

7D!6D
= �1

2
e

4�p
10 (⇧ i

I ⇧ j
J @µB

IJ)2 � 1

2
(@µ�)

2 � PµijP
µij (5.19)

where

Pµij = ⇧�1 I
(i @µ⇧Ij) (5.20)

The action in [29] has SL(5,R) symmetry with 24 generators, inherited from 7D. The 10

axions BIJ originate from 7D vector AIJ
7 = BIJ , � is related to an extra circle, and 24 scalars

⇧ j
I represent a 7D SL(5,R) vielbein.

There are 5 2-index antisymmetric tensor potentials Cµ⌫ I and 16=10+5+1 vector fields

BµI
J , SµI , Aµ in 6D ungauged supergravity in [29] with kinetic terms depending on scalars in

(5.18).

The local SO(5) symmetry can be gauge-fixed, as we show later so that only 25 phys-

ical scalars remain, BIJ , � as well as 14 representatives of the coset space SL(5,R)
SO(5) . The

corresponding triangular and parabolic gauges will be presented below.

6 Symmetric, parabolic/triangular and partial Iwasawa unitary gauges

In supergravities with physical scalars in G/H coset space, the Lie algebra g of a group G can

be decomposed into two orthogonal subspaces: the Lie algebra h of a group H and a coset

space k. Here H is the maximal compact group in G.

g = h� k [h, h] ⇢ h ; [h, k] ⇢ k ; [k, k] ⇢ h� k (6.1)

The gauged supergravity reviews [9, 11–13, 15] which we will use here have the following

features. In [11, 12, 15] one starts with ungauged supergravity with a local H symmetry and

global G symmetry, both independent and linearly realized. The action depends on scalars

which form a fundamental representation of G, for example 133 in maximal 4D with G=E7(7) ,

and 45 scalars in 6D with G=E5(5) . These scalars parametrize a G-valued matrix V(x) which
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1. Symmetric gauges
These correspond to  a generalization of the polar decomposition of a 
linear matrix into a product of the orthogonal and asymmetric matrix 

of the polar decomposition of a linear matrix into a product of the orthogonal and a symmetric

matrix

V = e�·⌃e✓·⇤ (6.3)

Here ⇤ are the generators of the H group and ⌃ are the coset generators. A symmetric gauge

is a choice

✓ = 0 (6.4)

We also discuss triangular, Iwasawa gauges, which can be also called parabolic gauges: these

include triangular gauges discussed in [1, 12] and presented in details with numerous examples

in [6]. The parabolic gauges which will be relevant in our discussion of D and D+1 super-

gravities come in two versions. These involve Borel subalgebra of the algebra of the group

G, or they can also be described in terms of the solvable Lie group and using the solvable

parametrization of the coset space G/H [13]. In [6] the definition of triangular gauges is that

all of the cosets are taken in the triangular form using Iwasawa decomposition.

There is also a class of gauges where not all of the cosets are taken in the triangular form

using Iwasawa decomposition. They are partially “Iwasawa” type.

We will see that the reason for these two type of parabolic gauges is the fact that in

dimension D+1, the scalars are in GD+1/HD+1. The local symmetry in D+1 is HD+1. One

can gauge-fix HD+1 either in the triangular, Iwasawa gauge or in a symmetric gauge. In

dimension D the 1st choice will produce a triangular Iwasawa gauge, the second choice will

produce a partial Iwasawa gauge. The simplest example of this partial Iwasawa gauge one

can see in the 4D maximal supergravity action in [28]. This is a limit of the action in [30]

when all parameters mi ! 0.

• Symmetric gauge

In symmetric gauge

Vsym(�r) = e�
rKr 2 exp(k) r = 1, . . . , nsc (6.5)

where {Kr} is a basis of the coset algebra k defined in (6.1). Note that this coset

representative in the symmetric gauge is not a group element since k does not form

a closed algebra. However, in symmetric gauge, the scalars �r transform in a linear

representation of the maximal compact subgroup H ⇢ G, and global H-invariance of

the Lagrangian is manifest. The 1-loop anomalies of global H-symmetry in this gauge

were computed in [35].

• Triangular Iwasawa parabolic gauges
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where Kr is a basis of the coset algebra

All amplitude computations fit supergravities in symmetric gauges: there is global 
SU(8) in 4D  superamplitudes and global USp(4)xUSp(4) in 6D etc

All scalars occur in the action non-
polynomiallythe on shell Lagrangian has global H-invariance 

Coset 
generators
are not in a 
subalgebra of G 



2. Iwasawa gauge of the local H-symmetry : the right node deleted from the Dynkin diagram 
of E11-D : in this gauge the theory is related to compactified D+1 supergravity

3. ParUal Iwasawa gauge of local H-symmetry, where the related D+1 theory was gauge-
fixed in the symmetric gauge for (G/H)D+1 before compacQficaQon on a circle of the theory 
from D+1 to D dimensions was performed.

In this gauge there is no global E7 or E5, these are broken, at best it is E6 or E4

Marcus computation of global H-symmetry anomaly is relevant in symmetric gauges, 
but not in Iwasawa-type gauges, unless on shell the observables in these gauges are 
equivalent. 
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Simple roots:
Eα1 = −x2∂4 − x5∂7 − x9∂8,

Eα2 = −x1∂2 − x3∂5 − x6∂9,

Eα3 = −x0∂1 + i(x5x8 − x7x9)/y,

Eα4 = −x1∂3 − x2∂5 − x4∂7,

Eα5 = −x3∂6 − x5∂9 − x7∂8,

E−α1 = x4∂2 + x7∂5 + x8∂9,

E−α2 = x2∂1 + x5∂3 + x9∂6,

E−α3 = x1∂0 − iy(∂5∂8 − ∂7∂9),

E−α4 = x3∂1 + x5∂2 + x7∂4,

E−α5 = x6∂3 + x8∂7 + x9∂5.

A.4. E7. Dynkin diagram:

❣ ❣ ❣ ❣ ❣ ❣

1
β0

3
α2

4
α3

5
α4

6
α5

7
α6

❣2 α1

.

Positive roots:
α1 = (0, 1, 0, 0, 0, 0, 0) = A(α1),
α2 = (0, 0, 1, 0, 0, 0, 0) = A(β1),
α3 = (0, 0, 0, 1, 0, 0, 0) = A(α3),
α4 = (0, 0, 0, 0, 1, 0, 0) = A(α4),
α5 = (0, 0, 0, 0, 0, 1, 0) = A(α5),
α6 = (0, 0, 0, 0, 0, 0, 1) = A(α6),
α7 = (0, 1, 0, 1, 0, 0, 0) = A(α7),
α8 = (0, 0, 1, 1, 0, 0, 0) = A(β2),
α9 = (0, 0, 0, 1, 1, 0, 0) = A(α9),
α10 = (0, 0, 0, 0, 1, 1, 0) = A(α10),
α11 = (0, 0, 0, 0, 0, 1, 1) = A(α11),
α12 = (0, 1, 1, 1, 0, 0, 0) = A(β3),
α13 = (0, 1, 0, 1, 1, 0, 0) = A(α13),
α14 = (0, 0, 1, 1, 1, 0, 0) = A(β4),
α15 = (0, 0, 0, 1, 1, 1, 0) = A(α15),
α16 = (0, 0, 0, 0, 1, 1, 1) = A(α16),
α17 = (0, 1, 1, 1, 1, 0, 0) = A(β5),
α18 = (0, 1, 0, 1, 1, 1, 0) = A(α18),
α19 = (0, 0, 1, 1, 1, 1, 0) = A(β6),
α20 = (0, 0, 0, 1, 1, 1, 1) = A(α20),
α21 = (0, 1, 1, 2, 1, 0, 0) = A(β7),
α22 = (0, 1, 1, 1, 1, 1, 0) = A(β8),
α23 = (0, 1, 0, 1, 1, 1, 1) = A(α23),
α24 = (0, 0, 1, 1, 1, 1, 1) = A(β9),
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A.3. E6 . Dynkin diagram:

❣ ❣ ❣ ❣ ❣

1
α1

3
α2

4
α3

5
α4

6
α5

❣2 β0

.

Positive roots:
α1 = (1, 0, 0, 0, 0, 0) = A(α1),
α2 = (0, 0, 1, 0, 0, 0) = A(α2),
α3 = (0, 0, 0, 1, 0, 0) = A(β1),
α4 = (0, 0, 0, 0, 1, 0) = A(α4),
α5 = (0, 0, 0, 0, 0, 1) = A(α5),
α6 = (1, 0, 1, 0, 0, 0) = A(α6),
α7 = (0, 0, 1, 1, 0, 0) = A(β2),

α8 = (0, 0, 0, 1, 1, 0) = A(β3),
α9 = (0, 0, 0, 0, 1, 1) = A(α9),
α10 = (1, 0, 1, 1, 0, 0) = A(β4),
α11 = (0, 0, 1, 1, 1, 0) = A(β5),
α12 = (0, 0, 0, 1, 1, 1) = A(β6),
α13 = (1, 0, 1, 1, 1, 0) = A(β7),
α14 = (0, 0, 1, 1, 1, 1) = A(β9),
α15 = (1, 0, 1, 1, 1, 1) = A(β8),

β0 = (0, 1, 0, 0, 0, 0), γ0 = (1, 1, 2, 3, 2, 1),
β1 = (0, 1, 0, 1, 0, 0), γ1 = (1, 1, 2, 2, 2, 1),
β2 = (0, 1, 1, 1, 0, 0), γ2 = (1, 1, 1, 2, 2, 1),
β3 = (0, 1, 0, 1, 1, 0), γ3 = (1, 1, 2, 2, 1, 1),
β4 = (1, 1, 1, 1, 0, 0), γ4 = (0, 1, 1, 2, 2, 1),
β5 = (0, 1, 1, 1, 1, 0), γ5 = (1, 1, 1, 2, 1, 1),
β6 = (0, 1, 0, 1, 1, 1), γ6 = (1, 1, 2, 2, 1, 0),
β7 = (1, 1, 1, 1, 1, 0), γ7 = (0, 1, 1, 2, 1, 1),
β8 = (1, 1, 1, 1, 1, 1), γ8 = (0, 1, 1, 2, 1, 0),
β9 = (0, 1, 1, 1, 1, 1), γ9 = (1, 1, 1, 2, 1, 0),

ω = (1, 2, 2, 3, 2, 1) = A(γ0).

Cubic form:
I3 = −x1x5x8 + x1x7x9 + x2x3x8 − x2x6x7 − x3x4x9 + x4x5x6.

Cartan generators:
Hβ0 = −y∂ + x0∂0,

Hα1 = −x2∂2 + x4∂4 − x5∂5 + x7∂7 + x8∂8 − x9∂9,

Hα2 = −x1∂1 + x2∂2 − x3∂3 + x5∂5 − x6∂6 + x9∂9,

Hα3 = −2− x0∂0 + x1∂1 − x5∂5 − x7∂7 − x8∂8 − x9∂9,

Hα4 = −x1∂1 − x2∂2 + x3∂3 − x4∂4 + x5∂5 + x7∂7,

Hα5 = −x3∂3 − x5∂5 + x6∂6 − x7∂7 + x8∂8 + x9∂9.

E7

E6

E5 =D5

E4=SL(5)
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A.2. D5. Dynkin diagram:

❣ ❣ ❣ ❣

1
α1

2
β0

3
α2

5
α4

❣4 α3

.

Positive roots:
α1 = (1, 0, 0, 0, 0) = A(β1),
α2 = (0, 0, 1, 0, 0) = A(β2),
α3 = (0, 0, 0, 1, 0) = A(α3),
α4 = (0, 0, 0, 0, 1) = A(α4),
α5 = (0, 0, 1, 1, 0) = A(β4),
α6 = (0, 0, 1, 0, 1) = A(β5),
α7 = (0, 0, 1, 1, 1) = A(β3).

β0 = (0, 1, 0, 0, 0), γ0 = (1, 1, 2, 1, 1),
β1 = (1, 1, 0, 0, 0), γ1 = (0, 1, 2, 1, 1),
β2 = (0, 1, 1, 0, 0), γ2 = (1, 1, 1, 1, 1),
β3 = (0, 1, 1, 1, 1), γ3 = (1, 1, 1, 0, 0),
β4 = (0, 1, 1, 1, 0), γ4 = (1, 1, 1, 0, 1),
β5 = (0, 1, 1, 0, 1), γ5 = (1, 1, 1, 1, 0),

ω = (1, 2, 2, 1, 1) = A(γ0).

Cubic form:
I3 = x1(x2x3 − x4x5).

Cartan generators:

Hβ0 = −y∂ + x0∂0,

Hα1 = −2− x0∂0 + x1∂1 − x2∂2 − x3∂3 − x4∂4 − x5∂5,

Hα2 = −1− x0∂0 − x1∂1 + x2∂2 − x3∂3,

Hα3 = −x2∂2 + x3∂3 + x4∂4 − x5∂5,

Hα4 = −x2∂2 + x3∂3 − x4∂4 + x5∂5.

Simple roots:

Eα1 = −x0∂1 − i(x2x3 − x4x5)/y,

Eα2 = −x0∂2 − ix1x3/y,

Eα3 = x2∂4 + x5∂3,

Eα4 = −x2∂5 − x4∂3,

E−α1 = x1∂0 + iy (∂2∂3 − ∂4∂5),

E−α2 = x2∂0 + iy ∂1∂3,

E−α3 = −x3∂5 − x4∂2,

E−α4 = x3∂4 + x5∂2.
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A.1. An. Dynkin diagram:

❣ ❣ ❣ ❣ ❣

1
β0

2
α1

3
α2

. . .

. . .
n

αn−1

.

Positive roots:

α1 = (0, 1, 0, . . . , 0, 0 ) = A(β1),

α2 = (0, 0, 1, . . . , 0, 0 )
... (0, 0, 0,

. . . , 0, 0 )
αn−2 = (0, 0, 0, . . . , 1, 0 ),

αn−1 = (0, 1, 1, 0, . . . , 0 ) = A(β2)
αn = (0, 0, 1, 1, 0, 0 )

... (0, 0, 0,
. . . ,

. . . , 0 )
α2n−5 = (0, 0, . . . , 1, 1, 0 )

...
α(n−1)(n−2)/2 = (0, 1, . . . , 1, 1, 0 ) = A(βn−2),

β0 = (1, 0, 0, 0, 0) γ0 = (0, 1, . . . , 1, 1)
β1 = (1, 1, 0, 0, 0) γ1 = (0, 0, 1, . . . , 1)
... (

...,
...,

. . . , 0, 0)
... (0, 0, . . . ,

. . . , 1)
βn−2 = (1, 1, . . . , 1, 0) γn−2 = (0, 0, . . . , 0, 1),

ω = (1, 1, . . . , 1, 1) = A(γ0).

Cartan generators (ν = (n + 1)/2 in the standard minimal rep):

Hβ0 = −y∂ + x0∂0,

Hα1 = −x0∂0 + x1∂1,

Hα2 = −x1∂1 + x2∂2,

...

Hαn−2 = −xn−3∂n−3 + xn−2∂n−2,

Hγn−2 = −ν − y∂ − x0∂0 − · · · − xn−3∂n−3 − 2xn−2∂n−2.

Simple roots:

Eα1 = x0∂1 , E−α1 = x1∂0,

Eα2 = x1∂2 , E−α2 = x2∂1
... = ...

... = ...

Eαn−2 = xn−3∂n−2, E−αn−2 = xn−2∂n−3.

4
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2. Iwasawa gauge of the local H-symmetry : the right node deleted from the Dynkin diagram 
of E11-D : in this gauge the theory is related to compactified D+1 supergravity

3. Partial Iwasawa gauge of local H-symmetry, where the related D+1 theory was gauge-
fixed in the symmetric gauge for (G/H)D+1 before compactification on a circle of the theory 
from D+1 to D dimensions was performed.

In this gauge there is no global E7 or E5, these are broken, at best it is E6 or E4

Marcus computation of global H-symmetry anomaly is relevant in symmetric gauges, 
but not in Iwasawa-type gauges, unless on shell the observables in these gauges are 
equivalent. 
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Simple roots:
Eα1 = −x2∂4 − x5∂7 − x9∂8,

Eα2 = −x1∂2 − x3∂5 − x6∂9,

Eα3 = −x0∂1 + i(x5x8 − x7x9)/y,

Eα4 = −x1∂3 − x2∂5 − x4∂7,

Eα5 = −x3∂6 − x5∂9 − x7∂8,

E−α1 = x4∂2 + x7∂5 + x8∂9,

E−α2 = x2∂1 + x5∂3 + x9∂6,

E−α3 = x1∂0 − iy(∂5∂8 − ∂7∂9),

E−α4 = x3∂1 + x5∂2 + x7∂4,

E−α5 = x6∂3 + x8∂7 + x9∂5.

A.4. E7. Dynkin diagram:

❣ ❣ ❣ ❣ ❣ ❣

1
β0

3
α2

4
α3

5
α4

6
α5

7
α6

❣2 α1

.

Positive roots:
α1 = (0, 1, 0, 0, 0, 0, 0) = A(α1),
α2 = (0, 0, 1, 0, 0, 0, 0) = A(β1),
α3 = (0, 0, 0, 1, 0, 0, 0) = A(α3),
α4 = (0, 0, 0, 0, 1, 0, 0) = A(α4),
α5 = (0, 0, 0, 0, 0, 1, 0) = A(α5),
α6 = (0, 0, 0, 0, 0, 0, 1) = A(α6),
α7 = (0, 1, 0, 1, 0, 0, 0) = A(α7),
α8 = (0, 0, 1, 1, 0, 0, 0) = A(β2),
α9 = (0, 0, 0, 1, 1, 0, 0) = A(α9),
α10 = (0, 0, 0, 0, 1, 1, 0) = A(α10),
α11 = (0, 0, 0, 0, 0, 1, 1) = A(α11),
α12 = (0, 1, 1, 1, 0, 0, 0) = A(β3),
α13 = (0, 1, 0, 1, 1, 0, 0) = A(α13),
α14 = (0, 0, 1, 1, 1, 0, 0) = A(β4),
α15 = (0, 0, 0, 1, 1, 1, 0) = A(α15),
α16 = (0, 0, 0, 0, 1, 1, 1) = A(α16),
α17 = (0, 1, 1, 1, 1, 0, 0) = A(β5),
α18 = (0, 1, 0, 1, 1, 1, 0) = A(α18),
α19 = (0, 0, 1, 1, 1, 1, 0) = A(β6),
α20 = (0, 0, 0, 1, 1, 1, 1) = A(α20),
α21 = (0, 1, 1, 2, 1, 0, 0) = A(β7),
α22 = (0, 1, 1, 1, 1, 1, 0) = A(β8),
α23 = (0, 1, 0, 1, 1, 1, 1) = A(α23),
α24 = (0, 0, 1, 1, 1, 1, 1) = A(β9),
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A.3. E6 . Dynkin diagram:

❣ ❣ ❣ ❣ ❣

1
α1

3
α2

4
α3

5
α4

6
α5

❣2 β0

.

Positive roots:
α1 = (1, 0, 0, 0, 0, 0) = A(α1),
α2 = (0, 0, 1, 0, 0, 0) = A(α2),
α3 = (0, 0, 0, 1, 0, 0) = A(β1),
α4 = (0, 0, 0, 0, 1, 0) = A(α4),
α5 = (0, 0, 0, 0, 0, 1) = A(α5),
α6 = (1, 0, 1, 0, 0, 0) = A(α6),
α7 = (0, 0, 1, 1, 0, 0) = A(β2),

α8 = (0, 0, 0, 1, 1, 0) = A(β3),
α9 = (0, 0, 0, 0, 1, 1) = A(α9),
α10 = (1, 0, 1, 1, 0, 0) = A(β4),
α11 = (0, 0, 1, 1, 1, 0) = A(β5),
α12 = (0, 0, 0, 1, 1, 1) = A(β6),
α13 = (1, 0, 1, 1, 1, 0) = A(β7),
α14 = (0, 0, 1, 1, 1, 1) = A(β9),
α15 = (1, 0, 1, 1, 1, 1) = A(β8),

β0 = (0, 1, 0, 0, 0, 0), γ0 = (1, 1, 2, 3, 2, 1),
β1 = (0, 1, 0, 1, 0, 0), γ1 = (1, 1, 2, 2, 2, 1),
β2 = (0, 1, 1, 1, 0, 0), γ2 = (1, 1, 1, 2, 2, 1),
β3 = (0, 1, 0, 1, 1, 0), γ3 = (1, 1, 2, 2, 1, 1),
β4 = (1, 1, 1, 1, 0, 0), γ4 = (0, 1, 1, 2, 2, 1),
β5 = (0, 1, 1, 1, 1, 0), γ5 = (1, 1, 1, 2, 1, 1),
β6 = (0, 1, 0, 1, 1, 1), γ6 = (1, 1, 2, 2, 1, 0),
β7 = (1, 1, 1, 1, 1, 0), γ7 = (0, 1, 1, 2, 1, 1),
β8 = (1, 1, 1, 1, 1, 1), γ8 = (0, 1, 1, 2, 1, 0),
β9 = (0, 1, 1, 1, 1, 1), γ9 = (1, 1, 1, 2, 1, 0),

ω = (1, 2, 2, 3, 2, 1) = A(γ0).

Cubic form:
I3 = −x1x5x8 + x1x7x9 + x2x3x8 − x2x6x7 − x3x4x9 + x4x5x6.

Cartan generators:
Hβ0 = −y∂ + x0∂0,

Hα1 = −x2∂2 + x4∂4 − x5∂5 + x7∂7 + x8∂8 − x9∂9,

Hα2 = −x1∂1 + x2∂2 − x3∂3 + x5∂5 − x6∂6 + x9∂9,

Hα3 = −2− x0∂0 + x1∂1 − x5∂5 − x7∂7 − x8∂8 − x9∂9,

Hα4 = −x1∂1 − x2∂2 + x3∂3 − x4∂4 + x5∂5 + x7∂7,

Hα5 = −x3∂3 − x5∂5 + x6∂6 − x7∂7 + x8∂8 + x9∂9.

E7

E6

E5 =D5

E4=SL(5)
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A.2. D5. Dynkin diagram:

❣ ❣ ❣ ❣

1
α1

2
β0

3
α2

5
α4

❣4 α3

.

Positive roots:
α1 = (1, 0, 0, 0, 0) = A(β1),
α2 = (0, 0, 1, 0, 0) = A(β2),
α3 = (0, 0, 0, 1, 0) = A(α3),
α4 = (0, 0, 0, 0, 1) = A(α4),
α5 = (0, 0, 1, 1, 0) = A(β4),
α6 = (0, 0, 1, 0, 1) = A(β5),
α7 = (0, 0, 1, 1, 1) = A(β3).

β0 = (0, 1, 0, 0, 0), γ0 = (1, 1, 2, 1, 1),
β1 = (1, 1, 0, 0, 0), γ1 = (0, 1, 2, 1, 1),
β2 = (0, 1, 1, 0, 0), γ2 = (1, 1, 1, 1, 1),
β3 = (0, 1, 1, 1, 1), γ3 = (1, 1, 1, 0, 0),
β4 = (0, 1, 1, 1, 0), γ4 = (1, 1, 1, 0, 1),
β5 = (0, 1, 1, 0, 1), γ5 = (1, 1, 1, 1, 0),

ω = (1, 2, 2, 1, 1) = A(γ0).

Cubic form:
I3 = x1(x2x3 − x4x5).

Cartan generators:

Hβ0 = −y∂ + x0∂0,

Hα1 = −2− x0∂0 + x1∂1 − x2∂2 − x3∂3 − x4∂4 − x5∂5,

Hα2 = −1− x0∂0 − x1∂1 + x2∂2 − x3∂3,

Hα3 = −x2∂2 + x3∂3 + x4∂4 − x5∂5,

Hα4 = −x2∂2 + x3∂3 − x4∂4 + x5∂5.

Simple roots:

Eα1 = −x0∂1 − i(x2x3 − x4x5)/y,

Eα2 = −x0∂2 − ix1x3/y,

Eα3 = x2∂4 + x5∂3,

Eα4 = −x2∂5 − x4∂3,

E−α1 = x1∂0 + iy (∂2∂3 − ∂4∂5),

E−α2 = x2∂0 + iy ∂1∂3,

E−α3 = −x3∂5 − x4∂2,

E−α4 = x3∂4 + x5∂2.
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A.1. An. Dynkin diagram:

❣ ❣ ❣ ❣ ❣

1
β0

2
α1

3
α2

. . .

. . .
n

αn−1

.

Positive roots:

α1 = (0, 1, 0, . . . , 0, 0 ) = A(β1),

α2 = (0, 0, 1, . . . , 0, 0 )
... (0, 0, 0,

. . . , 0, 0 )
αn−2 = (0, 0, 0, . . . , 1, 0 ),

αn−1 = (0, 1, 1, 0, . . . , 0 ) = A(β2)
αn = (0, 0, 1, 1, 0, 0 )

... (0, 0, 0,
. . . ,

. . . , 0 )
α2n−5 = (0, 0, . . . , 1, 1, 0 )

...
α(n−1)(n−2)/2 = (0, 1, . . . , 1, 1, 0 ) = A(βn−2),

β0 = (1, 0, 0, 0, 0) γ0 = (0, 1, . . . , 1, 1)
β1 = (1, 1, 0, 0, 0) γ1 = (0, 0, 1, . . . , 1)
... (

...,
...,

. . . , 0, 0)
... (0, 0, . . . ,

. . . , 1)
βn−2 = (1, 1, . . . , 1, 0) γn−2 = (0, 0, . . . , 0, 1),

ω = (1, 1, . . . , 1, 1) = A(γ0).

Cartan generators (ν = (n + 1)/2 in the standard minimal rep):

Hβ0 = −y∂ + x0∂0,

Hα1 = −x0∂0 + x1∂1,

Hα2 = −x1∂1 + x2∂2,

...

Hαn−2 = −xn−3∂n−3 + xn−2∂n−2,

Hγn−2 = −ν − y∂ − x0∂0 − · · · − xn−3∂n−3 − 2xn−2∂n−2.

Simple roots:

Eα1 = x0∂1 , E−α1 = x1∂0,

Eα2 = x1∂2 , E−α2 = x2∂1
... = ...

... = ...

Eαn−2 = xn−3∂n−2, E−αn−2 = xn−2∂n−3.

4
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2. Iwasawa gauge of the local H-symmetry : the right node deleted from the Dynkin diagram 
of E11-D : in this gauge the theory is related to compactified D+1 supergravity

3. ParUal Iwasawa gauge of local H-symmetry, where the related D+1 theory was gauge-
fixed in the symmetric gauge for (G/H)D+1 before compacQficaQon on a circle of the theory 
from D+1 to D dimensions was performed.

In this gauge there is no global E7 or E5, these are broken, at best it is E6 or E4

Marcus computation of global H-symmetry anomaly is relevant in symmetric gauges, 
but not in Iwasawa-type gauges, unless on shell the observables in these gauges are 
equivalent. 
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Simple roots:
Eα1 = −x2∂4 − x5∂7 − x9∂8,

Eα2 = −x1∂2 − x3∂5 − x6∂9,

Eα3 = −x0∂1 + i(x5x8 − x7x9)/y,

Eα4 = −x1∂3 − x2∂5 − x4∂7,

Eα5 = −x3∂6 − x5∂9 − x7∂8,

E−α1 = x4∂2 + x7∂5 + x8∂9,

E−α2 = x2∂1 + x5∂3 + x9∂6,

E−α3 = x1∂0 − iy(∂5∂8 − ∂7∂9),

E−α4 = x3∂1 + x5∂2 + x7∂4,

E−α5 = x6∂3 + x8∂7 + x9∂5.

A.4. E7. Dynkin diagram:

❣ ❣ ❣ ❣ ❣ ❣

1
β0

3
α2

4
α3

5
α4

6
α5

7
α6

❣2 α1

.

Positive roots:
α1 = (0, 1, 0, 0, 0, 0, 0) = A(α1),
α2 = (0, 0, 1, 0, 0, 0, 0) = A(β1),
α3 = (0, 0, 0, 1, 0, 0, 0) = A(α3),
α4 = (0, 0, 0, 0, 1, 0, 0) = A(α4),
α5 = (0, 0, 0, 0, 0, 1, 0) = A(α5),
α6 = (0, 0, 0, 0, 0, 0, 1) = A(α6),
α7 = (0, 1, 0, 1, 0, 0, 0) = A(α7),
α8 = (0, 0, 1, 1, 0, 0, 0) = A(β2),
α9 = (0, 0, 0, 1, 1, 0, 0) = A(α9),
α10 = (0, 0, 0, 0, 1, 1, 0) = A(α10),
α11 = (0, 0, 0, 0, 0, 1, 1) = A(α11),
α12 = (0, 1, 1, 1, 0, 0, 0) = A(β3),
α13 = (0, 1, 0, 1, 1, 0, 0) = A(α13),
α14 = (0, 0, 1, 1, 1, 0, 0) = A(β4),
α15 = (0, 0, 0, 1, 1, 1, 0) = A(α15),
α16 = (0, 0, 0, 0, 1, 1, 1) = A(α16),
α17 = (0, 1, 1, 1, 1, 0, 0) = A(β5),
α18 = (0, 1, 0, 1, 1, 1, 0) = A(α18),
α19 = (0, 0, 1, 1, 1, 1, 0) = A(β6),
α20 = (0, 0, 0, 1, 1, 1, 1) = A(α20),
α21 = (0, 1, 1, 2, 1, 0, 0) = A(β7),
α22 = (0, 1, 1, 1, 1, 1, 0) = A(β8),
α23 = (0, 1, 0, 1, 1, 1, 1) = A(α23),
α24 = (0, 0, 1, 1, 1, 1, 1) = A(β9),

Minimal Representations, Spherical Vectors, Exceptional Theta Series 33

A.3. E6 . Dynkin diagram:

❣ ❣ ❣ ❣ ❣

1
α1

3
α2

4
α3

5
α4

6
α5

❣2 β0

.

Positive roots:
α1 = (1, 0, 0, 0, 0, 0) = A(α1),
α2 = (0, 0, 1, 0, 0, 0) = A(α2),
α3 = (0, 0, 0, 1, 0, 0) = A(β1),
α4 = (0, 0, 0, 0, 1, 0) = A(α4),
α5 = (0, 0, 0, 0, 0, 1) = A(α5),
α6 = (1, 0, 1, 0, 0, 0) = A(α6),
α7 = (0, 0, 1, 1, 0, 0) = A(β2),

α8 = (0, 0, 0, 1, 1, 0) = A(β3),
α9 = (0, 0, 0, 0, 1, 1) = A(α9),
α10 = (1, 0, 1, 1, 0, 0) = A(β4),
α11 = (0, 0, 1, 1, 1, 0) = A(β5),
α12 = (0, 0, 0, 1, 1, 1) = A(β6),
α13 = (1, 0, 1, 1, 1, 0) = A(β7),
α14 = (0, 0, 1, 1, 1, 1) = A(β9),
α15 = (1, 0, 1, 1, 1, 1) = A(β8),

β0 = (0, 1, 0, 0, 0, 0), γ0 = (1, 1, 2, 3, 2, 1),
β1 = (0, 1, 0, 1, 0, 0), γ1 = (1, 1, 2, 2, 2, 1),
β2 = (0, 1, 1, 1, 0, 0), γ2 = (1, 1, 1, 2, 2, 1),
β3 = (0, 1, 0, 1, 1, 0), γ3 = (1, 1, 2, 2, 1, 1),
β4 = (1, 1, 1, 1, 0, 0), γ4 = (0, 1, 1, 2, 2, 1),
β5 = (0, 1, 1, 1, 1, 0), γ5 = (1, 1, 1, 2, 1, 1),
β6 = (0, 1, 0, 1, 1, 1), γ6 = (1, 1, 2, 2, 1, 0),
β7 = (1, 1, 1, 1, 1, 0), γ7 = (0, 1, 1, 2, 1, 1),
β8 = (1, 1, 1, 1, 1, 1), γ8 = (0, 1, 1, 2, 1, 0),
β9 = (0, 1, 1, 1, 1, 1), γ9 = (1, 1, 1, 2, 1, 0),

ω = (1, 2, 2, 3, 2, 1) = A(γ0).

Cubic form:
I3 = −x1x5x8 + x1x7x9 + x2x3x8 − x2x6x7 − x3x4x9 + x4x5x6.

Cartan generators:
Hβ0 = −y∂ + x0∂0,

Hα1 = −x2∂2 + x4∂4 − x5∂5 + x7∂7 + x8∂8 − x9∂9,

Hα2 = −x1∂1 + x2∂2 − x3∂3 + x5∂5 − x6∂6 + x9∂9,

Hα3 = −2− x0∂0 + x1∂1 − x5∂5 − x7∂7 − x8∂8 − x9∂9,

Hα4 = −x1∂1 − x2∂2 + x3∂3 − x4∂4 + x5∂5 + x7∂7,

Hα5 = −x3∂3 − x5∂5 + x6∂6 − x7∂7 + x8∂8 + x9∂9.

E7

E6

E5 =D5

E4=SL(5)
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A.2. D5. Dynkin diagram:

❣ ❣ ❣ ❣

1
α1

2
β0

3
α2

5
α4

❣4 α3

.

Positive roots:
α1 = (1, 0, 0, 0, 0) = A(β1),
α2 = (0, 0, 1, 0, 0) = A(β2),
α3 = (0, 0, 0, 1, 0) = A(α3),
α4 = (0, 0, 0, 0, 1) = A(α4),
α5 = (0, 0, 1, 1, 0) = A(β4),
α6 = (0, 0, 1, 0, 1) = A(β5),
α7 = (0, 0, 1, 1, 1) = A(β3).

β0 = (0, 1, 0, 0, 0), γ0 = (1, 1, 2, 1, 1),
β1 = (1, 1, 0, 0, 0), γ1 = (0, 1, 2, 1, 1),
β2 = (0, 1, 1, 0, 0), γ2 = (1, 1, 1, 1, 1),
β3 = (0, 1, 1, 1, 1), γ3 = (1, 1, 1, 0, 0),
β4 = (0, 1, 1, 1, 0), γ4 = (1, 1, 1, 0, 1),
β5 = (0, 1, 1, 0, 1), γ5 = (1, 1, 1, 1, 0),

ω = (1, 2, 2, 1, 1) = A(γ0).

Cubic form:
I3 = x1(x2x3 − x4x5).

Cartan generators:

Hβ0 = −y∂ + x0∂0,

Hα1 = −2− x0∂0 + x1∂1 − x2∂2 − x3∂3 − x4∂4 − x5∂5,

Hα2 = −1− x0∂0 − x1∂1 + x2∂2 − x3∂3,

Hα3 = −x2∂2 + x3∂3 + x4∂4 − x5∂5,

Hα4 = −x2∂2 + x3∂3 − x4∂4 + x5∂5.

Simple roots:

Eα1 = −x0∂1 − i(x2x3 − x4x5)/y,

Eα2 = −x0∂2 − ix1x3/y,

Eα3 = x2∂4 + x5∂3,

Eα4 = −x2∂5 − x4∂3,

E−α1 = x1∂0 + iy (∂2∂3 − ∂4∂5),

E−α2 = x2∂0 + iy ∂1∂3,

E−α3 = −x3∂5 − x4∂2,

E−α4 = x3∂4 + x5∂2.
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A.1. An. Dynkin diagram:

❣ ❣ ❣ ❣ ❣

1
β0

2
α1

3
α2

. . .

. . .
n

αn−1

.

Positive roots:

α1 = (0, 1, 0, . . . , 0, 0 ) = A(β1),

α2 = (0, 0, 1, . . . , 0, 0 )
... (0, 0, 0,

. . . , 0, 0 )
αn−2 = (0, 0, 0, . . . , 1, 0 ),

αn−1 = (0, 1, 1, 0, . . . , 0 ) = A(β2)
αn = (0, 0, 1, 1, 0, 0 )

... (0, 0, 0,
. . . ,

. . . , 0 )
α2n−5 = (0, 0, . . . , 1, 1, 0 )

...
α(n−1)(n−2)/2 = (0, 1, . . . , 1, 1, 0 ) = A(βn−2),

β0 = (1, 0, 0, 0, 0) γ0 = (0, 1, . . . , 1, 1)
β1 = (1, 1, 0, 0, 0) γ1 = (0, 0, 1, . . . , 1)
... (

...,
...,

. . . , 0, 0)
... (0, 0, . . . ,

. . . , 1)
βn−2 = (1, 1, . . . , 1, 0) γn−2 = (0, 0, . . . , 0, 1),

ω = (1, 1, . . . , 1, 1) = A(γ0).

Cartan generators (ν = (n + 1)/2 in the standard minimal rep):

Hβ0 = −y∂ + x0∂0,

Hα1 = −x0∂0 + x1∂1,

Hα2 = −x1∂1 + x2∂2,

...

Hαn−2 = −xn−3∂n−3 + xn−2∂n−2,

Hγn−2 = −ν − y∂ − x0∂0 − · · · − xn−3∂n−3 − 2xn−2∂n−2.

Simple roots:

Eα1 = x0∂1 , E−α1 = x1∂0,

Eα2 = x1∂2 , E−α2 = x2∂1
... = ...

... = ...

Eαn−2 = xn−3∂n−2, E−αn−2 = xn−2∂n−3.

4
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Iwasawa gauge with the right node deleted 
These gauges are suitable for addressing the relation between D-dimensional supergravity with (G/H)D
coset space with the one in D derived from compactified D+1 dimension where the coset space is (G/H)D+1

These gauges are associated with  the Iwasawa decomposiWon of G with respect to  H and 
with a solvable parametrizaWon of the coset space so that the gauge-fixed vielbein V belongs 
to a solvable Lie group

gauge, this theory can be related to D-dimensional supergravity in a class of gauges which

we call partially Iwasawa gauges.

We will see that the reason for Iwasawa parabolic gauges and partial Iwasawa gauges

is the fact that in dimension D+1, the scalars are in GD+1/HD+1. The local symmetry in

D+1 is HD+1. One can gauge-fix HD+1 either in a the triangular, Iwasawa gauge or in a

symmetric gauge. In dimension D the 1st choice will produce a a triangular Iwasawa gauge,

the second choice will produce partial Iwasawa gauge. The simplest example of this partial

Iwasawa gauge one can see in the 4D maximal supergravity action in [20]. This is a limit of

the action in [19] when all mass/gauging parameters mi ! 0.

• Symmetric gauge

In symmetric gauge

Vsym(�r) = e�
rKr 2 exp(k) r = 1, . . . , nsc (2.6)

where {Kr} is a basis of the coset algebra k defined in (2.2). Note that this coset repre-

sentative in the symmetric gauge is not a group element since k does not form a closed

algebra. All scalars in the symmetric H-gauge occur in the gauge-fixed supergravity

action polynomially.

In symmetric gauge, the scalars �r transform in a linear representation of the maximal

compact subgroup H ⇢ G, and global H-invariance of the Lagrangian is manifest. The

1-loop anomalies of global H-symmetry in this gauge were computed in [13].

• Triangular Iwasawa parabolic gauges

These are gauges suitable for addressing the relation between D-dimensional supergrav-

ity with G/H coset space with the one in D derived from higher dimensions. The early

class of gauges relating D-dimensional supergravity to 11D supergravity was proposed

and studied in [1, 6].

Triangular gauges/coset space representatives discussed in general in [9, 10] are asso-

ciated with the Iwasawa decomposition of G with respect to H and with a solvable

parametrization so that Vtrian('r) belongs to a solvable Lie group GS = exp(S )

Vparab('
r) = e'

rTr 2 exp(S ) , (2.7)

Here {Tr} is a basis of S (r = 1, ..., nsc), it is also known as a Borel subalgebra of

g. The algebra S , parametrized by the scalar fields of the theory, has the following

general structure:

S = C� N , (2.8)
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gauge, this theory can be related to D-dimensional supergravity in a class of gauges which

we call partially Iwasawa gauges.

We will see that the reason for Iwasawa parabolic gauges and partial Iwasawa gauges
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rKr 2 exp(k) r = 1, . . . , nsc (2.6)
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compact subgroup H ⇢ G, and global H-invariance of the Lagrangian is manifest. The

1-loop anomalies of global H-symmetry in this gauge were computed in [13].
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ity with G/H coset space with the one in D derived from higher dimensions. The early

class of gauges relating D-dimensional supergravity to 11D supergravity was proposed
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ciated with the Iwasawa decomposition of G with respect to H and with a solvable

parametrization so that Vtrian('r) belongs to a solvable Lie group GS = exp(S )

Vparab('
r) = e'

rTr 2 exp(S ) , (2.7)

Here {Tr} is a basis of S (r = 1, ..., nsc), it is also known as a Borel subalgebra of

g. The algebra S , parametrized by the scalar fields of the theory, has the following

general structure:

S = C� N , (2.8)
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Cartan subspace of 
the coset space nilpotent  subalgebra

When the theory originates from a higher dimensional supergravity, C is parametrized by the dilatonic
moduli. N being nilpotent, is parametrized by axionic moduli. 

The axionic scalars occur in the action polynomially

gauge one can see in the 4D maximal supergravity action in [21]. This is a limit of the action

in [24] when all mass/gauging parameters mi ! 0.

• Symmetric gauge

The reason they are called symmetric is that they correspond to a generalization of the

polar decomposition of a linear matrix into a product of the orthogonal and a symmetric

matrix

V = e�·⌃e✓·⇤ (3.1) polar

Here ⇤ are the generators of the H group and ⌃ are the coset generators. A symmetric

gauge is a choice

✓ = 0 (3.2) symgauge

In symmetric gauge

Vsym(�r) = e�
rKr 2 exp(k) r = 1, . . . , nsc (3.3) sym

where {Kr} is a basis of the coset algebra k defined in (2.8). XXX Note that the coset

representative in the symmetric gauge is not a subgroup of G XXX. All scalars in the

symmetric H-gauge occur in the gauge-fixed supergravity action non-polynomially.

In symmetric gauge, the scalars �r transform in a linear representation of the maximal

compact subgroup H ⇢ G, and global H-invariance of the Lagrangian is manifest. The

1-loop anomalies of global H-symmetry in this gauge were computed in [15].

• Iwasawa triangular gauges

The early class of gauges relating D-dimensional supergravity to 11D supergravity was

proposed and studied in [1, 9].

Parabolic triangular gauges/coset space representatives discussed in general in [12, 13]

are associated with the Iwasawa decomposition of G with respect to H and with a

solvable parametrization so that VIwasawa('r) belongs to a solvable Lie group GS =

exp(S )

VIwasawa('
r) = e'

rTr 2 exp(S ) , (3.4) solpar

Here {Tr} is a basis of S (r = 1, ..., nsc), it is also known as a Borel subalgebra of

g. The algebra S , parametrized by the scalar fields of the theory, has the following

general structure:

S = C� N , (3.5) SCN

where C is the Cartan subspace of the coset space k and is defined as the maximal set

of commuting semisimple generators, and N is a nilpotent subalgebra. When the theory
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gauge one can see in the 4D maximal supergravity action in [21]. This is a limit of the action
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In symmetric gauge, the scalars �r transform in a linear representation of the maximal

compact subgroup H ⇢ G, and global H-invariance of the Lagrangian is manifest. The
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are associated with the Iwasawa decomposition of G with respect to H and with a solv-
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Iwasawa gauge with the right node deleted 
These gauges are suitable for addressing the relation between D-dimensional supergravity with (G/H)D
coset space with the one in D derived from compactified D+1 dimension where the coset space is (G/H)D+1

These gauges are associated with  the Iwasawa decomposiWon of G with respect to  H and 
with a solvable parametrizaWon of the coset space so that the gauge-fixed vielbein V belongs 
to a solvable Lie group

gauge, this theory can be related to D-dimensional supergravity in a class of gauges which

we call partially Iwasawa gauges.

We will see that the reason for Iwasawa parabolic gauges and partial Iwasawa gauges

is the fact that in dimension D+1, the scalars are in GD+1/HD+1. The local symmetry in

D+1 is HD+1. One can gauge-fix HD+1 either in a the triangular, Iwasawa gauge or in a

symmetric gauge. In dimension D the 1st choice will produce a a triangular Iwasawa gauge,

the second choice will produce partial Iwasawa gauge. The simplest example of this partial

Iwasawa gauge one can see in the 4D maximal supergravity action in [20]. This is a limit of

the action in [19] when all mass/gauging parameters mi ! 0.

• Symmetric gauge

In symmetric gauge

Vsym(�r) = e�
rKr 2 exp(k) r = 1, . . . , nsc (2.6)

where {Kr} is a basis of the coset algebra k defined in (2.2). Note that this coset repre-

sentative in the symmetric gauge is not a group element since k does not form a closed

algebra. All scalars in the symmetric H-gauge occur in the gauge-fixed supergravity

action polynomially.

In symmetric gauge, the scalars �r transform in a linear representation of the maximal

compact subgroup H ⇢ G, and global H-invariance of the Lagrangian is manifest. The

1-loop anomalies of global H-symmetry in this gauge were computed in [13].

• Triangular Iwasawa parabolic gauges

These are gauges suitable for addressing the relation between D-dimensional supergrav-

ity with G/H coset space with the one in D derived from higher dimensions. The early

class of gauges relating D-dimensional supergravity to 11D supergravity was proposed

and studied in [1, 6].

Triangular gauges/coset space representatives discussed in general in [9, 10] are asso-

ciated with the Iwasawa decomposition of G with respect to H and with a solvable

parametrization so that Vtrian('r) belongs to a solvable Lie group GS = exp(S )

Vparab('
r) = e'

rTr 2 exp(S ) , (2.7)

Here {Tr} is a basis of S (r = 1, ..., nsc), it is also known as a Borel subalgebra of

g. The algebra S , parametrized by the scalar fields of the theory, has the following

general structure:

S = C� N , (2.8)
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Cartan subspace of 
the coset space nilpotent  subalgebra

When the theory originates from a higher dimensional supergravity, C is parametrized by the dilatonic
moduli. N being nilpotent, is parametrized by axionic moduli. 

The axionic scalars occur in the action polynomially

Partial Iwasawa gauge (not a triangular one)

Example: Sezgin, Nieuwenhuizen, 1982 on spontaneously broken gauged N=8 in 4D,  
derived by compactification from 5D with local USp(8)

gauge one can see in the 4D maximal supergravity action in [21]. This is a limit of the action

in [24] when all mass/gauging parameters mi ! 0.

• Symmetric gauge

The reason they are called symmetric is that they correspond to a generalization of the

polar decomposition of a linear matrix into a product of the orthogonal and a symmetric

matrix

V = e�·⌃e✓·⇤ (3.1) polar

Here ⇤ are the generators of the H group and ⌃ are the coset generators. A symmetric

gauge is a choice

✓ = 0 (3.2) symgauge

In symmetric gauge

Vsym(�r) = e�
rKr 2 exp(k) r = 1, . . . , nsc (3.3) sym

where {Kr} is a basis of the coset algebra k defined in (2.8). XXX Note that the coset

representative in the symmetric gauge is not a subgroup of G XXX. All scalars in the

symmetric H-gauge occur in the gauge-fixed supergravity action non-polynomially.

In symmetric gauge, the scalars �r transform in a linear representation of the maximal

compact subgroup H ⇢ G, and global H-invariance of the Lagrangian is manifest. The

1-loop anomalies of global H-symmetry in this gauge were computed in [15].

• Iwasawa triangular gauges

The early class of gauges relating D-dimensional supergravity to 11D supergravity was

proposed and studied in [1, 9].

Parabolic triangular gauges/coset space representatives discussed in general in [12, 13]

are associated with the Iwasawa decomposition of G with respect to H and with a

solvable parametrization so that VIwasawa('r) belongs to a solvable Lie group GS =

exp(S )

VIwasawa('
r) = e'

rTr 2 exp(S ) , (3.4) solpar

Here {Tr} is a basis of S (r = 1, ..., nsc), it is also known as a Borel subalgebra of

g. The algebra S , parametrized by the scalar fields of the theory, has the following

general structure:

S = C� N , (3.5) SCN

where C is the Cartan subspace of the coset space k and is defined as the maximal set

of commuting semisimple generators, and N is a nilpotent subalgebra. When the theory
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Andrianopoli,  D’Auria, Ferrara and Lledo, 2002 
Type II 4D ungauged supergravity

generators are in  
a subalgebra of G 

gauge one can see in the 4D maximal supergravity action in [21]. This is a limit of the action

in [24] when all mass/gauging parameters mi ! 0.

• Symmetric gauge

The reason they are called symmetric is that they correspond to a generalization of the

polar decomposition of a linear matrix into a product of the orthogonal and a symmetric

matrix

V = e�·⌃e✓·⇤ (3.1) polar

Here ⇤ are the generators of the H group and ⌃ are the coset generators. A symmetric

gauge is a choice

✓ = 0 (3.2) symgauge

In symmetric gauge

Vsym(�r) = e�
rKr 2 exp(k) r = 1, . . . , nsc (3.3) sym

where {Kr} is a basis of the coset algebra k defined in (2.8). XXX Note that the coset

representative in the symmetric gauge is not a subgroup of G XXX. All scalars in the

symmetric H-gauge occur in the gauge-fixed supergravity action non-polynomially.

In symmetric gauge, the scalars �r transform in a linear representation of the maximal

compact subgroup H ⇢ G, and global H-invariance of the Lagrangian is manifest. The

1-loop anomalies of global H-symmetry in this gauge were computed in [15].
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proposed and studied in [1, 9].
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able parametrization so that Vparab('r) belongs to a solvable Lie group GS = exp(S )

Vparab('
r) = e'

rTr 2 exp(S ) , (3.4) solpar

Here {Tr} is a basis of S (r = 1, ..., nsc), it is also known as a Borel subalgebra of

g. The algebra S , parametrized by the scalar fields of the theory, has the following

general structure:

S = C� N , (3.5) SCN
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… a non-linearly realized E 7(7)  symmetry. We elucidate how non-linearly realized symmetries are reflected in 
the more familiar setting of pion scattering amplitudes, and go on to identify the action of E 7(7)  on amplitudes 
in  SUGRA. 

Soft Scalar Limit, direct proof that no E 7(7) (R) -invariant candidate counterterm exists below 7-loop order 
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Abstract: Conventional wisdom says that the simpler the Lagrangian of a theory the

simpler its perturbation theory. An ever-increasing understanding of the structure of scat-

tering amplitudes has however been pointing to the opposite conclusion. At tree level, the

BCFW recursion relations that completely determine the S-matrix are valid not for scalar

theories but for gauge theories and gravity, with gravitational amplitudes exhibiting the

best UV behavior at infinite complex momentum. At 1-loop, amplitudes in N = 4 SYM

only have scalar box integrals, and it was recently conjectured that the same property holds

for N = 8 SUGRA, which plays an important role in the suspicion that this theory may

be finite. In this paper we explore and extend the S-matrix paradigm, and suggest that

N = 8 SUGRA has the simplest scattering amplitudes in four dimensions. Labeling exter-

nal states by supercharge eigenstates-Grassmann coherent states-allows the amplitudes to

be exposed as completely smooth objects, with the action of SUSY manifest. We show that

under the natural supersymmetric extension of the BCFW deformation of momenta, all

tree amplitudes in N = 4 SYM and N = 8 SUGRA vanish at infinite complex momentum,

and can therefore be determined by recursion relations. An important difference between

N = 8 SUGRA and N = 4 SYM is that the massless S-matrix is defined everywhere on

moduli space, and is acted on by a non-linearly realized E7(7) symmetry. We elucidate

how non-linearly realized symmetries are reflected in the more familiar setting of pion

scattering amplitudes, and go on to identify the action of E7(7) on amplitudes in N = 8

SUGRA. Moving beyond tree level, we give a simple general discussion of the structure

of 1-loop amplitudes in any QFT, in close parallel to recent work of Forde, showing that

the coefficients of scalar “triangle” and “bubble” integrals are determined by the “pole at

infinite momentum” of products of tree amplitudes appearing in cuts. In N = 4 SYM

and N = 8 SUGRA, the on-shell superspace makes it easy to compute the multiplet sums
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We prove by explicit computation that 6-point matrix elements of D4R4 and D6R4 in N = 8 supergravity
have non-vanishing single-soft scalar limits, and therefore these operators violate the continuous E7(7)
symmetry. The soft limits precisely match automorphism constraints. Together with previous results
for R4, this provides a direct proof that no E7(7)-invariant candidate counterterm exists below 7-loop
order. At 7-loops, we characterize the infinite tower of independent supersymmetric operators D4R6,
R8, ϕ2R8, . . . with n > 4 fields and prove that they all violate E7(7) symmetry. This means that the 4-
graviton amplitude determines whether or not the theory is finite at 7-loop order. We show that the
corresponding candidate counterterm D8R4 has a non-linear supersymmetrization such that its single-
and double-soft scalar limits are compatible with E7(7) up to and including 6-points. At loop orders 7,8,9
we provide an exhaustive account of all independent candidate counterterms with up to 16,14,12 fields,
respectively, together with their potential single-soft scalar limits.
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1. Introduction

N = 8 supergravity has maximal supersymmetry, and the clas-
sical theory has global continuous E7(7) symmetry which is spon-
taneously broken to SU(8). Explicit calculations have demonstrated
that the 4-graviton amplitude in N = 8 supergravity is finite up to
4-loop order [1]. Together with string- and superspace-based ob-
servations [2,3], this spurred a wave of renewed interest in the
question of whether the loop computations based on generalized
unitarity [4] could yield a UV finite result to all orders1 — or at
which loop order the first divergence might occur.

In gravity, logarithmic UV divergences in on-shell L-loop am-
plitudes are associated with local counterterm operators of mass
dimension δ = 2L + 2 composed of fields from the classical the-
ory. The counterterms must respect the non-anomalous symme-
tries of the theory. It was shown in [7–9] that below 7-loop order,
there are only 3 independent operators consistent with linearized
N = 8 supersymmetry and global SU(8) R-symmetry [10]. These

* Corresponding author.
E-mail address: mkiermai@princeton.edu (M. Kiermaier).

1 This question is well defined whether or not N = 8 supergravity is sensible as
a full quantum theory [5,6].

are the 3-, 5- and 6-loop supersymmetric candidate counterterms
R4, D4R4, and D6R4.

The perturbative S-matrix of N = 8 supergravity should re-
spect E7(7) symmetry [11], so one must subject R4, D4R4, and
D6R4 to this test. A necessary condition for a counterterm to be
E7(7)-compatible, is that its matrix elements vanish in the ‘single-
soft limit’ pµ → 0 for each external scalar line [12–14]. The scalars
of N = 8 supergravity are the ‘pions’ of this soft-pion theorem
since they are the 70 Goldstone bosons of the spontaneously bro-
ken generators of E7(7) . It was recently proven [15] that the soft
scalar property fails for 6-point matrix elements of the operator
R4 (see also [16]). Thus E7(7) excludes R4 and explains the finite
3-loop result found in [1].

In the present Letter we show first that the 5- and 6-loop op-
erators D4R4 and D6R4 are incompatible with E7(7) symmetry be-
cause their 6-point matrix elements have non-vanishing single-soft
scalar limits. Previous string theory [17] and superspace [18] argu-
ments suggested this E7(7)-violation. Our results mean that no UV
divergences occur in N = 8 supergravity below the 7-loop level.

We then survey the candidate counterterms for loop orders
L = 7,8,9 using two new algorithmic methods: one program
counts monomials in the fields of N = 8 supergravity in represen-
tations of the superalgebra SU(2,2|8), the other applies Gröbner
basis methods to construct their explicit local matrix elements. Our
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tering amplitudes has however been pointing to the opposite conclusion. At tree level, the

BCFW recursion relations that completely determine the S-matrix are valid not for scalar

theories but for gauge theories and gravity, with gravitational amplitudes exhibiting the

best UV behavior at infinite complex momentum. At 1-loop, amplitudes in N = 4 SYM

only have scalar box integrals, and it was recently conjectured that the same property holds

for N = 8 SUGRA, which plays an important role in the suspicion that this theory may

be finite. In this paper we explore and extend the S-matrix paradigm, and suggest that

N = 8 SUGRA has the simplest scattering amplitudes in four dimensions. Labeling exter-

nal states by supercharge eigenstates-Grassmann coherent states-allows the amplitudes to

be exposed as completely smooth objects, with the action of SUSY manifest. We show that

under the natural supersymmetric extension of the BCFW deformation of momenta, all

tree amplitudes in N = 4 SYM and N = 8 SUGRA vanish at infinite complex momentum,

and can therefore be determined by recursion relations. An important difference between

N = 8 SUGRA and N = 4 SYM is that the massless S-matrix is defined everywhere on
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We prove by explicit computation that 6-point matrix elements of D4R4 and D6R4 in N = 8 supergravity
have non-vanishing single-soft scalar limits, and therefore these operators violate the continuous E7(7)
symmetry. The soft limits precisely match automorphism constraints. Together with previous results
for R4, this provides a direct proof that no E7(7)-invariant candidate counterterm exists below 7-loop
order. At 7-loops, we characterize the infinite tower of independent supersymmetric operators D4R6,
R8, ϕ2R8, . . . with n > 4 fields and prove that they all violate E7(7) symmetry. This means that the 4-
graviton amplitude determines whether or not the theory is finite at 7-loop order. We show that the
corresponding candidate counterterm D8R4 has a non-linear supersymmetrization such that its single-
and double-soft scalar limits are compatible with E7(7) up to and including 6-points. At loop orders 7,8,9
we provide an exhaustive account of all independent candidate counterterms with up to 16,14,12 fields,
respectively, together with their potential single-soft scalar limits.
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1. Introduction

N = 8 supergravity has maximal supersymmetry, and the clas-
sical theory has global continuous E7(7) symmetry which is spon-
taneously broken to SU(8). Explicit calculations have demonstrated
that the 4-graviton amplitude in N = 8 supergravity is finite up to
4-loop order [1]. Together with string- and superspace-based ob-
servations [2,3], this spurred a wave of renewed interest in the
question of whether the loop computations based on generalized
unitarity [4] could yield a UV finite result to all orders1 — or at
which loop order the first divergence might occur.

In gravity, logarithmic UV divergences in on-shell L-loop am-
plitudes are associated with local counterterm operators of mass
dimension δ = 2L + 2 composed of fields from the classical the-
ory. The counterterms must respect the non-anomalous symme-
tries of the theory. It was shown in [7–9] that below 7-loop order,
there are only 3 independent operators consistent with linearized
N = 8 supersymmetry and global SU(8) R-symmetry [10]. These
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are the 3-, 5- and 6-loop supersymmetric candidate counterterms
R4, D4R4, and D6R4.

The perturbative S-matrix of N = 8 supergravity should re-
spect E7(7) symmetry [11], so one must subject R4, D4R4, and
D6R4 to this test. A necessary condition for a counterterm to be
E7(7)-compatible, is that its matrix elements vanish in the ‘single-
soft limit’ pµ → 0 for each external scalar line [12–14]. The scalars
of N = 8 supergravity are the ‘pions’ of this soft-pion theorem
since they are the 70 Goldstone bosons of the spontaneously bro-
ken generators of E7(7) . It was recently proven [15] that the soft
scalar property fails for 6-point matrix elements of the operator
R4 (see also [16]). Thus E7(7) excludes R4 and explains the finite
3-loop result found in [1].

In the present Letter we show first that the 5- and 6-loop op-
erators D4R4 and D6R4 are incompatible with E7(7) symmetry be-
cause their 6-point matrix elements have non-vanishing single-soft
scalar limits. Previous string theory [17] and superspace [18] argu-
ments suggested this E7(7)-violation. Our results mean that no UV
divergences occur in N = 8 supergravity below the 7-loop level.

We then survey the candidate counterterms for loop orders
L = 7,8,9 using two new algorithmic methods: one program
counts monomials in the fields of N = 8 supergravity in represen-
tations of the superalgebra SU(2,2|8), the other applies Gröbner
basis methods to construct their explicit local matrix elements. Our
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Gauge-fixed maximal supergravity in a symmetric gauge:

E7(7) (R)

Then the self-duality constraint implies that the real part is η-self-dual and imaginary part is η-anti-

selfdual. The real and imaginary parts of Σ each consists of 35 real parameters. Thus we present the

133 real parameters of E7(7) as 133 = 28 + 35 + 35 + 35.

The local SU(8) transformation acts on the 56-bein from the left and is completely independent of

the E7(7) transformation

V
′(SU(8)) = U(x)V (2.10)

where

U(x) = expGSU(8) , GSU(8)(x) =

⎛

⎝

δ[i
[kΛj]

l](x) 0

0 δ[m[pΛ
n]

q](x)

⎞

⎠ . (2.11)

Again in order for Λj
i to be the generators of su(8) (Lie algebra associated with SU(8)), they must

be antihermitian and traceless. They can be decomposed into 28 real antisymmetric and 35 real

symmetric parameters.

3 Gauge Fixing of SU(8) in the Unitary Gauge

Before the local SU(8) symmetry is gauge-fixed, there are 133 scalars which form a group element of

E7(7). In this section, we use the local SU(8) symmetry of the action to remove the unphysical 63

scalars from the theory. The local SU(8) symmetry is gauge-fixed in the unitary gauge so that we are

left with only 70 dynamical scalar fields.

In the unitary gauge there is no distinction between the E7(7) and SU(8) indices3. One can use the

63 local functions Λj
l(x) to bring the 56-bein V to the form in which the expression in the exponent

is vanishing on the diagonal so that the 56-bein matrix becomes hermitian:

V = V
† , where V = exp

⎛

⎝

0 aφijkl

a φ̄mnpq 0

⎞

⎠ . (3.1)

where a = −
√
2
4 . Here the 70 physical fields of N = 8 supergravity are self-dual with the phase η = ±1

and completely anti-symmetric in their 4 indices.

φijkl =
1

24
ηϵijklmnpqφ̄

mnpq (3.2)

The inhomogeneous coordinates of the
E7(7)

SU(8) coset space are defined as function of the independent

scalars fields φ, φ̄ as follows:

yij,kl ≡ φijmn

⎛

⎝

tanh(
√

1
8 φ̄φ

√

φ̄φ

⎞

⎠

mn

kl

(3.3)

3 In L3, we still find it convenient to keep capital indices which indicates the transformation under E7(7).
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non-linearly realized exact continuous 

Equivalently

V (y′) = U−1(y, ȳ;Λ,Σ)V (y, ȳ)E−1(Λ,Σ) , (4.3)

This is the definition of scalar variables y and y′ before and after the non-linearly realized E7(7) 133-

component symmetry transformations. The remaining transformations on vectors and spinors must

be consistent with (4.3).

4.1 Transformation Laws of Scalars

If we write the above transformation law (4.1) in its matrix form, we have

V (y′) =

⎛

⎝

U −1 0

0 Ū −1

⎞

⎠

⎛

⎝

P−1/2 −P−1/2y

−P̄−1/2ȳ P̄−1/2

⎞

⎠

⎛

⎝

A −B

−C D

⎞

⎠ , (4.4)

which results in the following matrix relations

P ′(y′, ȳ′)−1/2 = U
−1P−1/2(A + yC ) , (4.5)

P ′(y′, ȳ′)−1/2y′ = U
−1P−1/2(B + yD) . (4.6)

Solving these two equations for y′ and U , we obtain

y′ = (A + yC )−1(B + yD) , (4.7)

U (y, ȳ;A ,B,C ,D) = P (y, ȳ)−1/2(A + yC )P ′(y′, ȳ′)1/2 . (4.8)

Notice that in the last factor of (4.8), the transformed scalar y′ is substituted by (4.7). As we see,

the compensating local SU(8) transformation is not an independent transformation and is correlated

with E7(7) transformation. If we consider the infinitesimal E7(7) transformation,

E−1 =

⎛

⎝

1 + Λ −Σ

−Σ̄ 1 + Λ̄

⎞

⎠ , (4.9)

we can find the explicit forms of y′ and U (y, ȳ). For δy = y′ − y , we find

δy ≡ y′ − y = Σ+ yΛ̄− Λy − yΣ̄y , (4.10)

and U (y, ȳ) turns out to be

U (y, ȳ) = 1 + 1
2 P−1/2∆(Λ,Σ)P−1/2 ≡ 1 +Υ , (4.11)

where ∆(Λ,Σ) is given by

∆(Λ,Σ) = {Λ, P} + (yΣ̄−Σȳ)− y(Σ̄y − ȳΣ)ȳ . (4.12)

9

constant 
shift
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linear                     symmetryE7(7) (R)
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E7(7) (R): Amplitudes, single scalar soV limit
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Gauge-fixed maximal supergravity in a symmetric gauge:

E7(7) (R)

Then the self-duality constraint implies that the real part is η-self-dual and imaginary part is η-anti-

selfdual. The real and imaginary parts of Σ each consists of 35 real parameters. Thus we present the

133 real parameters of E7(7) as 133 = 28 + 35 + 35 + 35.
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q](x)
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⎠ . (2.11)

Again in order for Λj
i to be the generators of su(8) (Lie algebra associated with SU(8)), they must

be antihermitian and traceless. They can be decomposed into 28 real antisymmetric and 35 real

symmetric parameters.
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⎠ . (3.1)

where a = −
√
2
4 . Here the 70 physical fields of N = 8 supergravity are self-dual with the phase η = ±1

and completely anti-symmetric in their 4 indices.

φijkl =
1

24
ηϵijklmnpqφ̄

mnpq (3.2)

The inhomogeneous coordinates of the
E7(7)

SU(8) coset space are defined as function of the independent

scalars fields φ, φ̄ as follows:

yij,kl ≡ φijmn

⎛

⎝

tanh(
√

1
8 φ̄φ

√

φ̄φ

⎞

⎠

mn

kl

(3.3)

3 In L3, we still find it convenient to keep capital indices which indicates the transformation under E7(7).
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non-linearly realized exact continuous 

Equivalently

V (y′) = U−1(y, ȳ;Λ,Σ)V (y, ȳ)E−1(Λ,Σ) , (4.3)

This is the definition of scalar variables y and y′ before and after the non-linearly realized E7(7) 133-

component symmetry transformations. The remaining transformations on vectors and spinors must

be consistent with (4.3).

4.1 Transformation Laws of Scalars

If we write the above transformation law (4.1) in its matrix form, we have

V (y′) =

⎛

⎝

U −1 0

0 Ū −1

⎞

⎠

⎛

⎝

P−1/2 −P−1/2y

−P̄−1/2ȳ P̄−1/2

⎞

⎠

⎛

⎝

A −B

−C D

⎞

⎠ , (4.4)

which results in the following matrix relations

P ′(y′, ȳ′)−1/2 = U
−1P−1/2(A + yC ) , (4.5)

P ′(y′, ȳ′)−1/2y′ = U
−1P−1/2(B + yD) . (4.6)

Solving these two equations for y′ and U , we obtain

y′ = (A + yC )−1(B + yD) , (4.7)

U (y, ȳ;A ,B,C ,D) = P (y, ȳ)−1/2(A + yC )P ′(y′, ȳ′)1/2 . (4.8)

Notice that in the last factor of (4.8), the transformed scalar y′ is substituted by (4.7). As we see,

the compensating local SU(8) transformation is not an independent transformation and is correlated

with E7(7) transformation. If we consider the infinitesimal E7(7) transformation,

E−1 =

⎛

⎝

1 + Λ −Σ

−Σ̄ 1 + Λ̄

⎞

⎠ , (4.9)

we can find the explicit forms of y′ and U (y, ȳ). For δy = y′ − y , we find

δy ≡ y′ − y = Σ+ yΛ̄− Λy − yΣ̄y , (4.10)

and U (y, ȳ) turns out to be

U (y, ȳ) = 1 + 1
2 P−1/2∆(Λ,Σ)P−1/2 ≡ 1 +Υ , (4.11)

where ∆(Λ,Σ) is given by

∆(Λ,Σ) = {Λ, P} + (yΣ̄−Σȳ)− y(Σ̄y − ȳΣ)ȳ . (4.12)
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E7(7) (R): Amplitudes, single scalar soft limit
RK and Soroush, 2008

Gauge-fixed maximal supergravity in a symmetric gauge:

E7(7) (R)
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where
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Again in order for Λj
i to be the generators of su(8) (Lie algebra associated with SU(8)), they must

be antihermitian and traceless. They can be decomposed into 28 real antisymmetric and 35 real
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left with only 70 dynamical scalar fields.
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5

non-linearly realized exact continuous 

Equivalently

V (y′) = U−1(y, ȳ;Λ,Σ)V (y, ȳ)E−1(Λ,Σ) , (4.3)

This is the definition of scalar variables y and y′ before and after the non-linearly realized E7(7) 133-

component symmetry transformations. The remaining transformations on vectors and spinors must

be consistent with (4.3).

4.1 Transformation Laws of Scalars

If we write the above transformation law (4.1) in its matrix form, we have

V (y′) =

⎛

⎝

U −1 0

0 Ū −1

⎞

⎠

⎛

⎝

P−1/2 −P−1/2y

−P̄−1/2ȳ P̄−1/2

⎞

⎠

⎛

⎝

A −B

−C D

⎞

⎠ , (4.4)

which results in the following matrix relations

P ′(y′, ȳ′)−1/2 = U
−1P−1/2(A + yC ) , (4.5)

P ′(y′, ȳ′)−1/2y′ = U
−1P−1/2(B + yD) . (4.6)

Solving these two equations for y′ and U , we obtain

y′ = (A + yC )−1(B + yD) , (4.7)

U (y, ȳ;A ,B,C ,D) = P (y, ȳ)−1/2(A + yC )P ′(y′, ȳ′)1/2 . (4.8)

Notice that in the last factor of (4.8), the transformed scalar y′ is substituted by (4.7). As we see,

the compensating local SU(8) transformation is not an independent transformation and is correlated

with E7(7) transformation. If we consider the infinitesimal E7(7) transformation,

E−1 =

⎛

⎝

1 + Λ −Σ

−Σ̄ 1 + Λ̄

⎞

⎠ , (4.9)

we can find the explicit forms of y′ and U (y, ȳ). For δy = y′ − y , we find

δy ≡ y′ − y = Σ+ yΛ̄− Λy − yΣ̄y , (4.10)

and U (y, ȳ) turns out to be

U (y, ȳ) = 1 + 1
2 P−1/2∆(Λ,Σ)P−1/2 ≡ 1 +Υ , (4.11)

where ∆(Λ,Σ) is given by

∆(Λ,Σ) = {Λ, P} + (yΣ̄−Σȳ)− y(Σ̄y − ȳΣ)ȳ . (4.12)
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FIG. 1: Generalized cuts used to determine the three-loop
four-point amplitude.

The N = 8 supergravity bound (1) corresponds, in the
language of effective actions, to a one-particle irreducible
effective action starting with loop integrals multiplied by
D4R4 at each loop order beyond L = 1. Here R4 is
a shorthand for the supersymmetrization of a particu-
lar contraction of four Riemann tensors [5], and D de-
notes a generic covariant derivative. The stronger, “su-
perfinite” bound (2), if applied to N = 8 supergravity,
would differ from eq. (1) beginning at L = 3 for general
D, although both bounds imply three-loop finiteness for
D = 4. It corresponds to a three-loop effective action
beginning with D6R4, not D4R4. As the supergravity
finiteness bound (1) is based on only a limited set of uni-
tarity cuts [12], additional (stronger) cancellations may
be missed [14].

To study this issue, we use the unitarity method [13,
19] to build the three-loop four-point N = 8 supergrav-
ity amplitude. In this method, on-shell tree amplitudes
suffice as ingredients for computing amplitudes at any
loop order. The reduction to tree amplitudes is crucial.
It allows the use of the Kawai-Lewellen-Tye (KLT) [23]
tree-level relations between gravity and gauge theory am-
plitudes [12], effectively reducing gravity computations to
gauge theory ones. The original KLT relations express
tree-level closed-string scattering amplitudes in terms of
pairs of open-string ones. The perturbative massless
states of the closed and open type II superstring compact-
ified to four dimensions on a torus, are those of N = 8
supergravity and N = 4 super-Yang-Mills theory, respec-
tively. Thus, in the limit of energies well below the string
scale, the KLT relations express N = 8 supergravity tree
amplitudes as quadratic combinations of N = 4 super-
Yang-Mills tree amplitudes (see e.g. ref. [16]). At tree
level there are no subtleties in taking this limit.

We use the generalized unitarity cuts [24] illustrated in
fig. 1. Together with the iterated two-particle cuts eval-
uated in refs. [12, 19], these cuts completely determine
any massless three-loop four-point amplitude. Since we
are interested in the UV behavior of the amplitudes in
D dimensions, the unitarity cuts must be evaluated in
D dimensions [25]. This renders the calculation more
difficult, because powerful four-dimensional spinor meth-
ods cannot be used. Some of the D-dimensional com-
plexity is avoided by performing internal-state sums in
terms of the simpler on-shell gauge supermultiplet of
D = 10, N = 1 super-Yang-Mills theory instead of the
D = 4, N = 4 multiplet. We have also performed various
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FIG. 2: Loop integrals appearing in both N = 4 gauge-theory
and N = 8 supergravity three-loop four-point amplitudes.
The integrals are specified by combining the diagrams’ prop-
agators with numerator factors given in table I.

four-dimensional cuts, which in practice provide a very
useful guide.
Our computation proceeds in two stages. In the first

stage we deduce the three-loop N = 4 super-Yang-Mills
amplitudes from generalized cuts, including cuts (a)-(c)
in fig. 1, and the iterated two-particle cuts analyzed in
refs. [12, 19]. From the cuts we obtain a loop-integral
representation of the amplitude. The diagrams in fig. 2
describe the scalar propagators for the loop integrals.
The numerator factor for each integral in the super-Yang-
Mills case is given in the second column of table I.
In the second stage we use the KLT relations to

write the cuts of the N = 8 supergravity amplitude as
sums over products of pairs of cuts of the correspond-
ing N = 4 super-Yang-Mills amplitude, including twisted
non-planar contributions. The iterated two-particle cuts
studied in ref. [12], together with the cuts in fig. 1 eval-
uated here, suffice to fully reconstruct the supergravity
amplitude. We find that the three-loop four-point N = 8
supergravity amplitude in D dimensions is,

M (3)
4 =

(κ

2

)8
stuM tree

4

∑

S3

[

I(a) + I(b) + 1
2I

(c) + 1
4I

(d)

+ 2I(e) + 2I(f) + 4I(g) + 1
2I

(h) + 2I(i)
]

, (3)

where S3 represents the six independent permutations of
legs {1, 2, 3}, κ is the gravitational coupling, and M tree

4 is
the supergravity four-point tree amplitude. The I(x)(s, t)
are D-dimensional loop integrals corresponding to the
nine diagrams in fig. 2, with numerator factors given in
the third column of table I. The Mandelstam invariants
are s = (k1 + k2)2, t = (k2 + k3)2, u = (k1 + k3)2. The
numerical coefficients in front of each integral in eq. (3)
are symmetry factors of the diagrams. Remarkably, the
number of dimensions appears explicitly only in the loop
integration measure.

The Ultraviolet Behavior of N = 8 Supergravity at 4D Four Loops, 
Bern, Carrasco, Dixon, Johansson, Roiban, 2009

3

(a)

(e)

(d)

(h)

(b)

(f)

(c)

(g)

(i) (j) (k)

FIG. 3: Evaluating these 11 cuts, along with 15 two-particle
reducible cuts, suffices to uniquely determine the four-loop
four-point amplitude. Each blob denotes a tree amplitude.

lower-loop four-point amplitudes in two-particle cuts are
shown in fig. 3.
The UV properties of the amplitude are determined

by the numerator polynomials Ni. We decompose them

into expressions N (m)
i containing all terms with m pow-

ers of loop momenta (and 12−m powers in the external
momenta),

Ni = N (8)
i +N (7)

i +N (6)
i + . . .+N (0)

i . (4)

There is some freedom in this decomposition, including
that induced by the choice of independent lnp

in the loop
integral (2). The overall scaling behavior of eq. (2) im-

plies that an integral with N (m)
i in the numerator is finite

when 4D−26+m < 0. Form odd, by Lorentz invariance,
the leading divergence trivially vanishes under integra-
tion, effectively reducing m by one. Our representation
has m ≤ 8 for all terms; hence the four-loop amplitude
is manifestly UV finite in D = 4.
Demonstrating UV finiteness in D = 5 is more subtle.

It requires the cancellation of divergences for m = 6, 7, 8.
We employ a systematic procedure for extracting diver-
gences from multiloop integrals by expanding in small
external momenta [29].
We find that the numerator terms with m = 8 can

all be expressed solely in terms of inverse propagators
l2n; those with m = 7 have six powers of loop momenta
carried by inverse propagators; and those with m = 6
have four powers; schematically,

N (8)
i ∼ sasbl

2
j l

2
nl

2
pl

2
q ,

N (7)
i ∼ sasb(kj · ln)l

2
pl

2
q l

2
r , (5)

N (6)
i ∼ sasb(kj · ln)(kp · lq)l

2
rl

2
w + sasbsc(lj · ln)l

2
pl

2
q ,

where each sa denotes s, t or u. After expanding in
small external momenta, potential UV divergences enter
through vacuum integrals, just as at three loops [1]. Vac-
uum integrals also exhibit infrared singularities, which
we regularize by injecting two fictitious off-shell external
momenta at appropriate locations in the graph.

Only 12 of the 50 integrals have a nonvanishing N (8)
i ;

all of them are associated with vacuum diagrams (d) and
(e) of fig. 1. For example, the k4l8 terms in the numera-
tors of the integrals I25 and I32 in fig. 2 are

N (8)
25 =

1

8
l25l

2
6l

2
7

[
(30s2 + 13t2 + 13u2)l29

− (32s2 + 19t2 + 19u2)l28

]
,

N (8)
32 =

1

8

{
2(7s2 + 7t2 + 6u2)l25l

2
8l

2
10l

2
12

+ l29

[
12(2s2 − t2 + 2u2)l26l

2
7l

2
12

− (24s2 + 19t2 + 19u2)l25l
2
8l

2
11

]}
. (6)

All of the l2n factors in eq. (6) cancel propagators in the
integrals. Thus, to leading order in the expansion in small
external momenta, the k4l8 terms in I25 and I32 reduce
to the vacuum diagram V (d) of fig. 1(d),

I25 → −14(s2 + t2 + u2)V (d) +O(k5) ,

I32 → +14(s2 + t2 + u2)V (d) +O(k5) . (7)

Here we have summed over the S4 permutations of ex-
ternal legs in eq. (1). Because their combinatorial factors
c25 and c32 are equal [23], the I25 and I32 contributions
cancel at leading order. Similarly, all k4l8 contributions
in the remaining diagrams cancel, independent of D.
As the k5l7 terms cannot generate a leading divergence,

we need only inspect the k6l6 term to determine the UV
properties of the amplitude in D = 5. It is necessary
to expand all integrands down to k6l6. For the 12 in-
tegrals starting at O(k4l8), two derivatives are required
with respect to the external momenta ki, acting on prop-
agators of the form 1/(lj + Kn)2 (where Kn denotes a
sum of external momenta). The numerators obtained by
expanding the integrals to this order have the schematic
form,

N (6)
i +N (7)

i

Kn · lj
l2j

+N (8)
i

(
K2

n

l2j
+

Kn · lj Kq · lp
l2j l

2
p

)
. (8)

The additional denominators can lead to doubled or even
tripled propagators for the graphs in fig. 1. Vacuum in-
tegrals with lµi l

ν
j in the numerator can be reduced using

Lorentz invariance, lµi l
ν
j → ηµν li·lj/D, withD = 5. After

this reduction, the potential UV divergence is described
by 30 vacuum integrals. Of these, 23 possess no loop mo-
menta in the numerator, while seven have an (li + lj)2

numerator factor that cannot be reduced to inverse prop-
agators using momentum conservation. There are many
ways to expand the original 50 integrals Ii. Shifting the
loop momenta in eq. (2) by dDlnp

→ dD(lnp
+ kj) leads

to different representations of the terms proportional to

N (7)
i and N (8)

i in eq. (8), and hence to different forms of
the UV divergences in terms of the 30 vacuum integrals.
Requiring that the different forms are equal generates
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FIG. 14. All 48 independent vacuum propagator structures, that do not factorize into products of

lower-loop diagrams. The first number in the diagram label is the number of propagators and the

second is the diagram number at that level.
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the five-loop critical dimension where ultraviolet 
divergences first occur is Dc = 24/5 > 4 
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FIG. 1: Generalized cuts used to determine the three-loop
four-point amplitude.

The N = 8 supergravity bound (1) corresponds, in the
language of effective actions, to a one-particle irreducible
effective action starting with loop integrals multiplied by
D4R4 at each loop order beyond L = 1. Here R4 is
a shorthand for the supersymmetrization of a particu-
lar contraction of four Riemann tensors [5], and D de-
notes a generic covariant derivative. The stronger, “su-
perfinite” bound (2), if applied to N = 8 supergravity,
would differ from eq. (1) beginning at L = 3 for general
D, although both bounds imply three-loop finiteness for
D = 4. It corresponds to a three-loop effective action
beginning with D6R4, not D4R4. As the supergravity
finiteness bound (1) is based on only a limited set of uni-
tarity cuts [12], additional (stronger) cancellations may
be missed [14].

To study this issue, we use the unitarity method [13,
19] to build the three-loop four-point N = 8 supergrav-
ity amplitude. In this method, on-shell tree amplitudes
suffice as ingredients for computing amplitudes at any
loop order. The reduction to tree amplitudes is crucial.
It allows the use of the Kawai-Lewellen-Tye (KLT) [23]
tree-level relations between gravity and gauge theory am-
plitudes [12], effectively reducing gravity computations to
gauge theory ones. The original KLT relations express
tree-level closed-string scattering amplitudes in terms of
pairs of open-string ones. The perturbative massless
states of the closed and open type II superstring compact-
ified to four dimensions on a torus, are those of N = 8
supergravity and N = 4 super-Yang-Mills theory, respec-
tively. Thus, in the limit of energies well below the string
scale, the KLT relations express N = 8 supergravity tree
amplitudes as quadratic combinations of N = 4 super-
Yang-Mills tree amplitudes (see e.g. ref. [16]). At tree
level there are no subtleties in taking this limit.

We use the generalized unitarity cuts [24] illustrated in
fig. 1. Together with the iterated two-particle cuts eval-
uated in refs. [12, 19], these cuts completely determine
any massless three-loop four-point amplitude. Since we
are interested in the UV behavior of the amplitudes in
D dimensions, the unitarity cuts must be evaluated in
D dimensions [25]. This renders the calculation more
difficult, because powerful four-dimensional spinor meth-
ods cannot be used. Some of the D-dimensional com-
plexity is avoided by performing internal-state sums in
terms of the simpler on-shell gauge supermultiplet of
D = 10, N = 1 super-Yang-Mills theory instead of the
D = 4, N = 4 multiplet. We have also performed various
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FIG. 2: Loop integrals appearing in both N = 4 gauge-theory
and N = 8 supergravity three-loop four-point amplitudes.
The integrals are specified by combining the diagrams’ prop-
agators with numerator factors given in table I.

four-dimensional cuts, which in practice provide a very
useful guide.
Our computation proceeds in two stages. In the first

stage we deduce the three-loop N = 4 super-Yang-Mills
amplitudes from generalized cuts, including cuts (a)-(c)
in fig. 1, and the iterated two-particle cuts analyzed in
refs. [12, 19]. From the cuts we obtain a loop-integral
representation of the amplitude. The diagrams in fig. 2
describe the scalar propagators for the loop integrals.
The numerator factor for each integral in the super-Yang-
Mills case is given in the second column of table I.
In the second stage we use the KLT relations to

write the cuts of the N = 8 supergravity amplitude as
sums over products of pairs of cuts of the correspond-
ing N = 4 super-Yang-Mills amplitude, including twisted
non-planar contributions. The iterated two-particle cuts
studied in ref. [12], together with the cuts in fig. 1 eval-
uated here, suffice to fully reconstruct the supergravity
amplitude. We find that the three-loop four-point N = 8
supergravity amplitude in D dimensions is,

M (3)
4 =

(κ

2

)8
stuM tree

4

∑

S3

[

I(a) + I(b) + 1
2I

(c) + 1
4I

(d)

+ 2I(e) + 2I(f) + 4I(g) + 1
2I

(h) + 2I(i)
]

, (3)

where S3 represents the six independent permutations of
legs {1, 2, 3}, κ is the gravitational coupling, and M tree

4 is
the supergravity four-point tree amplitude. The I(x)(s, t)
are D-dimensional loop integrals corresponding to the
nine diagrams in fig. 2, with numerator factors given in
the third column of table I. The Mandelstam invariants
are s = (k1 + k2)2, t = (k2 + k3)2, u = (k1 + k3)2. The
numerical coefficients in front of each integral in eq. (3)
are symmetry factors of the diagrams. Remarkably, the
number of dimensions appears explicitly only in the loop
integration measure.
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FIG. 3: Evaluating these 11 cuts, along with 15 two-particle
reducible cuts, suffices to uniquely determine the four-loop
four-point amplitude. Each blob denotes a tree amplitude.

lower-loop four-point amplitudes in two-particle cuts are
shown in fig. 3.
The UV properties of the amplitude are determined

by the numerator polynomials Ni. We decompose them

into expressions N (m)
i containing all terms with m pow-

ers of loop momenta (and 12−m powers in the external
momenta),

Ni = N (8)
i +N (7)

i +N (6)
i + . . .+N (0)

i . (4)

There is some freedom in this decomposition, including
that induced by the choice of independent lnp

in the loop
integral (2). The overall scaling behavior of eq. (2) im-

plies that an integral with N (m)
i in the numerator is finite

when 4D−26+m < 0. Form odd, by Lorentz invariance,
the leading divergence trivially vanishes under integra-
tion, effectively reducing m by one. Our representation
has m ≤ 8 for all terms; hence the four-loop amplitude
is manifestly UV finite in D = 4.
Demonstrating UV finiteness in D = 5 is more subtle.

It requires the cancellation of divergences for m = 6, 7, 8.
We employ a systematic procedure for extracting diver-
gences from multiloop integrals by expanding in small
external momenta [29].
We find that the numerator terms with m = 8 can

all be expressed solely in terms of inverse propagators
l2n; those with m = 7 have six powers of loop momenta
carried by inverse propagators; and those with m = 6
have four powers; schematically,

N (8)
i ∼ sasbl

2
j l

2
nl

2
pl

2
q ,

N (7)
i ∼ sasb(kj · ln)l

2
pl

2
q l

2
r , (5)

N (6)
i ∼ sasb(kj · ln)(kp · lq)l

2
rl

2
w + sasbsc(lj · ln)l

2
pl

2
q ,

where each sa denotes s, t or u. After expanding in
small external momenta, potential UV divergences enter
through vacuum integrals, just as at three loops [1]. Vac-
uum integrals also exhibit infrared singularities, which
we regularize by injecting two fictitious off-shell external
momenta at appropriate locations in the graph.

Only 12 of the 50 integrals have a nonvanishing N (8)
i ;

all of them are associated with vacuum diagrams (d) and
(e) of fig. 1. For example, the k4l8 terms in the numera-
tors of the integrals I25 and I32 in fig. 2 are

N (8)
25 =

1

8
l25l

2
6l

2
7

[
(30s2 + 13t2 + 13u2)l29

− (32s2 + 19t2 + 19u2)l28

]
,

N (8)
32 =

1

8

{
2(7s2 + 7t2 + 6u2)l25l

2
8l

2
10l

2
12

+ l29

[
12(2s2 − t2 + 2u2)l26l

2
7l

2
12

− (24s2 + 19t2 + 19u2)l25l
2
8l

2
11

]}
. (6)

All of the l2n factors in eq. (6) cancel propagators in the
integrals. Thus, to leading order in the expansion in small
external momenta, the k4l8 terms in I25 and I32 reduce
to the vacuum diagram V (d) of fig. 1(d),

I25 → −14(s2 + t2 + u2)V (d) +O(k5) ,

I32 → +14(s2 + t2 + u2)V (d) +O(k5) . (7)

Here we have summed over the S4 permutations of ex-
ternal legs in eq. (1). Because their combinatorial factors
c25 and c32 are equal [23], the I25 and I32 contributions
cancel at leading order. Similarly, all k4l8 contributions
in the remaining diagrams cancel, independent of D.
As the k5l7 terms cannot generate a leading divergence,

we need only inspect the k6l6 term to determine the UV
properties of the amplitude in D = 5. It is necessary
to expand all integrands down to k6l6. For the 12 in-
tegrals starting at O(k4l8), two derivatives are required
with respect to the external momenta ki, acting on prop-
agators of the form 1/(lj + Kn)2 (where Kn denotes a
sum of external momenta). The numerators obtained by
expanding the integrals to this order have the schematic
form,

N (6)
i +N (7)

i

Kn · lj
l2j

+N (8)
i

(
K2

n

l2j
+

Kn · lj Kq · lp
l2j l

2
p

)
. (8)

The additional denominators can lead to doubled or even
tripled propagators for the graphs in fig. 1. Vacuum in-
tegrals with lµi l

ν
j in the numerator can be reduced using

Lorentz invariance, lµi l
ν
j → ηµν li·lj/D, withD = 5. After

this reduction, the potential UV divergence is described
by 30 vacuum integrals. Of these, 23 possess no loop mo-
menta in the numerator, while seven have an (li + lj)2

numerator factor that cannot be reduced to inverse prop-
agators using momentum conservation. There are many
ways to expand the original 50 integrals Ii. Shifting the
loop momenta in eq. (2) by dDlnp

→ dD(lnp
+ kj) leads

to different representations of the terms proportional to

N (7)
i and N (8)

i in eq. (8), and hence to different forms of
the UV divergences in terms of the 30 vacuum integrals.
Requiring that the different forms are equal generates
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FIG. 14. All 48 independent vacuum propagator structures, that do not factorize into products of

lower-loop diagrams. The first number in the diagram label is the number of propagators and the

second is the diagram number at that level.
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FIG. 7: Diagrams 43–82 for the four-loop four-point amplitudes of N = 4 and N = 5 supergravity.
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FIG. 8: The bubble-on-external-leg diagrams of N = 4 super-Yang-Mills theory. These do not
contribute to N = 4 and N = 5 supergravity.

The sum runs over all 24 permutations of the external legs. F µν
j is the linearized field-
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gravity. These correspond to the N = 4 super-Yang-Mills diagrams of Ref. [39].
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Figure 1. 82 diagrams in N = 5, 4 loops. The individual diagrams are UV divergent in d=4, but
the sum of all diagrams has no UV divergences [31].

E A status of the BN deformation proposal in supergravity

In standard 2d order supergravity the vector part of the action does not have duality

symmetry. This symmetry rotates vector field equations into Bianchi identities. In the

second order formalism these are treated in an asymmetric way: the action depends on

nv = (28, 16, 10) vector potentials Bµ via F = dB. The Bianchi identity dF = 0 for F = dB
are valid off-shell, whereas equations of motion dG = 0 with G̃ = 1

2
δL
δF are only valid on

shell. Therefore G ≈ dC only in virtue of field equations. The dual vector Cµ is not present

in the action, G is the function of F and scalars and fermion fields, and the analysis of

duality symmetry in the second order formalism relies on the fact that δS =
∫
GBG̃.

The proof of duality current conservation in [4, 44] is somewhat tricky since the 2d

order action is not a ‘bona fide’ duality invariant action and therefore the proof of the

relevant Noether-Gaillard-Zumino current conservation is not transparent. It requires that∫
GbG̃ vanishes on shell, where b is the infinitesimal part of B in eq. (2.2). On the other

hand, there is also a Noether-Gaillard-Zumino identity [4, 5, 15] in supergravity:

∫
d4xGbG̃ =

∫
d4x

[
δbϕ

δLv

δϕ
+ h.c.

]
. (E.1)

Here Lv is a vector dependent part of the action. The details and examples are presented

in appendix F. Clearly, in absence of scalars, the right hand side of this identity vanishes,

but not when the scalars in G
H coset space are present. In [13], the action is expanded in a
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2

FIG. 1: Generalized cuts used to determine the three-loop
four-point amplitude.

The N = 8 supergravity bound (1) corresponds, in the
language of effective actions, to a one-particle irreducible
effective action starting with loop integrals multiplied by
D4R4 at each loop order beyond L = 1. Here R4 is
a shorthand for the supersymmetrization of a particu-
lar contraction of four Riemann tensors [5], and D de-
notes a generic covariant derivative. The stronger, “su-
perfinite” bound (2), if applied to N = 8 supergravity,
would differ from eq. (1) beginning at L = 3 for general
D, although both bounds imply three-loop finiteness for
D = 4. It corresponds to a three-loop effective action
beginning with D6R4, not D4R4. As the supergravity
finiteness bound (1) is based on only a limited set of uni-
tarity cuts [12], additional (stronger) cancellations may
be missed [14].

To study this issue, we use the unitarity method [13,
19] to build the three-loop four-point N = 8 supergrav-
ity amplitude. In this method, on-shell tree amplitudes
suffice as ingredients for computing amplitudes at any
loop order. The reduction to tree amplitudes is crucial.
It allows the use of the Kawai-Lewellen-Tye (KLT) [23]
tree-level relations between gravity and gauge theory am-
plitudes [12], effectively reducing gravity computations to
gauge theory ones. The original KLT relations express
tree-level closed-string scattering amplitudes in terms of
pairs of open-string ones. The perturbative massless
states of the closed and open type II superstring compact-
ified to four dimensions on a torus, are those of N = 8
supergravity and N = 4 super-Yang-Mills theory, respec-
tively. Thus, in the limit of energies well below the string
scale, the KLT relations express N = 8 supergravity tree
amplitudes as quadratic combinations of N = 4 super-
Yang-Mills tree amplitudes (see e.g. ref. [16]). At tree
level there are no subtleties in taking this limit.

We use the generalized unitarity cuts [24] illustrated in
fig. 1. Together with the iterated two-particle cuts eval-
uated in refs. [12, 19], these cuts completely determine
any massless three-loop four-point amplitude. Since we
are interested in the UV behavior of the amplitudes in
D dimensions, the unitarity cuts must be evaluated in
D dimensions [25]. This renders the calculation more
difficult, because powerful four-dimensional spinor meth-
ods cannot be used. Some of the D-dimensional com-
plexity is avoided by performing internal-state sums in
terms of the simpler on-shell gauge supermultiplet of
D = 10, N = 1 super-Yang-Mills theory instead of the
D = 4, N = 4 multiplet. We have also performed various
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FIG. 2: Loop integrals appearing in both N = 4 gauge-theory
and N = 8 supergravity three-loop four-point amplitudes.
The integrals are specified by combining the diagrams’ prop-
agators with numerator factors given in table I.

four-dimensional cuts, which in practice provide a very
useful guide.
Our computation proceeds in two stages. In the first

stage we deduce the three-loop N = 4 super-Yang-Mills
amplitudes from generalized cuts, including cuts (a)-(c)
in fig. 1, and the iterated two-particle cuts analyzed in
refs. [12, 19]. From the cuts we obtain a loop-integral
representation of the amplitude. The diagrams in fig. 2
describe the scalar propagators for the loop integrals.
The numerator factor for each integral in the super-Yang-
Mills case is given in the second column of table I.
In the second stage we use the KLT relations to

write the cuts of the N = 8 supergravity amplitude as
sums over products of pairs of cuts of the correspond-
ing N = 4 super-Yang-Mills amplitude, including twisted
non-planar contributions. The iterated two-particle cuts
studied in ref. [12], together with the cuts in fig. 1 eval-
uated here, suffice to fully reconstruct the supergravity
amplitude. We find that the three-loop four-point N = 8
supergravity amplitude in D dimensions is,

M (3)
4 =

(κ

2

)8
stuM tree

4

∑

S3

[

I(a) + I(b) + 1
2I

(c) + 1
4I

(d)

+ 2I(e) + 2I(f) + 4I(g) + 1
2I

(h) + 2I(i)
]

, (3)

where S3 represents the six independent permutations of
legs {1, 2, 3}, κ is the gravitational coupling, and M tree

4 is
the supergravity four-point tree amplitude. The I(x)(s, t)
are D-dimensional loop integrals corresponding to the
nine diagrams in fig. 2, with numerator factors given in
the third column of table I. The Mandelstam invariants
are s = (k1 + k2)2, t = (k2 + k3)2, u = (k1 + k3)2. The
numerical coefficients in front of each integral in eq. (3)
are symmetry factors of the diagrams. Remarkably, the
number of dimensions appears explicitly only in the loop
integration measure.

The Ultraviolet Behavior of N = 8 Supergravity at 4D Four Loops, 
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FIG. 3: Evaluating these 11 cuts, along with 15 two-particle
reducible cuts, suffices to uniquely determine the four-loop
four-point amplitude. Each blob denotes a tree amplitude.

lower-loop four-point amplitudes in two-particle cuts are
shown in fig. 3.
The UV properties of the amplitude are determined

by the numerator polynomials Ni. We decompose them

into expressions N (m)
i containing all terms with m pow-

ers of loop momenta (and 12−m powers in the external
momenta),

Ni = N (8)
i +N (7)

i +N (6)
i + . . .+N (0)

i . (4)

There is some freedom in this decomposition, including
that induced by the choice of independent lnp

in the loop
integral (2). The overall scaling behavior of eq. (2) im-

plies that an integral with N (m)
i in the numerator is finite

when 4D−26+m < 0. Form odd, by Lorentz invariance,
the leading divergence trivially vanishes under integra-
tion, effectively reducing m by one. Our representation
has m ≤ 8 for all terms; hence the four-loop amplitude
is manifestly UV finite in D = 4.
Demonstrating UV finiteness in D = 5 is more subtle.

It requires the cancellation of divergences for m = 6, 7, 8.
We employ a systematic procedure for extracting diver-
gences from multiloop integrals by expanding in small
external momenta [29].
We find that the numerator terms with m = 8 can

all be expressed solely in terms of inverse propagators
l2n; those with m = 7 have six powers of loop momenta
carried by inverse propagators; and those with m = 6
have four powers; schematically,

N (8)
i ∼ sasbl

2
j l

2
nl

2
pl

2
q ,

N (7)
i ∼ sasb(kj · ln)l

2
pl

2
q l

2
r , (5)

N (6)
i ∼ sasb(kj · ln)(kp · lq)l

2
rl

2
w + sasbsc(lj · ln)l

2
pl

2
q ,

where each sa denotes s, t or u. After expanding in
small external momenta, potential UV divergences enter
through vacuum integrals, just as at three loops [1]. Vac-
uum integrals also exhibit infrared singularities, which
we regularize by injecting two fictitious off-shell external
momenta at appropriate locations in the graph.

Only 12 of the 50 integrals have a nonvanishing N (8)
i ;

all of them are associated with vacuum diagrams (d) and
(e) of fig. 1. For example, the k4l8 terms in the numera-
tors of the integrals I25 and I32 in fig. 2 are

N (8)
25 =

1

8
l25l

2
6l

2
7

[
(30s2 + 13t2 + 13u2)l29

− (32s2 + 19t2 + 19u2)l28

]
,

N (8)
32 =

1

8

{
2(7s2 + 7t2 + 6u2)l25l

2
8l

2
10l

2
12

+ l29

[
12(2s2 − t2 + 2u2)l26l

2
7l

2
12

− (24s2 + 19t2 + 19u2)l25l
2
8l

2
11

]}
. (6)

All of the l2n factors in eq. (6) cancel propagators in the
integrals. Thus, to leading order in the expansion in small
external momenta, the k4l8 terms in I25 and I32 reduce
to the vacuum diagram V (d) of fig. 1(d),

I25 → −14(s2 + t2 + u2)V (d) +O(k5) ,

I32 → +14(s2 + t2 + u2)V (d) +O(k5) . (7)

Here we have summed over the S4 permutations of ex-
ternal legs in eq. (1). Because their combinatorial factors
c25 and c32 are equal [23], the I25 and I32 contributions
cancel at leading order. Similarly, all k4l8 contributions
in the remaining diagrams cancel, independent of D.
As the k5l7 terms cannot generate a leading divergence,

we need only inspect the k6l6 term to determine the UV
properties of the amplitude in D = 5. It is necessary
to expand all integrands down to k6l6. For the 12 in-
tegrals starting at O(k4l8), two derivatives are required
with respect to the external momenta ki, acting on prop-
agators of the form 1/(lj + Kn)2 (where Kn denotes a
sum of external momenta). The numerators obtained by
expanding the integrals to this order have the schematic
form,

N (6)
i +N (7)

i

Kn · lj
l2j

+N (8)
i

(
K2

n

l2j
+

Kn · lj Kq · lp
l2j l

2
p

)
. (8)

The additional denominators can lead to doubled or even
tripled propagators for the graphs in fig. 1. Vacuum in-
tegrals with lµi l

ν
j in the numerator can be reduced using

Lorentz invariance, lµi l
ν
j → ηµν li·lj/D, withD = 5. After

this reduction, the potential UV divergence is described
by 30 vacuum integrals. Of these, 23 possess no loop mo-
menta in the numerator, while seven have an (li + lj)2

numerator factor that cannot be reduced to inverse prop-
agators using momentum conservation. There are many
ways to expand the original 50 integrals Ii. Shifting the
loop momenta in eq. (2) by dDlnp

→ dD(lnp
+ kj) leads

to different representations of the terms proportional to

N (7)
i and N (8)

i in eq. (8), and hence to different forms of
the UV divergences in terms of the 30 vacuum integrals.
Requiring that the different forms are equal generates
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FIG. 14. All 48 independent vacuum propagator structures, that do not factorize into products of

lower-loop diagrams. The first number in the diagram label is the number of propagators and the

second is the diagram number at that level.
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FIG. 3: The different parent integrals in terms of which four-point three-loop amplitudes may be

expressed.

TABLE I: The numerator factors N (x) for the integrals I(x) in fig. 3 for N = 4 super-Yang-Mills

theory. The first column labels the integral, the second column the relative numerator factor. An

overall factor of s12s14Atree
4 has been removed. The invariants sij and τij are defined in eq. (2.6).

Integral I(x) N (x) for N = 4 Super-Yang-Mills

(a)–(d) s212

(e)–(g) s12 s46

(h) s12(τ26 + τ36) + s14(τ15 + τ25) + s12s14

(i) s12s45 − s14s46 − 1
3(s12 − s14)l27

over external-leg permutations. One of the gauge-theory cuts is planar, while the second is

nonplanar. 2

An important feature of this construction is that, once the sums over all super-partners

are performed in the N = 4 super-Yang-Mills cuts, the corresponding super-partner sum

2 It is possible to use the total S3 permutation symmetry of s12s14Atree
4 (1, 2, 3, 4) to partially “untwist” the

four-point amplitude in the second Yang-Mills cut, so as to make manifest its reflection symmetry under

{1 ↔ 4, 2 ↔ 3}.
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FIG. 8: The bubble-on-external-leg diagrams of N = 4 super-Yang-Mills theory. These do not
contribute to N = 4 and N = 5 supergravity.

The sum runs over all 24 permutations of the external legs. F µν
j is the linearized field-
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Figure 1. 82 diagrams in N = 5, 4 loops. The individual diagrams are UV divergent in d=4, but
the sum of all diagrams has no UV divergences [31].

E A status of the BN deformation proposal in supergravity

In standard 2d order supergravity the vector part of the action does not have duality

symmetry. This symmetry rotates vector field equations into Bianchi identities. In the

second order formalism these are treated in an asymmetric way: the action depends on

nv = (28, 16, 10) vector potentials Bµ via F = dB. The Bianchi identity dF = 0 for F = dB
are valid off-shell, whereas equations of motion dG = 0 with G̃ = 1

2
δL
δF are only valid on

shell. Therefore G ≈ dC only in virtue of field equations. The dual vector Cµ is not present

in the action, G is the function of F and scalars and fermion fields, and the analysis of

duality symmetry in the second order formalism relies on the fact that δS =
∫
GBG̃.

The proof of duality current conservation in [4, 44] is somewhat tricky since the 2d

order action is not a ‘bona fide’ duality invariant action and therefore the proof of the

relevant Noether-Gaillard-Zumino current conservation is not transparent. It requires that∫
GbG̃ vanishes on shell, where b is the infinitesimal part of B in eq. (2.2). On the other

hand, there is also a Noether-Gaillard-Zumino identity [4, 5, 15] in supergravity:

∫
d4xGbG̃ =

∫
d4x

[
δbϕ

δLv

δϕ
+ h.c.

]
. (E.1)

Here Lv is a vector dependent part of the action. The details and examples are presented

in appendix F. Clearly, in absence of scalars, the right hand side of this identity vanishes,

but not when the scalars in G
H coset space are present. In [13], the action is expanded in a
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and we skipped terms with fermion interaction with bosons. The spinor fields are  +µ↵, �µ↵̇

and �+a↵̇,��ȧ↵ where a, ȧ = 1, ..., 5 and ↵, ↵̇ label spinors of SO(5)⇥ SO(5). Here ± refers

to spacetime chirality of the spinors which are 6D symplectic Majorana-Weyl.

When this action is gauge-fixed in a symmetric gauge it is a model for which anomaly

computation in [14] is relevant. Note that the action is manifestly invariant under reflec-

tion: flipping chirality and SO(5)1 to SO(5)2. This symmetry plays an important role in

cancellation of 6D supergravity SO(5)⇥ SO(5) ⇠ USp(4)⇥ USp(4) anomalies in [14].

The maximal 7D6D ungauged supergravity action in eq. (C.2) in [28] has SO(5) local

symmetry. We have shown bosonic terms in the action in Sec. 6. The fermionic kinetic terms

are

1

e
L
ferm
7D6D

= � ̄µ⌧
µ⌫⇢

r⌫ ⇢ � �̄⌧µrµ�� �̄i⌧µrµ�i + . . . (B.2)

where the . . . involve terms with fermion interaction with bosons. The fermions are USp(4)

6D Majorana symplectic spinors, they are Lorentz and SO(5)-covariant. This action has no

manifest symmetry under refection when flipping chirality and USp(4)1 to USp(4)2.

In symmetric gauge in [3, 4] there are 25 scalars �aȧ with a, ȧ = 1, . . . , 5 viewed with

spinorial indices in USp(4)⇥ USp(4) are

W ↵̇�̇
↵� (x) ⌘ (�a)↵�(�ȧ)

↵̇�̇�aȧ(x) , ↵, ↵̇ = 1, 2, 3, 4 (B.3)

At the linear level these scalars are the first components in the linearized BPS superfields

W ↵̇�̇
↵� (x, ✓) [33, 34]. For example W 1̇2̇

12 (x, ✓) is 1/2 BPS superfield depends on half of fermionic

directions in superspace

D↵1W
1̇2̇
12 = D↵2W

1̇2̇
12 = D↵̇1̇W 1̇2̇

12D
↵̇2̇W 1̇2̇

12 = 0 . (B.4)

Using superapmlitudes, the structure of the maximal supergravity 4-point tree amplitude

was given in [35]. The corresponding on shell superfield depends on 8 Grassmann coordinates

and it is directly related to W 1̇2̇
12 (x, ✓)

The four-point superamplitude is given in [35] in the form

MN=(2,2) tree
4 =

1

2
�6
 

4X

i=1

pAB
i

!
�8
⇣P4

i=1 q
A,I
i

⌘
�8
⇣P4

i=1 q̃
Î
i,Â

⌘

s12 s23 s13
, (B.5)

We have presented in [33] a local linearized superinvariant defining 3-loop 4-point UV diver-

gence found in [36] as follows

MN=(2,2) L=3
4 =

1

✏

5⇣3
(4⇡)9

⇣
2

⌘4
�6
 

4X

i=1

pAB
i

!
�8
 

4X

i=1

qA,I
i

!
�8
 

4X

i=1

q̃Î
i,Â

!
s12 s23 s34 , (B.6)
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We study the properties of interacting field theories which are invariant under duality 
rotations which transform a vector field strength into its dual. We consider non-abelian duality 
groups and find that the largest group for n interacting field strengths is the non-compact 
Sp(2n,R), which has U(n) as its maximal compact subgroup. We show that invariance of the 
equations of motion requires that the lagrangian change in a particular way under duality. We use 
this property to demonstrate the existence of conserved currents, the invariance of the energy- 
momentum tensor and the S-matrix, and also in the general construction of the lagrangian. Finally 
we comment on the existence of zero-mass spin-one bound states in N = 8 supergravity, which 
possesses a non-compact E, dual invariance. 

1. Introduction 

It has long been known that the free Maxwell’s equations are invariant under a 
rotation of the electric field and the magnetic field into each other. In relativistic 
notation this means that the electromagnetic field strength Fpy and its dual, 

rotate into each other. For this reason the transformation has been called a “duality 
rotation”. It is easy to see [ 1,2] that duality rotation invariance can be extended to 
the case when the electromagnetic field interacts with the gravitational field, which 
does not transform under duality. On the other hand, it is obvious that duality 
invariance is violated by electromagnetic couplings of the minimal type. Related to 
this is the fact that there is no non-abelian generalization of duality under which the 
pure Yang-Mills equations could be invariant [2]. 

Non-minimal couplings of the magnetic moment type can, however, be made 
duality invariant, and this invariance can in fact be generalized to a non-abelian 
group. This is the situation [3] in extended supergravity theories without gauging. 
The assumption that the theory is invariant under duality rotations has been used 
[4-61 to simplify the search for the correct supersymmetric lagrangian. For N = 4 

* On the occasion of his 60th birthday, we wish to dedicate this paper to Andrei D. Sakharov, whose 
work in gravitation and particle physics has been a great inspiration to us. 
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Maximal Gaillard-Zumino (GZ) electro-magnetic duality is available in even dimensions D=2k

For even k duality group is  symplectic Sp(2n), for odd k it is orthogonal SO(n,n). 

Supergravities with G/H coset spaces have local H symmetry which can be gauge-fixed  in 

symmetric, or Iwasawa type gauges

In 4D
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dim[Sp(56)] � dim[E7(7)]
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dim[Sp(2n)] � dim[GU ]

N=8

N=5,6

These extra symmetries allow to establish on shell equivalence of theories quantized in various gauges in 
supergravities I and II (to be described). 

In 6D and 8D GZ duality groups have the same dimension as  U-duality groups G, in odd dimensions there 
is no GZ duality. Therefore for all D > 4  enhanced symmetries are not available to establish 

quantum equivalence
This is consistent with UV divergences below critical loop order in all D > 4 supergravities and 
absence of these so far in 4D N > 4 supergravities.



Maximal Gaillard-Zumino (GZ) electro-magneWc duality is available in even dimensions D=2k

For even k duality group is  symplec*c Sp(2n), for odd k it is orthogonal SO(n,n). 

SupergraviWes with G/H coset spaces have local H symmetry which can be gauge-fixed  in 

symmetric, or Iwasawa type gauges

In 4D

<latexit sha1_base64="Ntwd0WdUi6wASt8Sn6TAFPucZHg="></latexit>

dim[Sp(56)] � dim[E7(7)]
<latexit sha1_base64="raZFwGqmzK+131QE/KwAD+XHOV8="></latexit>

dim[Sp(2n)] � dim[GU ]

N=8

N=5,6

These extra symmetries allow to establish on shell equivalence of theories quantized in various gauges in 
supergravities I and II (to be described). 

In 6D and 8D GZ duality groups have the same dimension as  U-duality groups G, in odd dimensions there 
is no GZ duality. Therefore for all D > 4  enhanced symmetries are not available to establish 

quantum equivalence
This is consistent with UV divergences below critical loop order in all D > 4 supergravities and 
absence of these so far in 4D N > 4 supergravities.



Maximal Gaillard-Zumino (GZ) electro-magnetic duality is available in even dimensions D=2k

For even k duality group is  symplectic Sp(2n), for odd k it is orthogonal SO(n,n). 

Supergravities with G/H coset spaces have local H symmetry which can be gauge-fixed  in 

symmetric, or Iwasawa type gauges

In 4D

<latexit sha1_base64="Ntwd0WdUi6wASt8Sn6TAFPucZHg="></latexit>

dim[Sp(56)] � dim[E7(7)]
<latexit sha1_base64="raZFwGqmzK+131QE/KwAD+XHOV8="></latexit>

dim[Sp(2n)] � dim[GU ]

N=8

N=5,6

These extra symmetries allow to establish on shell equivalence of theories quantized in various gauges in 
supergravities I and II (to be described). 

In 6D and 8D GZ duality groups have the same dimension as  U-duality groups G, in odd dimensions there 
is no GZ duality. Therefore for all D > 4  enhanced symmetries are not available to establish 

quantum equivalence
This is consistent with UV divergences below critical loop order in all D > 4 supergravities and 
absence of these so far in 4D N > 4 supergravities.



Maximal Gaillard-Zumino (GZ) electro-magneWc duality is available in even dimensions D=2k

For even k duality group is  symplec*c Sp(2n), for odd k it is orthogonal SO(n,n). 

SupergraviWes with G/H coset spaces have local H symmetry which can be gauge-fixed  in 

symmetric, or Iwasawa type gauges

In 4D

<latexit sha1_base64="Ntwd0WdUi6wASt8Sn6TAFPucZHg="></latexit>

dim[Sp(56)] � dim[E7(7)]
<latexit sha1_base64="raZFwGqmzK+131QE/KwAD+XHOV8="></latexit>

dim[Sp(2n)] � dim[GU ]

N=8

N=5,6

These extra symmetries allow to establish on shell equivalence of theories quantized in various gauges in 
supergravities I and II (to be described). 

In 6D and 8D GZ duality groups have the same dimension as  U-duality groups G, in odd dimensions there 
is no GZ duality. Therefore for all D > 4  enhanced symmetries are not available to establish 

quantum equivalence
This is consistent with UV divergences below critical loop order in all D > 4 supergravities and 
absence of these so far in 4D N > 4 supergravities.

2 UV divergences and broken local H and global G symmetries

An on-shell superspace construction of D-dimensional G/H supergravity is based on local H-

symmetry and global G-symmetry. Local Lorentz symmetry, together with local H-symmetry,

form the set of symmetries of the tangent space of the on-shell superspace. In D = 4, detailed

constructions are available [10]; in higher D, construction is analogous.

The geometric on-shell superinvariants are available starting from the loop order Lcr.

We have defined Lcr as the loop order where local H-symmetry and global G-symmetry of

the candidate counterterms are available [1]. It was established there that for N � 5 D-

dimensional supergravity superinvariants with local H-symmetry and global G-symmetry are

available starting with

Lcr =
2N + n

(D � 2)
, n � 0 . (2.1)

In particular, in D = 4, Lcr = N and Lcr = 8, 6, 5 for N = 8, 6, 5 respectively [13]. In each

case in (2.1), we need to find a minimal value of n, which makes Lcr an integer2. The result for

Lcr for the case of maximal supergravity is shown below. We also show the computational data

in D-dimensional supergravities [14], at which loop order in each dimension UV divergence

was detected

D = 4, Lcr = 8 : 14
ˆ

d4 xD10R4 + . . . n = 0

D = 5, Lcr = 6 : 10
ˆ

d5 xD12R4 + . . . n = 2 LUV = 5 < Lcr = 6

D = 6, Lcr = 4 : 6
ˆ

d6 xD10R4 + . . . n = 0 LUV = 3 < Lcr = 4

D = 7, Lcr = 4 : 6
ˆ

d7 xD14R4 + . . . n = 4 LUV = 2 < Lcr = 4

D = 8, Lcr = 3 : 4
ˆ

d8 xD12R4 + . . . n = 3 LUV = 1 < Lcr = 3

D = 9, Lcr = 3 : 4
ˆ

d9 xD15R4 + . . . n = 5 LUV = 2 < Lcr = 3 (2.2)

The data has revealed a universal feature for all maximal D > 4 supergravities: UV diver-

gences appear at the loop order below critical. Thus, all UV divergences in maximal D > 4

supergravities imply that the local H-symmetry and global G-symmetry are broken: the su-

perinvariants supporting these UV divergences are given by the superspace integrals with the

volume of integration, which is a subspace of the total supervolume [1].

The loop computations tell us that so far, no UV divergences in 4D at N � 5 below

Lcr were found. For example, in N = 5 there is no UV divergence at L = 4 < Lcr = 5

[15]. There is a striking di↵erence between the D=4 and D>4 in the dimension of maximal

2
Supergraity actions with specific global G and local H symmetries are available only in integer dimensions.
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Lcr were found. For example, in N = 5 there is no UV divergence at L = 4 < Lcr = 5

[15]. There is a striking di↵erence between the D=4 and D>4 in the dimension of maximal
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The measure of enhanced duality is a dimension of the double quotient
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G modulo H
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Thus, we have revealed the relation between the unitary gauges of 6D maximal super-

gravity we have proposed above and parabolic subgroups in automorphism analysis performed

in [20, 21, 38–41, 43, 44].

11 Discussion

All D > 4 supergravities have UV divergences below critical loop order [22–24]

L
D

cr =
2N + n

D � 2
, n � 0 (11.1)

This means that the relevant superinvariant counterterms, can’t have local H-symmetry.

Therefore these UV divergences signify local H-symmetry anomaly.

This is consistent with the fact that it is not possible to prove that in D > 4 supergravities

the S-matrix is independent on the choice of the local H-symmetry gauge-fixing condition:

symmetric or parabolic.

At 4D N � 5 there are no UV divergences below critical loop order (as of now)

L
4D

cr = N (11.2)

and therefore there is no evidence that local H symmetry has anomalies.

This is consistent with the fact that it is possible to prove that in N � 5 4D supergravities

the S-matrix is independent on the choice of the local H-symmetry gauge-fixing condition:

symmetric and parabolic gauges must give the same results. The proof is based on the fact

of existence of di↵erent symplectic frames in 4D supergravity [14–17]. The existence of such

di↵erent frames, with Lagrangians di↵erent o↵ shell was established using the Sp(2nv) GZ

duality symmetry, modulo scalar and vector field redefinitions. We have checked that the

corresponding double quotient

E
4D

= GU (R)\Sp(2nv,R)/GL(nv,R) (11.3)

is nontrivial for all N � 5. It means that the number of generators in GZ duality group

Sp(2nv,R) has to exceed the number of generators in GU duality group, known as E7-type

groups, plus the number of generators in GL(nv,R).

The di↵erence between 4D case and other even dimensions is that in 6D the relevant

GZ duality group SO(5, 5) has the same number of generators as GU = E5(5) and in 8D the

relevant GZ duality group Sp(2,R) has the same number of generators as SL(2,R) part of

the E3(3) GU duality.

There is also no enhancement of duality symmetry in all odd dimensions as GZ duality

is available only in even dimensions D=2k where electric and magnetic forms have the same
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The measure of enhanced duality is a dimension of the double quoCent

The Lagrangian o↵ shell changes as follows

L0

1 = L1 +
1

2n!
(F TUTWF̃ +GTZTV G̃) (4.34)

The first term with F = dA is a total derivative, so the change of the Lagrangian o↵ shell

where G 6= dB is up to total derivatives

L0

1 = L1 +
1

2n!
GTZTV G̃ (4.35)

For infinitesimal transformations as in 4D example with n = 2 we have Z ! B;W !
C;U, V ! 1. Up to slight change in notation, we see that ZTD ! B is an infinitesimal

change of the action as in (4.1). On shell when G = dB all inequivalent o↵ shell Lagrangians

(4.35) lead to the same equations of motion/Bianchi identities given in (4.30).

4.3 Quotients in 4D, 6D, 8D

An important development of Sp(2nv,R) symmetry was in 4D ungauged supergravity La-

grangians with G/H coset space and with local H symmetry in [14–17]. Their result was that

for ungauged 4D supergravity, the set of Lagrangians that cannot be mapped to each other

by local field redefinitions is identified with the double quotient space4

E4D = GU (R)\Sp(2nv,R)/GL(nv,R) (4.36)

For example in maximal 4D supergravity the relevant quotient is

E4D
N=8

= E7(7)(R)\Sp(56,R)/GL(28,R) (4.37)

Here the left quotient, a continuous E7(7)(R), corresponds to a local redefinitions of the scalar

fields, it is not a E7(7) duality which also act on vector fields. The right quotient GL(28,R)
corresponds to a local redefinitions of the 28 vector fields. The resulting theories, codified by

the matrix matrix E which belongs to E7(7)\Sp(56;R)/GL(28) are equivalent at the level of

the equations of motion!

The clarification of the status of Sp(2nv,R) relevant to N � 5 4D supergravities is the

following. These theories have non-unique Lagrangians (not related by local field redefinition)

codified by the matrix E which belongs to G(R)\Sp(2nv,R)/GL(nv,R). Here the relevant

dualities are G = SU(1, 5), SO⇤(12) for N = 5, 6, respectively. But all these are equivalent

at the level of the equations of motion!

These results were supported and nicely explained in [26] and in the Hamiltonian for-

malism in [27]. There is an agreement on the fact that there is an equivalence between

4In terms of symplectic bases rather than coordinates, one has a dual (transposed) actions of the groups

GL(nv,R)\Sp(2nv,R)/G(R).
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We apply classical results in 2, 3,4   to quan*za*on of supergravity I, II in different gauges using 
Hamiltonian path integral based on 1, 4. We argue that the gauge-independence of the on shell S-matrix is 
possible due to existence of the non-trivial double quo*ent in 4D N > 4

Thus, we have revealed the relation between the unitary gauges of 6D maximal super-

gravity we have proposed above and parabolic subgroups in automorphism analysis performed

in [20, 21, 38–41, 43, 44].

11 Discussion

All D > 4 supergravities have UV divergences below critical loop order [22–24]

L
D

cr =
2N + n

D � 2
, n � 0 (11.1)

This means that the relevant superinvariant counterterms, can’t have local H-symmetry.

Therefore these UV divergences signify local H-symmetry anomaly.

This is consistent with the fact that it is not possible to prove that in D > 4 supergravities

the S-matrix is independent on the choice of the local H-symmetry gauge-fixing condition:

symmetric or parabolic.

At 4D N � 5 there are no UV divergences below critical loop order (as of now)

L
4D

cr = N (11.2)

and therefore there is no evidence that local H symmetry has anomalies.

This is consistent with the fact that it is possible to prove that in N � 5 4D supergravities

the S-matrix is independent on the choice of the local H-symmetry gauge-fixing condition:

symmetric and parabolic gauges must give the same results. The proof is based on the fact

of existence of di↵erent symplectic frames in 4D supergravity [14–17]. The existence of such

di↵erent frames, with Lagrangians di↵erent o↵ shell was established using the Sp(2nv) GZ

duality symmetry, modulo scalar and vector field redefinitions. We have checked that the

corresponding double quotient

E
4D

= GU (R)\Sp(2nv,R)/GL(nv,R) (11.3)

is nontrivial for all N � 5. It means that the number of generators in GZ duality group

Sp(2nv,R) has to exceed the number of generators in GU duality group, known as E7-type

groups, plus the number of generators in GL(nv,R).

The di↵erence between 4D case and other even dimensions is that in 6D the relevant

GZ duality group SO(5, 5) has the same number of generators as GU = E5(5) and in 8D the

relevant GZ duality group Sp(2,R) has the same number of generators as SL(2,R) part of

the E3(3) GU duality.

There is also no enhancement of duality symmetry in all odd dimensions as GZ duality

is available only in even dimensions D=2k where electric and magnetic forms have the same
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For all D > 4 the corresponding  quoWent is trivial since the dimension of the maximal duality group, 
Including GZ duality, is the same as dimension of the U-duality group GU

dimension k and can form duality doublets, required for GZ symmetry. Therefore in D > 4

supergravities the corresponding double quotient analog of the one in 4D in eq. (11.3) is

trivial

E
D>4

= I (11.4)

There are no tools available to connect symmetric and parabolic gauges in D > 4 supergrav-

ities.

Future computations will not be able to change the fact that all D > 4 supergravities

have perturbative UV divergences and local H-symmetry anomalies. However, in 4D future

loop computations may or may not discover UV divergences.

Our current explanation of UV finiteness in 4D and UV divergences in D > 4 super-

gravities is based on the di↵erence between Gaillard-Zumino and U-dualities8. From this

perspective, if future computations at 4D N � 5 supergravities will continue to be UV finite,

there will be no surprise, we will just have a confirmation of a local H symmetry gauge inde-

pendence in 4D. If a UV divergence will show up at some loop order, we will need to find out

the reason for it.

8Various other explanations of UV finiteness in 4D were given before, but here we have an explanation of

currently available computational data in all discrete D� 4 dimensionsmj.
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Why Sp(2n,R) helps? We use the classical construction of 
de Wit, Samtleben, Trigianteof 4D symplectic frames

Use 4D GZ duality transformation to change the Lagrangian

We will use the fact that maximal duality at D > 4, including GZ duality in even

dimensions, is the same as the U-duality

Gmax = GU , D > 4 (1.4)

whereas the amount of symmetries in GZ duality at 4D exceeds the amount of symmetries in

U-duality for N � 5

GGZ = Sp(2nv) � GU , D = 4 (1.5)

Based on this we will provide evidence that the extra symmetries in 4D N � 5 supergravities

due to GGZ � GU allow to prove that the results for di↵erent gauges of local H-symmetry

agree on shell.

And vice versa, we will find that the absence of extra symmetries in D > 4 above GU

presents an obstacle when trying to prove the gauge-invariance and therefore D > 4 super-

gravities are consistent with local H-symmetry anomalies.

2 GZ duality in even and odd k=D/2 : Sp(2n) and SO(n,n)

The original Sp(2nv,R) duality in 4D was discovered by Gaillard and Zumino in [8]. It shows

that the scalar-vector part of the Lagrangian of supergravity under infinitesimal Sp(2nv,R)
transformations, where there are nv vectors, transforms as follows
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as we see in eq. (2.20) in [8]. Here on vector doublet the Sp(2nv,R) transformation in a real

basis acts as follows
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The first term in �L in (4.1) is a total derivative since F = dA but the second term does not

vanish o↵-shell. It does vanish under a condition that

B = 0 )
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(2.3)

This defines a manifest symmetry of the Lagrangian under the so-called electric subgroup of

Sp(2nv,R) with B = 0.

On shell G = dB and the second term also becomes a total derivative. Therefore

Sp(2nv,R) transformation with B 6= 0 relates theories which are not equivalent o↵ shell,

but equivalent on shell.
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B=0 manifest electric subgroup Ge

The SL(8, R) symplectic frame: Ge= SL(8, R)  Cremmer et al

The E6(6) symplectic frame   :        Ge= E6(6)

4D acWon I 

5D 4D action II 
N=8 example

Different symplectic frames: different manifest global symmetries of the Lagrangian Ge

Off shell Lagrangians are different in different frames: however, on shell equations of motion and BI 
are the same and have a U-duality GU symmetry

<latexit sha1_base64="MJ5Ym2oPBB6WdXls+f+LoTJgK9U="></latexit>

Fµ⌫ = @µA⌫ � @⌫Aµ
<latexit sha1_base64="ZGf1FrC5xmuIRLINsA0HSB6/O58="></latexit>

G̃µ⌫ = 2
@L

@Fµ⌫

<latexit sha1_base64="kn4chNWEwADp7Y+1s9iPesgIqdQ="></latexit>✓
F
G

◆
|on shell =

✓
dA
dB

◆



How to prove the on shell gauge-independence of the S-matrix?

Why Sp(2n,R) helps? We use the classical construction of 
de Wit, Samtleben, Trigianteof 4D symplectic frames

Use 4D GZ duality transformaWon to change the Lagrangian

We will use the fact that maximal duality at D > 4, including GZ duality in even

dimensions, is the same as the U-duality

Gmax = GU , D > 4 (1.4)

whereas the amount of symmetries in GZ duality at 4D exceeds the amount of symmetries in

U-duality for N � 5

GGZ = Sp(2nv) � GU , D = 4 (1.5)

Based on this we will provide evidence that the extra symmetries in 4D N � 5 supergravities

due to GGZ � GU allow to prove that the results for di↵erent gauges of local H-symmetry

agree on shell.

And vice versa, we will find that the absence of extra symmetries in D > 4 above GU

presents an obstacle when trying to prove the gauge-invariance and therefore D > 4 super-

gravities are consistent with local H-symmetry anomalies.

2 GZ duality in even and odd k=D/2 : Sp(2n) and SO(n,n)

The original Sp(2nv,R) duality in 4D was discovered by Gaillard and Zumino in [8]. It shows

that the scalar-vector part of the Lagrangian of supergravity under infinitesimal Sp(2nv,R)
transformations, where there are nv vectors, transforms as follows

�L =
1

4
(FCF̃ +GBG̃) , Fµ⌫ = @µA⌫ � @⌫Aµ , G̃µ⌫ = 2

@L

@Fµ⌫
(2.1)

as we see in eq. (2.20) in [8]. Here on vector doublet the Sp(2nv,R) transformation in a real

basis acts as follows

�Sp(2nv)

 
F

G

!
=

 
A B

C D

! 
F

G

!
, C = CT , B = BT , D = �AT (2.2)

The first term in �L in (4.1) is a total derivative since F = dA but the second term does not

vanish o↵-shell. It does vanish under a condition that

B = 0 )
 
A 0

C D

!
(2.3)

This defines a manifest symmetry of the Lagrangian under the so-called electric subgroup of

Sp(2nv,R) with B = 0.

On shell G = dB and the second term also becomes a total derivative. Therefore

Sp(2nv,R) transformation with B 6= 0 relates theories which are not equivalent o↵ shell,

but equivalent on shell.

– 4 –

We will use the fact that maximal duality at D > 4, including GZ duality in even

dimensions, is the same as the U-duality

Gmax = GU , D > 4 (1.4)

whereas the amount of symmetries in GZ duality at 4D exceeds the amount of symmetries in

U-duality for N � 5

GGZ = Sp(2nv) � GU , D = 4 (1.5)

Based on this we will provide evidence that the extra symmetries in 4D N � 5 supergravities

due to GGZ � GU allow to prove that the results for di↵erent gauges of local H-symmetry

agree on shell.

And vice versa, we will find that the absence of extra symmetries in D > 4 above GU

presents an obstacle when trying to prove the gauge-invariance and therefore D > 4 super-

gravities are consistent with local H-symmetry anomalies.

2 GZ duality in even and odd k=D/2 : Sp(2n) and SO(n,n)

The original Sp(2nv,R) duality in 4D was discovered by Gaillard and Zumino in [8]. It shows

that the scalar-vector part of the Lagrangian of supergravity under infinitesimal Sp(2nv,R)
transformations, where there are nv vectors, transforms as follows

�L =
1

4
(FCF̃ +GBG̃) , Fµ⌫ = @µA⌫ � @⌫Aµ , G̃µ⌫ = 2

@L

@Fµ⌫
(2.1)

as we see in eq. (2.20) in [8]. Here on vector doublet the Sp(2nv,R) transformation in a real

basis acts as follows

�Sp(2nv)

 
F

G

!
=

 
A B

C D

! 
F

G

!
, C = CT , B = BT , D = �AT (2.2)

The first term in �L in (4.1) is a total derivative since F = dA but the second term does not

vanish o↵-shell. It does vanish under a condition that

B = 0 )
 
A 0

C D

!
(2.3)

This defines a manifest symmetry of the Lagrangian under the so-called electric subgroup of

Sp(2nv,R) with B = 0.

On shell G = dB and the second term also becomes a total derivative. Therefore

Sp(2nv,R) transformation with B 6= 0 relates theories which are not equivalent o↵ shell,

but equivalent on shell.

– 4 –

B=0 manifest electric subgroup Ge

The SL(8, R) symplectic frame: Ge= SL(8, R)  Cremmer et al

The E6(6) symplectic frame   :        Ge= E6(6)

4D action I 

5D 4D action II 

dWST:  A finite transformaWon of L from one symplecWc frame to the other can be performed 
using a symplecWc matrix E defined modulo redefiniWons of the scalar and vector fields in the acWon

N=8 example

Different symplectic frames: different manifest global symmetries of the Lagrangian Ge

The Lagrangian o↵ shell changes as follows

L0

1 = L1 +
1

2n!
(F TUTWF̃ +GTZTV G̃) (4.34)

The first term with F = dA is a total derivative, so the change of the Lagrangian o↵ shell

where G 6= dB is up to total derivatives

L0

1 = L1 +
1

2n!
GTZTV G̃ (4.35)

For infinitesimal transformations as in 4D example with n = 2 we have Z ! B;W !
C;U, V ! 1. Up to slight change in notation, we see that ZTD ! B is an infinitesimal

change of the action as in (4.1). On shell when G = dB all inequivalent o↵ shell Lagrangians

(4.35) lead to the same equations of motion/Bianchi identities given in (4.30).

4.3 Quotients in 4D, 6D, 8D

An important development of Sp(2nv,R) symmetry was in 4D ungauged supergravity La-

grangians with G/H coset space and with local H symmetry in [14–17]. Their result was that

for ungauged 4D supergravity, the set of Lagrangians that cannot be mapped to each other

by local field redefinitions is identified with the double quotient space4

E4D = GU (R)\Sp(2nv,R)/GL(nv,R) (4.36)

For example in maximal 4D supergravity the relevant quotient is

E4D
N=8

= E7(7)(R)\Sp(56,R)/GL(28,R) (4.37)

Here the left quotient, a continuous E7(7)(R), corresponds to a local redefinitions of the scalar

fields, it is not a E7(7) duality which also act on vector fields. The right quotient GL(28,R)
corresponds to a local redefinitions of the 28 vector fields. The resulting theories, codified by

the matrix matrix E which belongs to E7(7)\Sp(56;R)/GL(28) are equivalent at the level of

the equations of motion!

The clarification of the status of Sp(2nv,R) relevant to N � 5 4D supergravities is the

following. These theories have non-unique Lagrangians (not related by local field redefinition)

codified by the matrix E which belongs to G(R)\Sp(2nv,R)/GL(nv,R). Here the relevant

dualities are G = SU(1, 5), SO⇤(12) for N = 5, 6, respectively. But all these are equivalent

at the level of the equations of motion!

These results were supported and nicely explained in [26] and in the Hamiltonian for-

malism in [27]. There is an agreement on the fact that there is an equivalence between

4In terms of symplectic bases rather than coordinates, one has a dual (transposed) actions of the groups

GL(nv,R)\Sp(2nv,R)/G(R).
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double quoWent space

Off shell Lagrangians are different in different frames: however, on shell equations of motion and BI 
are the same and have a U-duality GU symmetry
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de Wit, Samtleben, Trigianteof 4D symplectic frames

Use 4D GZ duality transformation to change the Lagrangian

We will use the fact that maximal duality at D > 4, including GZ duality in even

dimensions, is the same as the U-duality

Gmax = GU , D > 4 (1.4)

whereas the amount of symmetries in GZ duality at 4D exceeds the amount of symmetries in

U-duality for N � 5

GGZ = Sp(2nv) � GU , D = 4 (1.5)

Based on this we will provide evidence that the extra symmetries in 4D N � 5 supergravities

due to GGZ � GU allow to prove that the results for di↵erent gauges of local H-symmetry

agree on shell.

And vice versa, we will find that the absence of extra symmetries in D > 4 above GU

presents an obstacle when trying to prove the gauge-invariance and therefore D > 4 super-

gravities are consistent with local H-symmetry anomalies.

2 GZ duality in even and odd k=D/2 : Sp(2n) and SO(n,n)

The original Sp(2nv,R) duality in 4D was discovered by Gaillard and Zumino in [8]. It shows

that the scalar-vector part of the Lagrangian of supergravity under infinitesimal Sp(2nv,R)
transformations, where there are nv vectors, transforms as follows

�L =
1

4
(FCF̃ +GBG̃) , Fµ⌫ = @µA⌫ � @⌫Aµ , G̃µ⌫ = 2

@L

@Fµ⌫
(2.1)

as we see in eq. (2.20) in [8]. Here on vector doublet the Sp(2nv,R) transformation in a real

basis acts as follows

�Sp(2nv)
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C D
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!
, C = CT , B = BT , D = �AT (2.2)

The first term in �L in (4.1) is a total derivative since F = dA but the second term does not

vanish o↵-shell. It does vanish under a condition that

B = 0 )
 
A 0

C D

!
(2.3)

This defines a manifest symmetry of the Lagrangian under the so-called electric subgroup of

Sp(2nv,R) with B = 0.

On shell G = dB and the second term also becomes a total derivative. Therefore

Sp(2nv,R) transformation with B 6= 0 relates theories which are not equivalent o↵ shell,

but equivalent on shell.
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B=0 manifest electric subgroup Ge

The SL(8, R) symplectic frame: Ge= SL(8, R)  Cremmer et al

The E6(6) symplecWc frame   :        Ge= E6(6)

4D action I 

5D 4D action II 

dWST:  A finite transformation of L from one symplectic frame to the other can be performed 
using a symplectic matrix E defined modulo redefinitions of the scalar and vector fields in the action

N=8 example

Different symplectic frames: different manifest global symmetries of the Lagrangian Ge

The Lagrangian o↵ shell changes as follows

L0

1 = L1 +
1

2n!
(F TUTWF̃ +GTZTV G̃) (4.34)

The first term with F = dA is a total derivative, so the change of the Lagrangian o↵ shell

where G 6= dB is up to total derivatives

L0

1 = L1 +
1

2n!
GTZTV G̃ (4.35)

For infinitesimal transformations as in 4D example with n = 2 we have Z ! B;W !
C;U, V ! 1. Up to slight change in notation, we see that ZTD ! B is an infinitesimal

change of the action as in (4.1). On shell when G = dB all inequivalent o↵ shell Lagrangians

(4.35) lead to the same equations of motion/Bianchi identities given in (4.30).

4.3 Quotients in 4D, 6D, 8D

An important development of Sp(2nv,R) symmetry was in 4D ungauged supergravity La-

grangians with G/H coset space and with local H symmetry in [14–17]. Their result was that

for ungauged 4D supergravity, the set of Lagrangians that cannot be mapped to each other

by local field redefinitions is identified with the double quotient space4

E4D = GU (R)\Sp(2nv,R)/GL(nv,R) (4.36)

For example in maximal 4D supergravity the relevant quotient is

E4D
N=8

= E7(7)(R)\Sp(56,R)/GL(28,R) (4.37)

Here the left quotient, a continuous E7(7)(R), corresponds to a local redefinitions of the scalar

fields, it is not a E7(7) duality which also act on vector fields. The right quotient GL(28,R)
corresponds to a local redefinitions of the 28 vector fields. The resulting theories, codified by

the matrix matrix E which belongs to E7(7)\Sp(56;R)/GL(28) are equivalent at the level of

the equations of motion!

The clarification of the status of Sp(2nv,R) relevant to N � 5 4D supergravities is the

following. These theories have non-unique Lagrangians (not related by local field redefinition)

codified by the matrix E which belongs to G(R)\Sp(2nv,R)/GL(nv,R). Here the relevant

dualities are G = SU(1, 5), SO⇤(12) for N = 5, 6, respectively. But all these are equivalent

at the level of the equations of motion!

These results were supported and nicely explained in [26] and in the Hamiltonian for-

malism in [27]. There is an agreement on the fact that there is an equivalence between

4In terms of symplectic bases rather than coordinates, one has a dual (transposed) actions of the groups

GL(nv,R)\Sp(2nv,R)/G(R).
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double quotient space

The classical dWST result when applied to quanWzaWon of local H-symmetry of the D-dimensional 
Supergravity I  in various  gauges, shows that the on-shell S-matrix is gauge-independent. For example it
must be the same in symmetric and Iwasawa gauges. Also supergravity I and II are equivalent on shell

Off shell Lagrangians are different in different frames: however, on shell equations of motion and BI 
are the same and have a U-duality GU symmetry
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How to prove the on shell gauge-independence of the S-matrix?

Why Sp(2n,R) helps? We use the classical construction of 
de Wit, Samtleben, Trigianteof 4D symplectic frames

Use 4D GZ duality transformation to change the Lagrangian

We will use the fact that maximal duality at D > 4, including GZ duality in even

dimensions, is the same as the U-duality

Gmax = GU , D > 4 (1.4)

whereas the amount of symmetries in GZ duality at 4D exceeds the amount of symmetries in

U-duality for N � 5

GGZ = Sp(2nv) � GU , D = 4 (1.5)

Based on this we will provide evidence that the extra symmetries in 4D N � 5 supergravities

due to GGZ � GU allow to prove that the results for di↵erent gauges of local H-symmetry

agree on shell.

And vice versa, we will find that the absence of extra symmetries in D > 4 above GU

presents an obstacle when trying to prove the gauge-invariance and therefore D > 4 super-

gravities are consistent with local H-symmetry anomalies.

2 GZ duality in even and odd k=D/2 : Sp(2n) and SO(n,n)

The original Sp(2nv,R) duality in 4D was discovered by Gaillard and Zumino in [8]. It shows

that the scalar-vector part of the Lagrangian of supergravity under infinitesimal Sp(2nv,R)
transformations, where there are nv vectors, transforms as follows
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as we see in eq. (2.20) in [8]. Here on vector doublet the Sp(2nv,R) transformation in a real

basis acts as follows
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!
, C = CT , B = BT , D = �AT (2.2)

The first term in �L in (4.1) is a total derivative since F = dA but the second term does not

vanish o↵-shell. It does vanish under a condition that

B = 0 )
 
A 0

C D

!
(2.3)

This defines a manifest symmetry of the Lagrangian under the so-called electric subgroup of

Sp(2nv,R) with B = 0.

On shell G = dB and the second term also becomes a total derivative. Therefore

Sp(2nv,R) transformation with B 6= 0 relates theories which are not equivalent o↵ shell,

but equivalent on shell.
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B=0 manifest electric subgroup Ge

The SL(8, R) symplectic frame: Ge= SL(8, R)  Cremmer et al

The E6(6) symplecWc frame   :        Ge= E6(6)

4D action I 

5D 4D action II 

dWST:  A finite transformation of L from one symplectic frame to the other can be performed 
using a symplectic matrix E defined modulo redefinitions of the scalar and vector fields in the action

N=8 example

Different symplectic frames: different manifest global symmetries of the Lagrangian Ge

The Lagrangian o↵ shell changes as follows

L0

1 = L1 +
1

2n!
(F TUTWF̃ +GTZTV G̃) (4.34)

The first term with F = dA is a total derivative, so the change of the Lagrangian o↵ shell

where G 6= dB is up to total derivatives

L0

1 = L1 +
1

2n!
GTZTV G̃ (4.35)

For infinitesimal transformations as in 4D example with n = 2 we have Z ! B;W !
C;U, V ! 1. Up to slight change in notation, we see that ZTD ! B is an infinitesimal

change of the action as in (4.1). On shell when G = dB all inequivalent o↵ shell Lagrangians

(4.35) lead to the same equations of motion/Bianchi identities given in (4.30).

4.3 Quotients in 4D, 6D, 8D

An important development of Sp(2nv,R) symmetry was in 4D ungauged supergravity La-

grangians with G/H coset space and with local H symmetry in [14–17]. Their result was that

for ungauged 4D supergravity, the set of Lagrangians that cannot be mapped to each other

by local field redefinitions is identified with the double quotient space4

E4D = GU (R)\Sp(2nv,R)/GL(nv,R) (4.36)

For example in maximal 4D supergravity the relevant quotient is

E4D
N=8

= E7(7)(R)\Sp(56,R)/GL(28,R) (4.37)

Here the left quotient, a continuous E7(7)(R), corresponds to a local redefinitions of the scalar

fields, it is not a E7(7) duality which also act on vector fields. The right quotient GL(28,R)
corresponds to a local redefinitions of the 28 vector fields. The resulting theories, codified by

the matrix matrix E which belongs to E7(7)\Sp(56;R)/GL(28) are equivalent at the level of

the equations of motion!

The clarification of the status of Sp(2nv,R) relevant to N � 5 4D supergravities is the

following. These theories have non-unique Lagrangians (not related by local field redefinition)

codified by the matrix E which belongs to G(R)\Sp(2nv,R)/GL(nv,R). Here the relevant

dualities are G = SU(1, 5), SO⇤(12) for N = 5, 6, respectively. But all these are equivalent

at the level of the equations of motion!

These results were supported and nicely explained in [26] and in the Hamiltonian for-

malism in [27]. There is an agreement on the fact that there is an equivalence between

4In terms of symplectic bases rather than coordinates, one has a dual (transposed) actions of the groups

GL(nv,R)\Sp(2nv,R)/G(R).
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double quotient space

The classical dWST result when applied to quanWzaWon of local H-symmetry of the D-dimensional 
Supergravity I  in various  gauges, shows that the on-shell S-matrix is gauge-independent. For example it
must be the same in symmetric and Iwasawa gauges. Also supergravity I and II are equivalent on shell

Off shell Lagrangians are different in different frames: however, on shell equations of motion and BI 
are the same and have a U-duality GU symmetry

It was necessary to have dim[ Sp(2nv)] > dim[ GU] + dim GL(nv)
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To promote classical equivalence due to Sp(2n, R) duality of different versions of 
supergravities to quantum equivalence one has to address the problem: duality 
symmetry acts on 

We will use the fact that maximal duality at D > 4, including GZ duality in even

dimensions, is the same as the U-duality

Gmax = GU , D > 4 (1.4)

whereas the amount of symmetries in GZ duality at 4D exceeds the amount of symmetries in

U-duality for N � 5

GGZ = Sp(2nv) � GU , D = 4 (1.5)

Based on this we will provide evidence that the extra symmetries in 4D N � 5 supergravities

due to GGZ � GU allow to prove that the results for di↵erent gauges of local H-symmetry
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are not well defined as a change of the variables in the Lorentz covariant path integral.

To be able to treat duality symmetry transformation as a change of variables in the path

integral we switch to 1st order formalism where Sp(2nv,R) duality symmetry of the S-matrix

can be viewed as a canonical change of variables in the Hamiltonian path integral.

8 Duality symmetry and path integral

A possibility to promote the construction in [20, 27] to a quantum path integral would be to

use the first order Hamiltonian formulation of dualities developed in [33] and earlier work in

[38–40]. In general, the the Hamiltonian path integral was developed by Faddeev [41] and by

Batalin, Fradkin, Vilkovisky, starting with [42]. A comprehensive study of the path integral

with gauge degrees of freedom in the Hamiltonian form is presented in [43].

In the Hamiltonian formulation duality transformations are local and act on 3-dimensional

vector field doublets. We will restrict ourselves with the bosonic part of 4D maximal super-

gravity, and moreover, we will neglect interaction with gravity, as in [33]. It means we will

study only part of the 4D maximal supergravity action depending on vector and scalar fields.

These are the only fields which are not inert under duality transformations, whereas gravita-

tional field is inert.

The scalar part of the action is

e�1Lscalar = � 1

12
|P ijkl

µ |2 , V̂�1@µV̂ �Qµ = Pµ (8.1)

where the vielbein V̂ [20] can describe any symplectic frame as well as any choice of the

coset representative, so that the local H-symmetry is gauge-fixed. This action is invariant

under Sp(2nv,R) duality symmetry acting on scalars. There is no need here to transform to

a Hamiltonian formalism. This we have to do only in the part where vectors interact with

scalars.

Consider the vector scalar action (5.23) in the form where a choice of a symplectic frame

was made, as well as a gauge-fixing, a choice of the coset representative, was made. We take

it in the form

e�1Lvector = �1

4
IIJ(�)F I

µ⌫F
Jµ⌫ +

1

8
RIJ(�) "

µ⌫⇢�F I

µ⌫F
J

⇢� (8.2)

which makes it easier to use the transition to the 1st order formalism, following [33]. Here

F I
µ⌫ = @µAI

⌫ � @⌫AI
µ.

From this Lagrangian one can derive the Hamiltonian and define the generalized action

from which equations of motion can be derived of the type discussed in [41]

S(q, p,�) =

ˆ
(piq̇

i �H(q, p)� �a�
a(q, p))dt (8.3)
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Switch to canonical variables and the 1st order action with manifest off-shell Sp(56, R) symmetry

The set of constraints can be realized as a set of equations of motion over the Lagrange

multipliers �a. Note that we do not have local symmetries in our Lagrangian as the local

H-symmetry is gauge-fixed in some unitary gauge by the choice of the coset representative.

There is only an Abelian gauge symmetry acting on the vector fields. Therefore there is

no need for additional constraints �a(p, q), like in case in [41] suitable for non-Abelian and

gravitational Lagrangians where the conditions det ||{�a,�b}|| 6= 0 must be satisfied for the

Poisson brackets.

The corresponding path integral for the S-matrix, in our case is

hout|S|ini =
ˆ

exp
⇣ i

h

ˆ +1

�1
(piq̇

i �H(q, p))dt
⌘Y

t

�
⇣
�a(q, p)

⌘Y

i

dpi(t)dq
i(t) (8.4)

In details the canonical momenta conjugate to the AI

i
, i = 1, 2, 3, are given by

⇡i

I =
�L
�ȦI

i

= IIJ (F J
0)

i � 1

2
RIJ "

ijkF J

jk, (8.5)

and there is a constraint ⇡0
I
= 0. This relation can be inverted to get

ȦIi = (I�1)IJ ⇡i

J + @iAI

0 +
1

2
(I�1R)IJ "

ijkF J

jk, (8.6)

The first-order action of the type given in eq. (8.3) is

S(⇡, A,A0) =

ˆ
d4x

⇣
⇡i

IȦ
I

i �H(⇡i, Ai)�AI

0 GI

⌘
, (8.7)

where

H(⇡, A) =
1

2
(I�1)IJ⇡i

I⇡Ji +
1

4
(I +RI�1R)IJF

I

ijF
Jij +

1

2
(I�1R)IJ "

ijk⇡IiF
J

jk (8.8)

GI = �@i⇡
i

I . (8.9)

The Lagrange multiplier for the constraint @i⇡i

I
= 0 is a time component of the vector AI

0

which enters the Lagrangian (8.2) without a time derivative due to Abelian gauge symmetry.

An assumption made in [33] is that there is no gravity helps to proceed with the Hamiltonian

analysis in a simple way. Namely, in a flat space the constraint @i⇡i

I
= 0 can be resolved. In

the flat space

⇡i

I = �"ijk@jZIk, (8.10)

Here ZI isn defined up to a gauge transformation ZIi ! ZIi+@i✏̃I . In this way the remaining

Hamiltonian depends only on coordinates AI

i
= qI

i
and on canonical momenta pi

I
= ⇡i

I
.

The action takes the form [33]

S(⇡i, Ai) =
1

2

ˆ
d4x

⇣
⌦MNBMiȦN

i �MMN (�)BM

i BNi

⌘
, (8.11)
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The canonical momenta conjugate to the AI are given by

πi
I =

∂L

∂ȦI
i

= IIJ F
J i
0 −

1

2
RIJ ε

ijkF J
jk, (2.1)

along with the constraint π0
I = 0. This relation can be inverted to get

ȦIi = (I−1)IJ πi
J + ∂iAI

0 +
1

2
(I−1R)IJ ε

ijkF J
jk, (2.2)

from which we can compute the first-order Hamiltonian action

SH =

∫

d4x
(

πi
IȦ

I
i −H− AI

0 GI

)

, (2.3)

where

H =
1

2
(I−1)IJπi

IπJi +
1

4
(I +RI−1R)IJF

I
ijF

Jij +
1

2
(I−1R)IJ ε

ijkπIiF
J
jk (2.4)

GI = −∂iπ
i
I . (2.5)

The time components AI
0 appears in the action as Lagrange multipliers for the constraints

∂iπ
i
I = 0. (2.6)

These constraints can be solved by introducing new (dual) potentials ZIi through the
equation

πi
I = −εijk∂jZIk, (2.7)

which determines ZI up to a gauge transformation ZIi → ZIi + ∂iϵ̃I . Note that the
introduction of these potentials is non-local but permitted in (flat) contractible space.
Putting this back in the action gives

S =
1

2

∫

d4x
(

ΩMNB
MiȦN

i −MMN(φ)B
M
i BNi

)

, (2.8)

where the doubled potentials are packed into a vector

(AM) =

(

AI

ZI

)

, M = 1, . . . , 2nv, (2.9)

and their curls BMi are
BMi = εijk∂jA

M
k . (2.10)

The matrices Ω and M(φ) are the 2nv × 2nv matrices

Ω =

(

0 I
−I 0

)

, M =

(

I +RI−1R −RI−1

−I−1R I−1

)

, (2.11)
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are not well defined as a change of the variables in the Lorentz covariant path integral.

To be able to treat duality symmetry transformation as a change of variables in the path

integral we switch to 1st order formalism where Sp(2nv,R) duality symmetry of the S-matrix

can be viewed as a canonical change of variables in the Hamiltonian path integral.

8 Duality symmetry and path integral

A possibility to promote the construction in [20, 27] to a quantum path integral would be to

use the first order Hamiltonian formulation of dualities developed in [33] and earlier work in

[38–40]. In general, the the Hamiltonian path integral was developed by Faddeev [41] and by

Batalin, Fradkin, Vilkovisky, starting with [42]. A comprehensive study of the path integral

with gauge degrees of freedom in the Hamiltonian form is presented in [43].

In the Hamiltonian formulation duality transformations are local and act on 3-dimensional

vector field doublets. We will restrict ourselves with the bosonic part of 4D maximal super-

gravity, and moreover, we will neglect interaction with gravity, as in [33]. It means we will

study only part of the 4D maximal supergravity action depending on vector and scalar fields.

These are the only fields which are not inert under duality transformations, whereas gravita-

tional field is inert.

The scalar part of the action is

e�1Lscalar = � 1

12
|P ijkl

µ |2 , V̂�1@µV̂ �Qµ = Pµ (8.1)

where the vielbein V̂ [20] can describe any symplectic frame as well as any choice of the

coset representative, so that the local H-symmetry is gauge-fixed. This action is invariant

under Sp(2nv,R) duality symmetry acting on scalars. There is no need here to transform to

a Hamiltonian formalism. This we have to do only in the part where vectors interact with

scalars.

Consider the vector scalar action (5.23) in the form where a choice of a symplectic frame

was made, as well as a gauge-fixing, a choice of the coset representative, was made. We take

it in the form

e�1Lvector = �1

4
IIJ(�)F I

µ⌫F
Jµ⌫ +

1

8
RIJ(�) "

µ⌫⇢�F I

µ⌫F
J

⇢� (8.2)

which makes it easier to use the transition to the 1st order formalism, following [33]. Here

F I
µ⌫ = @µAI

⌫ � @⌫AI
µ.

From this Lagrangian one can derive the Hamiltonian and define the generalized action

from which equations of motion can be derived of the type discussed in [41]

S(q, p,�) =

ˆ
(piq̇

i �H(q, p)� �a�
a(q, p))dt (8.3)

– 24 –

Start with 4D classical vector-scalar action of DeWit, Hamtleben, Trigiante,
any symplectic frame, any gauge

Switch to canonical variables and the 1st order action with manifest off-shell Sp(56, R) symmetry

The set of constraints can be realized as a set of equations of motion over the Lagrange

multipliers �a. Note that we do not have local symmetries in our Lagrangian as the local

H-symmetry is gauge-fixed in some unitary gauge by the choice of the coset representative.

There is only an Abelian gauge symmetry acting on the vector fields. Therefore there is

no need for additional constraints �a(p, q), like in case in [41] suitable for non-Abelian and

gravitational Lagrangians where the conditions det ||{�a,�b}|| 6= 0 must be satisfied for the

Poisson brackets.

The corresponding path integral for the S-matrix, in our case is

hout|S|ini =
ˆ

exp
⇣ i

h

ˆ +1

�1
(piq̇

i �H(q, p))dt
⌘Y

t

�
⇣
�a(q, p)

⌘Y

i

dpi(t)dq
i(t) (8.4)

In details the canonical momenta conjugate to the AI

i
, i = 1, 2, 3, are given by

⇡i

I =
�L
�ȦI

i

= IIJ (F J
0)

i � 1

2
RIJ "

ijkF J

jk, (8.5)

and there is a constraint ⇡0
I
= 0. This relation can be inverted to get

ȦIi = (I�1)IJ ⇡i

J + @iAI

0 +
1

2
(I�1R)IJ "

ijkF J

jk, (8.6)

The first-order action of the type given in eq. (8.3) is

S(⇡, A,A0) =

ˆ
d4x

⇣
⇡i

IȦ
I

i �H(⇡i, Ai)�AI

0 GI

⌘
, (8.7)

where

H(⇡, A) =
1

2
(I�1)IJ⇡i

I⇡Ji +
1

4
(I +RI�1R)IJF

I

ijF
Jij +

1

2
(I�1R)IJ "

ijk⇡IiF
J

jk (8.8)

GI = �@i⇡
i

I . (8.9)

The Lagrange multiplier for the constraint @i⇡i

I
= 0 is a time component of the vector AI

0

which enters the Lagrangian (8.2) without a time derivative due to Abelian gauge symmetry.

An assumption made in [33] is that there is no gravity helps to proceed with the Hamiltonian

analysis in a simple way. Namely, in a flat space the constraint @i⇡i

I
= 0 can be resolved. In

the flat space

⇡i

I = �"ijk@jZIk, (8.10)

Here ZI isn defined up to a gauge transformation ZIi ! ZIi+@i✏̃I . In this way the remaining

Hamiltonian depends only on coordinates AI

i
= qI

i
and on canonical momenta pi

I
= ⇡i

I
.

The action takes the form [33]

S(⇡i, Ai) =
1

2

ˆ
d4x

⇣
⌦MNBMiȦN

i �MMN (�)BM

i BNi

⌘
, (8.11)

– 25 –

S=
RK, hep-th 2024

Path integral (assuming no gravity and no fermions)

symplectic frame remains the same but the coset representative has changed. However, when

B 6= 0, the o↵ shell Lagrangian is not invariant and the theory is described by a di↵erent

symplectic frame [8]. On shell, however, equations of motion as well as Bianchi Identities are

the same for any choice of the coset representatives and any choice of the symplectic frame.

This also covers the cases of supergravity I and supergravity II which classically on shell are

the same, as shown in [8].

To promote this equivalence to a quantum theory we have to switch to the 1st order

formulation since dualities act on Fµ⌫ ’s instead of acting on vector fields, which are the

variables we can change in the path integral.

In the flat space, i. e. in absence of gravitational interaction, bosonic action of super-

gravity vectors interacting with scalars can be used to define a path integral for the S-matrix

[15]

hout|S|ini =
ˆ

exp
⇣
i

h

ˆ
d
4
x(P T

i Q̇
i � P

TM(�)P ))
⌘Y

x

�(P i � P
i(Q))dPi(x)dQ

i(t) (5.5)

Here both P ’s and Q’s are given by Sp(56,R) doublets

Q
M
i = AM

i , P
i
M = ⌦MNBNi

, P
i
M (Q) = ⌦MN"

ijk
@jAN

k (5.6)

One finds that to change the S-matrix to reach a di↵erent symplectic frame or a di↵erent gauge

of the local H-symmetry, or to reach supergravity II starting from supergravity I corresponds

to a canonical change of variables with some specific choices of the Sp(56,R) matrix of the

form given in (5.2). The relevant transformation of the scalar dependent matrix M takes

the form given in eq. (5.4). The S-matrix is the same for all these cases due to a choice of

canonical variables.

6 Summary

In this note we presented a short formulation of the results of the recent work in [14, 15].

The quantitative measure of the enhancement of duality is a dimension of the double quotient

introduced in [8], see eq. (4.1) here.

Combining theory with amplitude data one can understand the pattern, explain the data,

make predictions. The important new insights come from combinations of many ideas:

• 4D Gaillard-Zumino duality [5], 1981, Sp(56) � E7(7)

• Andrianopoli, D’Auria, Ferrara, Fré, Minasian, Trigiante [16], 1996, abelian ideal of

Ed+1(d+1) Lie algebra = number of axions in supergravity II and in partial Iwasawa

– 8 –

Using double quoWent
and electric subgroups of 
Sp(56, R) on shell symmetry

<latexit sha1_base64="YlpRKzdgnUMl7Q8F9+IXt/IT49E="></latexit>

L ! L0 +GBG̃

We first consider the case p = 1 of interest here (D = 4).

The canonical momenta conjugate to the AI are given by

πi
I =

∂L

∂ȦI
i

= IIJ F
J i
0 −

1

2
RIJ ε

ijkF J
jk, (2.1)

along with the constraint π0
I = 0. This relation can be inverted to get

ȦIi = (I−1)IJ πi
J + ∂iAI

0 +
1

2
(I−1R)IJ ε

ijkF J
jk, (2.2)

from which we can compute the first-order Hamiltonian action

SH =

∫

d4x
(

πi
IȦ

I
i −H− AI

0 GI

)

, (2.3)

where

H =
1

2
(I−1)IJπi

IπJi +
1

4
(I +RI−1R)IJF

I
ijF

Jij +
1

2
(I−1R)IJ ε

ijkπIiF
J
jk (2.4)

GI = −∂iπ
i
I . (2.5)

The time components AI
0 appears in the action as Lagrange multipliers for the constraints

∂iπ
i
I = 0. (2.6)

These constraints can be solved by introducing new (dual) potentials ZIi through the
equation

πi
I = −εijk∂jZIk, (2.7)

which determines ZI up to a gauge transformation ZIi → ZIi + ∂iϵ̃I . Note that the
introduction of these potentials is non-local but permitted in (flat) contractible space.
Putting this back in the action gives

S =
1

2

∫

d4x
(

ΩMNB
MiȦN

i −MMN(φ)B
M
i BNi

)

, (2.8)

where the doubled potentials are packed into a vector

(AM) =

(

AI

ZI

)

, M = 1, . . . , 2nv, (2.9)

and their curls BMi are
BMi = εijk∂jA

M
k . (2.10)

The matrices Ω and M(φ) are the 2nv × 2nv matrices

Ω =

(

0 I
−I 0

)

, M =

(

I +RI−1R −RI−1

−I−1R I−1

)

, (2.11)

7



Henneaux, Julia,  Lekeu,
Ranjbar, 2017 

are not well defined as a change of the variables in the Lorentz covariant path integral.

To be able to treat duality symmetry transformation as a change of variables in the path

integral we switch to 1st order formalism where Sp(2nv,R) duality symmetry of the S-matrix

can be viewed as a canonical change of variables in the Hamiltonian path integral.

8 Duality symmetry and path integral

A possibility to promote the construction in [20, 27] to a quantum path integral would be to

use the first order Hamiltonian formulation of dualities developed in [33] and earlier work in

[38–40]. In general, the the Hamiltonian path integral was developed by Faddeev [41] and by

Batalin, Fradkin, Vilkovisky, starting with [42]. A comprehensive study of the path integral

with gauge degrees of freedom in the Hamiltonian form is presented in [43].

In the Hamiltonian formulation duality transformations are local and act on 3-dimensional

vector field doublets. We will restrict ourselves with the bosonic part of 4D maximal super-

gravity, and moreover, we will neglect interaction with gravity, as in [33]. It means we will

study only part of the 4D maximal supergravity action depending on vector and scalar fields.

These are the only fields which are not inert under duality transformations, whereas gravita-

tional field is inert.

The scalar part of the action is

e�1Lscalar = � 1

12
|P ijkl

µ |2 , V̂�1@µV̂ �Qµ = Pµ (8.1)

where the vielbein V̂ [20] can describe any symplectic frame as well as any choice of the

coset representative, so that the local H-symmetry is gauge-fixed. This action is invariant

under Sp(2nv,R) duality symmetry acting on scalars. There is no need here to transform to

a Hamiltonian formalism. This we have to do only in the part where vectors interact with

scalars.

Consider the vector scalar action (5.23) in the form where a choice of a symplectic frame

was made, as well as a gauge-fixing, a choice of the coset representative, was made. We take

it in the form

e�1Lvector = �1

4
IIJ(�)F I

µ⌫F
Jµ⌫ +

1

8
RIJ(�) "

µ⌫⇢�F I

µ⌫F
J

⇢� (8.2)

which makes it easier to use the transition to the 1st order formalism, following [33]. Here

F I
µ⌫ = @µAI

⌫ � @⌫AI
µ.

From this Lagrangian one can derive the Hamiltonian and define the generalized action

from which equations of motion can be derived of the type discussed in [41]

S(q, p,�) =

ˆ
(piq̇

i �H(q, p)� �a�
a(q, p))dt (8.3)

– 24 –

Start with 4D classical vector-scalar action of DeWit, Hamtleben, Trigiante,
any symplectic frame, any gauge

Switch to canonical variables and the 1st order action with manifest off-shell Sp(56, R) symmetry

The set of constraints can be realized as a set of equations of motion over the Lagrange

multipliers �a. Note that we do not have local symmetries in our Lagrangian as the local

H-symmetry is gauge-fixed in some unitary gauge by the choice of the coset representative.

There is only an Abelian gauge symmetry acting on the vector fields. Therefore there is

no need for additional constraints �a(p, q), like in case in [41] suitable for non-Abelian and

gravitational Lagrangians where the conditions det ||{�a,�b}|| 6= 0 must be satisfied for the

Poisson brackets.

The corresponding path integral for the S-matrix, in our case is

hout|S|ini =
ˆ

exp
⇣ i

h

ˆ +1

�1
(piq̇

i �H(q, p))dt
⌘Y

t

�
⇣
�a(q, p)

⌘Y

i

dpi(t)dq
i(t) (8.4)

In details the canonical momenta conjugate to the AI

i
, i = 1, 2, 3, are given by

⇡i

I =
�L
�ȦI

i

= IIJ (F J
0)

i � 1

2
RIJ "

ijkF J

jk, (8.5)

and there is a constraint ⇡0
I
= 0. This relation can be inverted to get

ȦIi = (I�1)IJ ⇡i

J + @iAI

0 +
1

2
(I�1R)IJ "

ijkF J

jk, (8.6)

The first-order action of the type given in eq. (8.3) is

S(⇡, A,A0) =

ˆ
d4x

⇣
⇡i

IȦ
I

i �H(⇡i, Ai)�AI

0 GI

⌘
, (8.7)

where

H(⇡, A) =
1

2
(I�1)IJ⇡i

I⇡Ji +
1

4
(I +RI�1R)IJF

I

ijF
Jij +

1

2
(I�1R)IJ "

ijk⇡IiF
J

jk (8.8)

GI = �@i⇡
i

I . (8.9)

The Lagrange multiplier for the constraint @i⇡i

I
= 0 is a time component of the vector AI

0

which enters the Lagrangian (8.2) without a time derivative due to Abelian gauge symmetry.

An assumption made in [33] is that there is no gravity helps to proceed with the Hamiltonian

analysis in a simple way. Namely, in a flat space the constraint @i⇡i

I
= 0 can be resolved. In

the flat space

⇡i

I = �"ijk@jZIk, (8.10)

Here ZI isn defined up to a gauge transformation ZIi ! ZIi+@i✏̃I . In this way the remaining

Hamiltonian depends only on coordinates AI

i
= qI

i
and on canonical momenta pi

I
= ⇡i

I
.

The action takes the form [33]

S(⇡i, Ai) =
1

2

ˆ
d4x

⇣
⌦MNBMiȦN

i �MMN (�)BM

i BNi

⌘
, (8.11)

– 25 –

S=
RK, hep-th 2024

Path integral (assuming no gravity and no fermions)

Sp(56, R) symmetry of the path integral: canonical change of variables scanning various 
supergravities I and II, various symplectic frames, various local H-symmetry gauges

symplectic frame remains the same but the coset representative has changed. However, when

B 6= 0, the o↵ shell Lagrangian is not invariant and the theory is described by a di↵erent

symplectic frame [8]. On shell, however, equations of motion as well as Bianchi Identities are

the same for any choice of the coset representatives and any choice of the symplectic frame.

This also covers the cases of supergravity I and supergravity II which classically on shell are

the same, as shown in [8].

To promote this equivalence to a quantum theory we have to switch to the 1st order

formulation since dualities act on Fµ⌫ ’s instead of acting on vector fields, which are the

variables we can change in the path integral.

In the flat space, i. e. in absence of gravitational interaction, bosonic action of super-

gravity vectors interacting with scalars can be used to define a path integral for the S-matrix

[15]

hout|S|ini =
ˆ

exp
⇣
i

h

ˆ
d
4
x(P T

i Q̇
i � P

TM(�)P ))
⌘Y

x

�(P i � P
i(Q))dPi(x)dQ

i(t) (5.5)

Here both P ’s and Q’s are given by Sp(56,R) doublets

Q
M
i = AM

i , P
i
M = ⌦MNBNi

, P
i
M (Q) = ⌦MN"

ijk
@jAN

k (5.6)

One finds that to change the S-matrix to reach a di↵erent symplectic frame or a di↵erent gauge

of the local H-symmetry, or to reach supergravity II starting from supergravity I corresponds

to a canonical change of variables with some specific choices of the Sp(56,R) matrix of the

form given in (5.2). The relevant transformation of the scalar dependent matrix M takes

the form given in eq. (5.4). The S-matrix is the same for all these cases due to a choice of

canonical variables.

6 Summary

In this note we presented a short formulation of the results of the recent work in [14, 15].

The quantitative measure of the enhancement of duality is a dimension of the double quotient

introduced in [8], see eq. (4.1) here.

Combining theory with amplitude data one can understand the pattern, explain the data,

make predictions. The important new insights come from combinations of many ideas:

• 4D Gaillard-Zumino duality [5], 1981, Sp(56) � E7(7)

• Andrianopoli, D’Auria, Ferrara, Fré, Minasian, Trigiante [16], 1996, abelian ideal of

Ed+1(d+1) Lie algebra = number of axions in supergravity II and in partial Iwasawa

– 8 –

Using double quoWent
and electric subgroups of 
Sp(56, R) on shell symmetry

<latexit sha1_base64="YlpRKzdgnUMl7Q8F9+IXt/IT49E=">AAACDHicdVDLSgMxFM34rPVVdekmWERBGDJjaeuu1EVduKhgH9AZSiaTtqGZB0lGKEM/wI2/4saFIm79AHf+jekLVPRA4OSce0nO8WLOpELo01haXlldW89sZDe3tnd2c3v7TRklgtAGiXgk2h6WlLOQNhRTnLZjQXHgcdryhpcTv3VHhWRReKtGMXUD3A9ZjxGstNTN5VOHYA6vx9BREVxcTuAZrFUdxbhPYU1PIRMVC+cXCCLTthFCZU3KRbtklaFloinyYI56N/fh+BFJAhoqwrGUHQvFyk2xUIxwOs46iaQxJkPcpx1NQxxQ6abTMGN4rBUf9iKhT6jgVP2+keJAylHg6ckAq4H87U3Ev7xOonplN2VhnCgaktlDvYRDnXvSDPSZoETxkSaYCKb/CskAC0yU7i+rS1gkhf+Tpm1aRbN4U8hXqvM6MuAQHIFTYIESqIArUAcNQMA9eATP4MV4MJ6MV+NtNrpkzHcOwA8Y71/k8pml</latexit>

L ! L0 +GBG̃

We first consider the case p = 1 of interest here (D = 4).

The canonical momenta conjugate to the AI are given by

πi
I =

∂L

∂ȦI
i

= IIJ F
J i
0 −

1

2
RIJ ε

ijkF J
jk, (2.1)

along with the constraint π0
I = 0. This relation can be inverted to get

ȦIi = (I−1)IJ πi
J + ∂iAI

0 +
1

2
(I−1R)IJ ε

ijkF J
jk, (2.2)

from which we can compute the first-order Hamiltonian action

SH =

∫

d4x
(

πi
IȦ

I
i −H− AI

0 GI

)

, (2.3)

where

H =
1

2
(I−1)IJπi

IπJi +
1

4
(I +RI−1R)IJF

I
ijF

Jij +
1

2
(I−1R)IJ ε

ijkπIiF
J
jk (2.4)

GI = −∂iπ
i
I . (2.5)

The time components AI
0 appears in the action as Lagrange multipliers for the constraints

∂iπ
i
I = 0. (2.6)

These constraints can be solved by introducing new (dual) potentials ZIi through the
equation

πi
I = −εijk∂jZIk, (2.7)

which determines ZI up to a gauge transformation ZIi → ZIi + ∂iϵ̃I . Note that the
introduction of these potentials is non-local but permitted in (flat) contractible space.
Putting this back in the action gives

S =
1

2

∫

d4x
(

ΩMNB
MiȦN

i −MMN(φ)B
M
i BNi

)

, (2.8)

where the doubled potentials are packed into a vector

(AM) =

(

AI

ZI

)

, M = 1, . . . , 2nv, (2.9)

and their curls BMi are
BMi = εijk∂jA

M
k . (2.10)

The matrices Ω and M(φ) are the 2nv × 2nv matrices

Ω =

(

0 I
−I 0

)

, M =

(

I +RI−1R −RI−1

−I−1R I−1

)

, (2.11)
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are not well defined as a change of the variables in the Lorentz covariant path integral.

To be able to treat duality symmetry transformation as a change of variables in the path

integral we switch to 1st order formalism where Sp(2nv,R) duality symmetry of the S-matrix

can be viewed as a canonical change of variables in the Hamiltonian path integral.

8 Duality symmetry and path integral

A possibility to promote the construction in [20, 27] to a quantum path integral would be to

use the first order Hamiltonian formulation of dualities developed in [33] and earlier work in

[38–40]. In general, the the Hamiltonian path integral was developed by Faddeev [41] and by

Batalin, Fradkin, Vilkovisky, starting with [42]. A comprehensive study of the path integral

with gauge degrees of freedom in the Hamiltonian form is presented in [43].

In the Hamiltonian formulation duality transformations are local and act on 3-dimensional

vector field doublets. We will restrict ourselves with the bosonic part of 4D maximal super-

gravity, and moreover, we will neglect interaction with gravity, as in [33]. It means we will

study only part of the 4D maximal supergravity action depending on vector and scalar fields.

These are the only fields which are not inert under duality transformations, whereas gravita-

tional field is inert.

The scalar part of the action is

e�1Lscalar = � 1

12
|P ijkl

µ |2 , V̂�1@µV̂ �Qµ = Pµ (8.1)

where the vielbein V̂ [20] can describe any symplectic frame as well as any choice of the

coset representative, so that the local H-symmetry is gauge-fixed. This action is invariant

under Sp(2nv,R) duality symmetry acting on scalars. There is no need here to transform to

a Hamiltonian formalism. This we have to do only in the part where vectors interact with

scalars.

Consider the vector scalar action (5.23) in the form where a choice of a symplectic frame

was made, as well as a gauge-fixing, a choice of the coset representative, was made. We take

it in the form

e�1Lvector = �1

4
IIJ(�)F I

µ⌫F
Jµ⌫ +

1

8
RIJ(�) "

µ⌫⇢�F I

µ⌫F
J

⇢� (8.2)

which makes it easier to use the transition to the 1st order formalism, following [33]. Here

F I
µ⌫ = @µAI

⌫ � @⌫AI
µ.

From this Lagrangian one can derive the Hamiltonian and define the generalized action

from which equations of motion can be derived of the type discussed in [41]

S(q, p,�) =

ˆ
(piq̇

i �H(q, p)� �a�
a(q, p))dt (8.3)

– 24 –

Start with 4D classical vector-scalar action of DeWit, Hamtleben, Trigiante,
any symplectic frame, any gauge

Switch to canonical variables and the 1st order action with manifest off-shell Sp(56, R) symmetry

The set of constraints can be realized as a set of equations of motion over the Lagrange

multipliers �a. Note that we do not have local symmetries in our Lagrangian as the local

H-symmetry is gauge-fixed in some unitary gauge by the choice of the coset representative.

There is only an Abelian gauge symmetry acting on the vector fields. Therefore there is

no need for additional constraints �a(p, q), like in case in [41] suitable for non-Abelian and

gravitational Lagrangians where the conditions det ||{�a,�b}|| 6= 0 must be satisfied for the

Poisson brackets.

The corresponding path integral for the S-matrix, in our case is

hout|S|ini =
ˆ

exp
⇣ i

h

ˆ +1

�1
(piq̇

i �H(q, p))dt
⌘Y

t

�
⇣
�a(q, p)

⌘Y

i

dpi(t)dq
i(t) (8.4)

In details the canonical momenta conjugate to the AI

i
, i = 1, 2, 3, are given by

⇡i

I =
�L
�ȦI

i

= IIJ (F J
0)

i � 1

2
RIJ "

ijkF J

jk, (8.5)

and there is a constraint ⇡0
I
= 0. This relation can be inverted to get

ȦIi = (I�1)IJ ⇡i

J + @iAI

0 +
1

2
(I�1R)IJ "

ijkF J

jk, (8.6)

The first-order action of the type given in eq. (8.3) is

S(⇡, A,A0) =

ˆ
d4x

⇣
⇡i

IȦ
I

i �H(⇡i, Ai)�AI

0 GI

⌘
, (8.7)

where

H(⇡, A) =
1

2
(I�1)IJ⇡i

I⇡Ji +
1

4
(I +RI�1R)IJF

I

ijF
Jij +

1

2
(I�1R)IJ "

ijk⇡IiF
J

jk (8.8)

GI = �@i⇡
i

I . (8.9)

The Lagrange multiplier for the constraint @i⇡i

I
= 0 is a time component of the vector AI

0

which enters the Lagrangian (8.2) without a time derivative due to Abelian gauge symmetry.

An assumption made in [33] is that there is no gravity helps to proceed with the Hamiltonian

analysis in a simple way. Namely, in a flat space the constraint @i⇡i

I
= 0 can be resolved. In

the flat space

⇡i

I = �"ijk@jZIk, (8.10)

Here ZI isn defined up to a gauge transformation ZIi ! ZIi+@i✏̃I . In this way the remaining

Hamiltonian depends only on coordinates AI

i
= qI

i
and on canonical momenta pi

I
= ⇡i

I
.

The action takes the form [33]

S(⇡i, Ai) =
1

2

ˆ
d4x

⇣
⌦MNBMiȦN

i �MMN (�)BM

i BNi

⌘
, (8.11)
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Path integral (assuming no gravity and no fermions)

Sp(56, R) symmetry of the path integral: canonical change of variables scanning various 
supergravities I and II, various symplectic frames, various local H-symmetry gauges

symplectic frame remains the same but the coset representative has changed. However, when

B 6= 0, the o↵ shell Lagrangian is not invariant and the theory is described by a di↵erent

symplectic frame [8]. On shell, however, equations of motion as well as Bianchi Identities are

the same for any choice of the coset representatives and any choice of the symplectic frame.

This also covers the cases of supergravity I and supergravity II which classically on shell are

the same, as shown in [8].

To promote this equivalence to a quantum theory we have to switch to the 1st order

formulation since dualities act on Fµ⌫ ’s instead of acting on vector fields, which are the

variables we can change in the path integral.

In the flat space, i. e. in absence of gravitational interaction, bosonic action of super-

gravity vectors interacting with scalars can be used to define a path integral for the S-matrix

[15]

hout|S|ini =
ˆ

exp
⇣
i

h

ˆ
d
4
x(P T

i Q̇
i � P

TM(�)P ))
⌘Y

x

�(P i � P
i(Q))dPi(x)dQ

i(t) (5.5)

Here both P ’s and Q’s are given by Sp(56,R) doublets

Q
M
i = AM

i , P
i
M = ⌦MNBNi

, P
i
M (Q) = ⌦MN"

ijk
@jAN

k (5.6)

One finds that to change the S-matrix to reach a di↵erent symplectic frame or a di↵erent gauge

of the local H-symmetry, or to reach supergravity II starting from supergravity I corresponds

to a canonical change of variables with some specific choices of the Sp(56,R) matrix of the

form given in (5.2). The relevant transformation of the scalar dependent matrix M takes

the form given in eq. (5.4). The S-matrix is the same for all these cases due to a choice of

canonical variables.

6 Summary

In this note we presented a short formulation of the results of the recent work in [14, 15].

The quantitative measure of the enhancement of duality is a dimension of the double quotient

introduced in [8], see eq. (4.1) here.

Combining theory with amplitude data one can understand the pattern, explain the data,

make predictions. The important new insights come from combinations of many ideas:

• 4D Gaillard-Zumino duality [5], 1981, Sp(56) � E7(7)

• Andrianopoli, D’Auria, Ferrara, Fré, Minasian, Trigiante [16], 1996, abelian ideal of

Ed+1(d+1) Lie algebra = number of axions in supergravity II and in partial Iwasawa

– 8 –

Using double quoWent
and electric subgroups of 
Sp(56, R) on shell symmetry

Local measure of integration: current consensus: one can discount the local measure of integration 
in the functional integrals 
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L ! L0 +GBG̃

We first consider the case p = 1 of interest here (D = 4).

The canonical momenta conjugate to the AI are given by

πi
I =

∂L

∂ȦI
i

= IIJ F
J i
0 −

1

2
RIJ ε

ijkF J
jk, (2.1)

along with the constraint π0
I = 0. This relation can be inverted to get

ȦIi = (I−1)IJ πi
J + ∂iAI

0 +
1

2
(I−1R)IJ ε

ijkF J
jk, (2.2)

from which we can compute the first-order Hamiltonian action

SH =

∫

d4x
(

πi
IȦ

I
i −H− AI

0 GI

)

, (2.3)

where

H =
1

2
(I−1)IJπi

IπJi +
1

4
(I +RI−1R)IJF

I
ijF

Jij +
1

2
(I−1R)IJ ε

ijkπIiF
J
jk (2.4)

GI = −∂iπ
i
I . (2.5)

The time components AI
0 appears in the action as Lagrange multipliers for the constraints

∂iπ
i
I = 0. (2.6)

These constraints can be solved by introducing new (dual) potentials ZIi through the
equation

πi
I = −εijk∂jZIk, (2.7)

which determines ZI up to a gauge transformation ZIi → ZIi + ∂iϵ̃I . Note that the
introduction of these potentials is non-local but permitted in (flat) contractible space.
Putting this back in the action gives

S =
1

2

∫

d4x
(

ΩMNB
MiȦN

i −MMN(φ)B
M
i BNi

)

, (2.8)

where the doubled potentials are packed into a vector

(AM) =

(

AI

ZI

)

, M = 1, . . . , 2nv, (2.9)

and their curls BMi are
BMi = εijk∂jA

M
k . (2.10)

The matrices Ω and M(φ) are the 2nv × 2nv matrices

Ω =

(

0 I
−I 0

)

, M =

(

I +RI−1R −RI−1

−I−1R I−1

)

, (2.11)
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are not well defined as a change of the variables in the Lorentz covariant path integral.

To be able to treat duality symmetry transformation as a change of variables in the path

integral we switch to 1st order formalism where Sp(2nv,R) duality symmetry of the S-matrix

can be viewed as a canonical change of variables in the Hamiltonian path integral.

8 Duality symmetry and path integral

A possibility to promote the construction in [20, 27] to a quantum path integral would be to

use the first order Hamiltonian formulation of dualities developed in [33] and earlier work in

[38–40]. In general, the the Hamiltonian path integral was developed by Faddeev [41] and by

Batalin, Fradkin, Vilkovisky, starting with [42]. A comprehensive study of the path integral

with gauge degrees of freedom in the Hamiltonian form is presented in [43].

In the Hamiltonian formulation duality transformations are local and act on 3-dimensional

vector field doublets. We will restrict ourselves with the bosonic part of 4D maximal super-

gravity, and moreover, we will neglect interaction with gravity, as in [33]. It means we will

study only part of the 4D maximal supergravity action depending on vector and scalar fields.

These are the only fields which are not inert under duality transformations, whereas gravita-

tional field is inert.

The scalar part of the action is

e�1Lscalar = � 1

12
|P ijkl

µ |2 , V̂�1@µV̂ �Qµ = Pµ (8.1)

where the vielbein V̂ [20] can describe any symplectic frame as well as any choice of the

coset representative, so that the local H-symmetry is gauge-fixed. This action is invariant

under Sp(2nv,R) duality symmetry acting on scalars. There is no need here to transform to

a Hamiltonian formalism. This we have to do only in the part where vectors interact with

scalars.

Consider the vector scalar action (5.23) in the form where a choice of a symplectic frame

was made, as well as a gauge-fixing, a choice of the coset representative, was made. We take

it in the form

e�1Lvector = �1

4
IIJ(�)F I

µ⌫F
Jµ⌫ +

1

8
RIJ(�) "

µ⌫⇢�F I

µ⌫F
J

⇢� (8.2)

which makes it easier to use the transition to the 1st order formalism, following [33]. Here

F I
µ⌫ = @µAI

⌫ � @⌫AI
µ.

From this Lagrangian one can derive the Hamiltonian and define the generalized action

from which equations of motion can be derived of the type discussed in [41]

S(q, p,�) =

ˆ
(piq̇

i �H(q, p)� �a�
a(q, p))dt (8.3)

– 24 –

Start with 4D classical vector-scalar action of DeWit, Hamtleben, Trigiante,
any symplectic frame, any gauge

Switch to canonical variables and the 1st order action with manifest off-shell Sp(56, R) symmetry

The set of constraints can be realized as a set of equations of motion over the Lagrange

multipliers �a. Note that we do not have local symmetries in our Lagrangian as the local

H-symmetry is gauge-fixed in some unitary gauge by the choice of the coset representative.

There is only an Abelian gauge symmetry acting on the vector fields. Therefore there is

no need for additional constraints �a(p, q), like in case in [41] suitable for non-Abelian and

gravitational Lagrangians where the conditions det ||{�a,�b}|| 6= 0 must be satisfied for the

Poisson brackets.

The corresponding path integral for the S-matrix, in our case is

hout|S|ini =
ˆ

exp
⇣ i

h

ˆ +1

�1
(piq̇

i �H(q, p))dt
⌘Y

t

�
⇣
�a(q, p)

⌘Y

i

dpi(t)dq
i(t) (8.4)

In details the canonical momenta conjugate to the AI

i
, i = 1, 2, 3, are given by

⇡i

I =
�L
�ȦI

i

= IIJ (F J
0)

i � 1

2
RIJ "

ijkF J

jk, (8.5)

and there is a constraint ⇡0
I
= 0. This relation can be inverted to get

ȦIi = (I�1)IJ ⇡i

J + @iAI

0 +
1

2
(I�1R)IJ "

ijkF J

jk, (8.6)

The first-order action of the type given in eq. (8.3) is

S(⇡, A,A0) =

ˆ
d4x

⇣
⇡i

IȦ
I

i �H(⇡i, Ai)�AI

0 GI

⌘
, (8.7)

where

H(⇡, A) =
1

2
(I�1)IJ⇡i

I⇡Ji +
1

4
(I +RI�1R)IJF

I

ijF
Jij +

1

2
(I�1R)IJ "

ijk⇡IiF
J

jk (8.8)

GI = �@i⇡
i

I . (8.9)

The Lagrange multiplier for the constraint @i⇡i

I
= 0 is a time component of the vector AI

0

which enters the Lagrangian (8.2) without a time derivative due to Abelian gauge symmetry.

An assumption made in [33] is that there is no gravity helps to proceed with the Hamiltonian

analysis in a simple way. Namely, in a flat space the constraint @i⇡i

I
= 0 can be resolved. In

the flat space

⇡i

I = �"ijk@jZIk, (8.10)

Here ZI isn defined up to a gauge transformation ZIi ! ZIi+@i✏̃I . In this way the remaining

Hamiltonian depends only on coordinates AI

i
= qI

i
and on canonical momenta pi

I
= ⇡i

I
.

The action takes the form [33]

S(⇡i, Ai) =
1

2

ˆ
d4x

⇣
⌦MNBMiȦN

i �MMN (�)BM

i BNi

⌘
, (8.11)
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Path integral (assuming no gravity and no fermions)

Sp(56, R) symmetry of the path integral: canonical change of variables scanning various 
supergraviWes I and II, various symplecWc frames, various local H-symmetry gauges

symplectic frame remains the same but the coset representative has changed. However, when

B 6= 0, the o↵ shell Lagrangian is not invariant and the theory is described by a di↵erent

symplectic frame [8]. On shell, however, equations of motion as well as Bianchi Identities are

the same for any choice of the coset representatives and any choice of the symplectic frame.

This also covers the cases of supergravity I and supergravity II which classically on shell are

the same, as shown in [8].

To promote this equivalence to a quantum theory we have to switch to the 1st order

formulation since dualities act on Fµ⌫ ’s instead of acting on vector fields, which are the

variables we can change in the path integral.

In the flat space, i. e. in absence of gravitational interaction, bosonic action of super-

gravity vectors interacting with scalars can be used to define a path integral for the S-matrix

[15]

hout|S|ini =
ˆ

exp
⇣
i

h

ˆ
d
4
x(P T

i Q̇
i � P

TM(�)P ))
⌘Y

x

�(P i � P
i(Q))dPi(x)dQ

i(t) (5.5)

Here both P ’s and Q’s are given by Sp(56,R) doublets

Q
M
i = AM

i , P
i
M = ⌦MNBNi

, P
i
M (Q) = ⌦MN"

ijk
@jAN

k (5.6)

One finds that to change the S-matrix to reach a di↵erent symplectic frame or a di↵erent gauge

of the local H-symmetry, or to reach supergravity II starting from supergravity I corresponds

to a canonical change of variables with some specific choices of the Sp(56,R) matrix of the

form given in (5.2). The relevant transformation of the scalar dependent matrix M takes

the form given in eq. (5.4). The S-matrix is the same for all these cases due to a choice of

canonical variables.

6 Summary

In this note we presented a short formulation of the results of the recent work in [14, 15].

The quantitative measure of the enhancement of duality is a dimension of the double quotient

introduced in [8], see eq. (4.1) here.

Combining theory with amplitude data one can understand the pattern, explain the data,

make predictions. The important new insights come from combinations of many ideas:

• 4D Gaillard-Zumino duality [5], 1981, Sp(56) � E7(7)

• Andrianopoli, D’Auria, Ferrara, Fré, Minasian, Trigiante [16], 1996, abelian ideal of

Ed+1(d+1) Lie algebra = number of axions in supergravity II and in partial Iwasawa

– 8 –

Using double quotient
and electric subgroups of 
Sp(56, R) on shell symmetry

Local measure of integration: current consensus: one can discount the local measure of integration 
in the functional integrals 
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L ! L0 +GBG̃

Compare with Fujikawa anomaly

We first consider the case p = 1 of interest here (D = 4).

The canonical momenta conjugate to the AI are given by

πi
I =

∂L

∂ȦI
i

= IIJ F
J i
0 −

1

2
RIJ ε

ijkF J
jk, (2.1)

along with the constraint π0
I = 0. This relation can be inverted to get

ȦIi = (I−1)IJ πi
J + ∂iAI

0 +
1

2
(I−1R)IJ ε

ijkF J
jk, (2.2)

from which we can compute the first-order Hamiltonian action

SH =

∫

d4x
(

πi
IȦ

I
i −H− AI

0 GI

)

, (2.3)

where

H =
1

2
(I−1)IJπi

IπJi +
1

4
(I +RI−1R)IJF

I
ijF

Jij +
1

2
(I−1R)IJ ε

ijkπIiF
J
jk (2.4)

GI = −∂iπ
i
I . (2.5)

The time components AI
0 appears in the action as Lagrange multipliers for the constraints

∂iπ
i
I = 0. (2.6)

These constraints can be solved by introducing new (dual) potentials ZIi through the
equation

πi
I = −εijk∂jZIk, (2.7)

which determines ZI up to a gauge transformation ZIi → ZIi + ∂iϵ̃I . Note that the
introduction of these potentials is non-local but permitted in (flat) contractible space.
Putting this back in the action gives

S =
1

2

∫

d4x
(

ΩMNB
MiȦN

i −MMN(φ)B
M
i BNi

)

, (2.8)

where the doubled potentials are packed into a vector

(AM) =

(

AI

ZI

)

, M = 1, . . . , 2nv, (2.9)

and their curls BMi are
BMi = εijk∂jA

M
k . (2.10)

The matrices Ω and M(φ) are the 2nv × 2nv matrices

Ω =

(

0 I
−I 0

)

, M =

(

I +RI−1R −RI−1

−I−1R I−1

)

, (2.11)
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“…in the absence of anomalies, E7 type duality together with supersymmetry, might protect N ≥ 5 
supergravity from UV divergences”

“… in absence of duality and supersymmetry anomalies, which still require a better understanding, 
N ≥ 5 perturbative supergravities may be UV finite at higher-loops” RK, 2019

by 2024 we learned more about anomalies, and about the role of Sp(2n) duality in quantum theory,
strong evidence of absence of anomalies in N > 4 supergravities in 4D
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(1.2)
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3. Partial Iwasawa local H-symmetry gauge, where the related D+1 theory was gauge-

fixed in the symmetric gauge for (G/H)D+1 before compactification on a circle of the

theory from D+1 to D dimensions was performed.
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If on shell results from the theory in di↵erent gauges can be proven to agree, we may

qualify it as an evidence of the absence of local H-symmetry anomalies. This has to be

correlated with properties of UV divergences and H-symmetry anomalies based on available
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The crucial test of my arguments: is the double quotient in 4D N=5 supergravity non-trivial?  

classical theories satisfying equations of motion when symplectic transformations with matri-

ces E 2 Sp(2nv, R) are performed. However, the clarification is that the di↵erent Lagrangians

are associated with a quotient space: some of the E 2 Sp(2nv, R) transformations do not pro-

duce o↵-shell inequivalent Lagrangians: the ones in G(R) and in GL(nv,R) can give o↵ shell

equivalent Lagrangians, only the ones in the quotient, cannot be made equivalent o↵ shell.

The counting of elements of a quotient matrix goes as follows in the maximal case: dim

Sp(2n) is 2n2 + n, which in case of n = 28 is 1596 and dim GL(28) is 784. So we have for

the quotient E7(7)(R)\Sp(56,R)/GL(28,R)

dim[E4D
N=8

] = dim [E7(7)(R)\Sp(56,R)/GL(28,R)] : 1696� 133� 784 = 679 (4.38)

many independent parameters. In cases of N = 5, 6 analogous counting shows that the

quotients G(R)\Sp(2nv,R)/GL(nv,R) are highly nontrivial.

E4D
N=5

= SU(1, 5)(R)\Sp(20,R)/GL(10,R) : 210� 35� 100 = 75 (4.39)

In 6D the action of maximal supergravity is given in [3, 4]. Maximal Gaillard-Zumino

duality is SO(5, 5) ⇠ E5(5) . The analog of the quotient in eq. (4.40) in 6D would be the

following quotient

E6D
N=8

= E5(5)(R)\SO(5, 5,R)/Gv,t(R) (4.40)

We take out from maximal Gaillard-Zumino duality SO(5, 5) a possibility to redefine the 45

scalars in the 16-bein in [3] which is in the fundamental of SO(5, 5). This is the meaning of

the left quotient E5(5). And we can redefine the 16 vectors fields and 5 tensor fields in the

action which is the meaning of the right quotient Gv,t(R). However, it is clear already at the

stage of the left quotient that nothing is left in E5(5)(R)\SO(5, 5,R), since both of these have

45 parameters and therefore

E6D
N=8

= I (4.41)

This means that one can use an SO(5, 5) transformation to produce a Lagrangian di↵erent

from the one in [3]. But as long as a local SO(5) ⇥ SO(5) symmetry is present and the

Lagrangian depends on 45 scalars in the vielbein, the resulting Lagrangian can be brought

back to the form it has in [3]: the left quotient E5(5) is taking away the e↵ect4 of a Gaillard-

Zumino maximal duality symmetry SO(5, 5) in 6D

4I am very grateful to H. Samtleben for confirming that the relevant quotient in 6D supergravity is trivial,

so there are no di↵erent frames. The slightly confusing remark in [4] that “there is always a frame, which may

be reached by an O(5, 5) rotation from Tanii’s Lagrangian” was meant with regard to gauged theory described

by di↵erent Lagrangians (related by SO(5,5) rotation). In the ungauged theory there are no di↵erent frames,

in contrast to 4D supergravities where there are already di↵erent frames in the ungauged theory.
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FIG. 7: Diagrams 43–82 for the four-loop four-point amplitudes of N = 4 and N = 5 supergravity.
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FIG. 8: The bubble-on-external-leg diagrams of N = 4 super-Yang-Mills theory. These do not
contribute to N = 4 and N = 5 supergravity.

The sum runs over all 24 permutations of the external legs. F µν
j is the linearized field-
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FIG. 6: The first 42 diagrams for the four-loop four-point amplitudes of N = 4 and N = 5 super-
gravity. These correspond to the N = 4 super-Yang-Mills diagrams of Ref. [39].
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Figure 1. 82 diagrams in N = 5, 4 loops. The individual diagrams are UV divergent in d=4, but
the sum of all diagrams has no UV divergences [31].

E A status of the BN deformation proposal in supergravity

In standard 2d order supergravity the vector part of the action does not have duality

symmetry. This symmetry rotates vector field equations into Bianchi identities. In the

second order formalism these are treated in an asymmetric way: the action depends on

nv = (28, 16, 10) vector potentials Bµ via F = dB. The Bianchi identity dF = 0 for F = dB
are valid off-shell, whereas equations of motion dG = 0 with G̃ = 1

2
δL
δF are only valid on

shell. Therefore G ≈ dC only in virtue of field equations. The dual vector Cµ is not present

in the action, G is the function of F and scalars and fermion fields, and the analysis of

duality symmetry in the second order formalism relies on the fact that δS =
∫
GBG̃.

The proof of duality current conservation in [4, 44] is somewhat tricky since the 2d

order action is not a ‘bona fide’ duality invariant action and therefore the proof of the

relevant Noether-Gaillard-Zumino current conservation is not transparent. It requires that∫
GbG̃ vanishes on shell, where b is the infinitesimal part of B in eq. (2.2). On the other

hand, there is also a Noether-Gaillard-Zumino identity [4, 5, 15] in supergravity:

∫
d4xGbG̃ =

∫
d4x

[
δbϕ

δLv

δϕ
+ h.c.

]
. (E.1)

Here Lv is a vector dependent part of the action. The details and examples are presented

in appendix F. Clearly, in absence of scalars, the right hand side of this identity vanishes,

but not when the scalars in G
H coset space are present. In [13], the action is expanded in a
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A decent amount of enhanced dualities
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duality symmetry in the second order formalism relies on the fact that δS =
∫
GBG̃.

The proof of duality current conservation in [4, 44] is somewhat tricky since the 2d

order action is not a ‘bona fide’ duality invariant action and therefore the proof of the

relevant Noether-Gaillard-Zumino current conservation is not transparent. It requires that∫
GbG̃ vanishes on shell, where b is the infinitesimal part of B in eq. (2.2). On the other

hand, there is also a Noether-Gaillard-Zumino identity [4, 5, 15] in supergravity:

∫
d4xGbG̃ =

∫
d4x

[
δbϕ

δLv

δϕ
+ h.c.

]
. (E.1)

Here Lv is a vector dependent part of the action. The details and examples are presented

in appendix F. Clearly, in absence of scalars, the right hand side of this identity vanishes,

but not when the scalars in G
H coset space are present. In [13], the action is expanded in a
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Cancellation of 82 diagrams supports “no local H-anomaly ”

A decent amount of enhanced dualities

Enhanced duality explains enhanced cancellaUons in N>4 supergravity in 4D

Absence of enhanced duality consistent with the UV divergence in 6D maximal supergravity

FIG. 3: The different parent integrals in terms of which four-point three-loop amplitudes may be

expressed.

TABLE I: The numerator factors N (x) for the integrals I(x) in fig. 3 for N = 4 super-Yang-Mills

theory. The first column labels the integral, the second column the relative numerator factor. An

overall factor of s12s14Atree
4 has been removed. The invariants sij and τij are defined in eq. (2.6).

Integral I(x) N (x) for N = 4 Super-Yang-Mills

(a)–(d) s212

(e)–(g) s12 s46

(h) s12(τ26 + τ36) + s14(τ15 + τ25) + s12s14

(i) s12s45 − s14s46 − 1
3(s12 − s14)l27

over external-leg permutations. One of the gauge-theory cuts is planar, while the second is

nonplanar. 2

An important feature of this construction is that, once the sums over all super-partners

are performed in the N = 4 super-Yang-Mills cuts, the corresponding super-partner sum

2 It is possible to use the total S3 permutation symmetry of s12s14Atree
4 (1, 2, 3, 4) to partially “untwist” the

four-point amplitude in the second Yang-Mills cut, so as to make manifest its reflection symmetry under

{1 ↔ 4, 2 ↔ 3}.

12

and we skipped terms with fermion interaction with bosons. The spinor fields are  +µ↵, �µ↵̇

and �+a↵̇,��ȧ↵ where a, ȧ = 1, ..., 5 and ↵, ↵̇ label spinors of SO(5)⇥ SO(5). Here ± refers

to spacetime chirality of the spinors which are 6D symplectic Majorana-Weyl.

When this action is gauge-fixed in a symmetric gauge it is a model for which anomaly

computation in [14] is relevant. Note that the action is manifestly invariant under reflec-

tion: flipping chirality and SO(5)1 to SO(5)2. This symmetry plays an important role in

cancellation of 6D supergravity SO(5)⇥ SO(5) ⇠ USp(4)⇥ USp(4) anomalies in [14].

The maximal 7D6D ungauged supergravity action in eq. (C.2) in [28] has SO(5) local

symmetry. We have shown bosonic terms in the action in Sec. 6. The fermionic kinetic terms

are

1

e
L
ferm
7D6D

= � ̄µ⌧
µ⌫⇢

r⌫ ⇢ � �̄⌧µrµ�� �̄i⌧µrµ�i + . . . (B.2)

where the . . . involve terms with fermion interaction with bosons. The fermions are USp(4)

6D Majorana symplectic spinors, they are Lorentz and SO(5)-covariant. This action has no

manifest symmetry under refection when flipping chirality and USp(4)1 to USp(4)2.

In symmetric gauge in [3, 4] there are 25 scalars �aȧ with a, ȧ = 1, . . . , 5 viewed with

spinorial indices in USp(4)⇥ USp(4) are

W ↵̇�̇
↵� (x) ⌘ (�a)↵�(�ȧ)

↵̇�̇�aȧ(x) , ↵, ↵̇ = 1, 2, 3, 4 (B.3)

At the linear level these scalars are the first components in the linearized BPS superfields

W ↵̇�̇
↵� (x, ✓) [33, 34]. For example W 1̇2̇

12 (x, ✓) is 1/2 BPS superfield depends on half of fermionic

directions in superspace

D↵1W
1̇2̇
12 = D↵2W

1̇2̇
12 = D↵̇1̇W 1̇2̇

12D
↵̇2̇W 1̇2̇

12 = 0 . (B.4)

Using superapmlitudes, the structure of the maximal supergravity 4-point tree amplitude

was given in [35]. The corresponding on shell superfield depends on 8 Grassmann coordinates

and it is directly related to W 1̇2̇
12 (x, ✓)

The four-point superamplitude is given in [35] in the form

MN=(2,2) tree
4 =

1

2
�6
 

4X

i=1

pAB
i

!
�8
⇣P4

i=1 q
A,I
i

⌘
�8
⇣P4

i=1 q̃
Î
i,Â

⌘

s12 s23 s13
, (B.5)

We have presented in [33] a local linearized superinvariant defining 3-loop 4-point UV diver-

gence found in [36] as follows

MN=(2,2) L=3
4 =

1

✏

5⇣3
(4⇡)9

⇣
2

⌘4
�6
 

4X

i=1

pAB
i

!
�8
 

4X

i=1

qA,I
i

!
�8
 

4X

i=1

q̃Î
i,Â

!
s12 s23 s34 , (B.6)
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Paul Ehrenfest,

In what way does it become manifest in the fundamental laws of physics that 
space has three dimensions? 

The Royal Netherlands Academy of Arts and Sciences (KNAW), 
Proceedings, 20 I, 1918, Amsterdam, 1918, pp. 200-209 

<latexit sha1_base64="Rq9lSTEIMQT9mkByP2x3g8xfA0o="></latexit>

V (r) = �
Mm

(D � 3)rD�3
, D > 3

In R3 a small disturbance leaves the trajectory finite if the energy is not too great

In RD-1 D > 4 the planet falls on the attracting centre or flies away infinitely, there is no elliptic motion. 
- All trajectories have the character of spirals.

There is no stable planetary motion at D>4, therefore D=4 is special in classical gravity

String theoretic models of the universe postulate more than three physical space dimensions, 
but those beyond three are typically small and unobservable.

hmps://dwc.knaw.nl/DL/publicaions/PU00012213.pdf

Communicated by Prof. Dr. H. A. Lorentz 

Anthropic argument: we leave in D=4 where planetary motion is stable and supports life



ERC Synergy Project UNIVERSE+

One may wonder why so many experts in amplitudes, quantum gravity, and string theory are 
interested in cosmology?

Amplitudes 2024

Four decades ago, a prediction was made that galaxies were formed from quantum fluctuations 
generated at the universe’s first moments of existence. This was the single most significant
experimentally confirmed achievement that brings together fundamental theoretical particle 
physics and cosmology.



Theory and experiment: primordial gravitational waves

LiteBIRD

Launch date: 2032

Probing Cosmic Inflation with Cosmic Microwave Background 
Polarization Survey CMB-S4, South Pole Telescope, 

Simons Observatory

Targets include: cosmological 
a-attractor inflation models

BICEP

H0 tension?

LISA

Launch date: 2035
GW from black hole merger

Primordial black holes
Stochastic gravitational waves 
from the early evolution of the 
universe



Theory and experiment: primordial gravitaWonal waves

Today’s talk
Theory versus the data: amplitude loop computations

LiteBIRD

Launch date: 2032

Probing Cosmic Inflation with Cosmic Microwave Background 
Polarization Survey CMB-S4, South Pole Telescope, 

Simons Observatory

Targets include: cosmological 
a-attractor inflation models

BICEP

H0 tension?

LISA

Launch date: 2035
GW from black hole merger

Primordial black holes
Stochastic gravitational waves 
from the early evolution of the 
universe WaiUng for new data!



2007, Lance Dixon call SLAC to Stanford

Hi, Renata, we have found that 3-loop UV divergence in N=8 supergravity cancels

Hi, Lance, in what supergravity gauge you made your computaWon?

We do not use supergravity: we compute an on-shell S-matrix using unitarity and maximal SYM

=  we do not care about the choice of the gauge

But some properties of supergravities might be behind the scene 

Why UV divergences cancel sometimes?



Homogeneous scalar manifolds G/H  for maximal supergraviWes in integer dimensions

U-duality: Ed+1 = GU= E11-D (11-D)= Ed+1 (d+1)   owen called Ed+1

We have added blue arrows in D=4,6,8 where GZ type duality is available

Global Local Table from de Wit, Louis, 1998
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E2(+2)
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E1(+1) = R

d=10-D
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I Bosonic 4D supergravity of Cremmer-Julia-de Wit-Nicolai

1 1 2  E. Cremmer et a l . /Nuclear  Physics B 523 (1998) 73-144 

dHo) = O, d * (Ad H(3)) = 0, (6.23) 

from which we see that it is consistent to impose the 0(5 ,  5)-covariant truncation 

H(3 ) = a"2.Ad * H(3~. (6.24) 

Here s2 is an 0 (5 ,  5)-invariant metric that again can be considered to be an invariant 
of ( 0 ( 5 )  x 0 ( 5 ) ) .  One of its indices can be raised with the invariant (identity) metric 
of the maximal compact subgroup to obtain ,02 = 1. The subsector of the bosonic 
Lagrangian for six-dimensional maximal supergravity that we have obtained here agrees 
with the results obtained in [27], where the complete theory was obtained by direct 
construction, rather than by dimensional reduction from D = I I. 

6.2.3. D = 4 
The fully dualised scalar manifold in D = 4 has an E7 global symmetry. The only 

additional fields of higher degree are the 28 vectors, comprising 21 A(~)ij and 7 .Ai(1). 
Their associated field strengths, together with their duals, form the 56-dimensional 
irreducible representation of E7 [ 10]. The associated dilaton vectors, (aij, hi, --aij, -b i )  
are the weight vectors of the 56, with - b 7  as the highest weight. 

The D = 4, N = 8 supergravity with manifest E7 global symmetry was obtained by first 
dimensionally reducing eleven-dimensional supergravity, and then dualising the seven 2- 
form potentials A(2)i to give rise to additional scalars X i [ 10]. It is also necessary 
to dualise the 21 pseudo-vectors A(~ij to give twenty-one vectors. Together with the 
seven Kaluza-Klein vectors, they form a 28-dimensional representation of SL(8, R). 
The bosonic Lagrangian can then be written as [ 10] 

J F "/' *G~f (6.25) £1 = e R + ±e tr(0~A//0~.A//-j ) + ge. ~ 4 

where .Ad parameterises the coset SU(8)kET, constructed in Section 4, and F/~, with 
indices a, b = (i, 8), are the field strengths of the twenty-eight vectors. G~, is given by 

8£ • G "t' = - 4 - -  (6.26) #v  ~ F a b  ' 
" tzp 

and is therefore a linear combination of F ~  and *F"J'--u,'" At the level of the Lagrangian, 
the global symmetry is SL(8, R), which extends to E 7 at the level of the equations 
of motion, where the twenty-eight F "l' and twenty-eight G,bu, form a 56-dimensional - /zb'  

representation of E7. Writing 

H , 2 ) = ( F ) ,  (6.27) 

it was shown that they in fact satisfy the duality relation H(2 ) = f2Ad*H(2), with [ 10] 

`0= ( O 1  ~ ) .  (6.28) 

a, b=1…8

28-dimensional rep of SL(8,R) scalar-dependent linear 
combination of F and *F

28 F and 28 G  form a 56-dimensional 
rep of E7(7) aa 56
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This allows us to write down an E7-invariant Lagrangian £2, where the G fields are 
regarded as independent of  F. The Lagrangian is given by 

£ 2 = e R  + ¼etr(O~A/lOi, M - I )  _ I T ~ H(2).A/[H~2 ) . (6.29) 

6.3. Doubled Lagrangians 

We now present a general proof  that all the equations of motion following from 
the even-dimensional doubled Lagrangians that we have been discussing here, with a 

1 doubled set of  potentials for the field strengths of  degree n = 7D, are indeed the same 
as the equations of  motion from the original Lagrangians after we impose a universal 
twisted self-duality constraint. We have already seen that this is true for the equations 
of  motion for the fields of  degree n themselves; it remains to be established that the 
equations of  motion for the other fields are the same, we shall now consider them. The 
structure of  the "doubled" Lagrangians is 

l 
£2 - HTA/IH + L(cb), (6.30) 

4n!  

where ~b denotes all the remaining fields, including the complete set of  scalar fields, the 
metric gu~, etc. with Lagrangian L ( ~ ) ,  and 

Here F = dA is written in terms of the original potentials A, while G = d B  is written in 
terms of the "doubled" potentials B. The fields H satisfy the Bianchi identity dH = 0 and 
equations of  motion d ( A 4 . H )  = 0. Here the fields are real and the matrix .A4 = vTr/I) 
is symmetrical.  

We then impose the twisted self-duality constraint (coined some time ago a silver 
rule of  supergravity) 

H = YLL4*H. (6.32) 

Acting with another , ,  and using the fact that • * H = ( - 1 )  n-t  H, this implies that it 
squares to a multiple of  the unit matrix, (S'2.A4) 2 = ( - 1 )  " - j  I. We also have (.'27/) 2 = 
( - 1 ) " - 1 .  We may use the constraint (6.32) to solve for the field strengths G in terms 
of F and , F ,  giving G = f(dp)  F + g(qb) ,F.  We may then write a Lagrangian purely 
in terms of  the original fields in the form 

1 
£1 = F . * G + L ( d p ) ,  (6.33) 

2 n! 

where G is expressed in terms of F as above. It is obvious that the equations of motion 
for the ( D / 2 ) - f o r m  field strengths are the same for the Lagrangians (6.33) and (6.30).  
Note that if the solution for G is substituted into H given in (6.31),  it then has the 
property that in any even dimension: 
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seven Kaluza-Klein vectors, they form a 28-dimensional representation of SL(8, R). 
The bosonic Lagrangian can then be written as [ 10] 

J F "/' *G~f (6.25) £1 = e R + ±e tr(0~A//0~.A//-j ) + ge. ~ 4 

where .Ad parameterises the coset SU(8)kET, constructed in Section 4, and F/~, with 
indices a, b = (i, 8), are the field strengths of the twenty-eight vectors. G~, is given by 

8£ • G "t' = - 4 - -  (6.26) #v  ~ F a b  ' 
" tzp 

and is therefore a linear combination of F ~  and *F"J'--u,'" At the level of the Lagrangian, 
the global symmetry is SL(8, R), which extends to E 7 at the level of the equations 
of motion, where the twenty-eight F "l' and twenty-eight G,bu, form a 56-dimensional - /zb'  

representation of E7. Writing 

H , 2 ) = ( F ) ,  (6.27) 

it was shown that they in fact satisfy the duality relation H(2 ) = f2Ad*H(2), with [ 10] 

`0= ( O 1  ~ ) .  (6.28) 
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This allows us to write down an E7-invariant Lagrangian £2, where the G fields are 
regarded as independent of  F. The Lagrangian is given by 

£ 2 = e R  + ¼etr(O~A/lOi, M - I )  _ I T ~ H(2).A/[H~2 ) . (6.29) 

6.3. Doubled Lagrangians 

We now present a general proof  that all the equations of motion following from 
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l 
£2 - HTA/IH + L(cb), (6.30) 

4n!  

where ~b denotes all the remaining fields, including the complete set of  scalar fields, the 
metric gu~, etc. with Lagrangian L ( ~ ) ,  and 

Here F = dA is written in terms of the original potentials A, while G = d B  is written in 
terms of the "doubled" potentials B. The fields H satisfy the Bianchi identity dH = 0 and 
equations of  motion d ( A 4 . H )  = 0. Here the fields are real and the matrix .A4 = vTr/I) 
is symmetrical.  

We then impose the twisted self-duality constraint (coined some time ago a silver 
rule of  supergravity) 

H = YLL4*H. (6.32) 
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1 
£1 = F . * G + L ( d p ) ,  (6.33) 

2 n! 

where G is expressed in terms of F as above. It is obvious that the equations of motion 
for the ( D / 2 ) - f o r m  field strengths are the same for the Lagrangians (6.33) and (6.30).  
Note that if the solution for G is substituted into H given in (6.31),  it then has the 
property that in any even dimension: 

II Bosonic 4D supergravity derived by Andrianopoli,  D’Auria, Ferrara and Lledo ,́ 2002 from 
Sezgin, Nieuwenhuizen 5D supergravity compacWfied on a circle, 1982, in the limit of vanishing gaugings

We will denote AΛ
5 = aΛ. There is also a global (x-independent) invariance

aΛ → aΛ + t′Λ. We denote by Bµ and φ the vector and scalar coming from
the reduction of the vielbein,

V̂ â
µ̂ = (V a

µ , V
5
µ = V 5

5 Bµ, V
5
5 = e2φ)

with transformation
δξ5Bµ = ∂µξ

5.

The combinations
ZΛ

µ = AΛ
µ − aΛBµ

are inert under ξ5 and so ZΛ
µ and Bµ are genuine four dimensional gauge

fields. Note, however, that under the global translation t′Λ, ZΛ transforms

δZΛ
µ = −t′ΛBµ.

The meaning of this transformation is that the 28 vectors (ZΛ
µ , Bµ) form a 28

dimensional indecomposable representation of the 27 dimensional translation
group (t′Λ). The action given in Ref.[19] is also invariant under the following
SO(1, 1) transformation (with parameter λ)

φ′ = φ− λ

Z ′Λ
µ = eλZΛ

µ

B′
µ = e3λBµ

a′Λ = e−2λaΛ.

We observe that the group generated by SO(1, 1) and the 27 global transla-
tions is precisely the same as the one discussed in Section 2, which appears
in the decomposition of E7,7 under E6,6.

In terms of the fields φ, aΛ, Bµ, ZΛ
µ , the Lagrangian (4.33) of [19] at zero

masses reduces to the following standard expression:3

Lbos
d=4 = −

1

4
V R +

3

2
V ∂µφ∂

µφ+
1

4
V e−4φN̂ΛΣ∂µa

Λ∂µaΣ +
1

24
V P abcd

µ P µ
abcd +

+ V ℑ(N00)BµνB
µν + 2Vℑ(N0Λ)Z

Λ
µνB

µν + V ℑ(NΛΣ)Z
Λ
µνZ

Σµν +

+
1

2
ϵµνρσ

[

ℜ(N00)BµνBρσ + 2ℜ(NΛ0)BµνZ
Λ
ρσ + ℜ(NΛΣ)Z

Λ
µνZ

Σ
ρσ

]

(7)

3Note that our definitions slightly differ from the ones in [19]. In particular, we have
defined the field strengths of the vectors as: ZΛ

µν = 1

2
(∂µZΛ

ν − ∂νZ
Λ
µ ), Bµν = 1

2
(∂µBν −

∂νBµ). Moreover, with respect to [19] we have redefined φ√
3
→ φ and 2dΛΣΓ → dΛΣΓ.
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In symmetric gauge
70 physical scalars in 
complex 35 of SU(8)

Decomposition of E7(7) under the subgroup

said to be a symplectic representation. This implies that the matrices of the
Lie algebra e(7, 7) are of the form

(

a b
c −aT

)

, b = bT , c = cT , (4)

with a, b, c, d being 28 × 28 matrices. A generator of the symplectic algebra
sp(56) has a, b, c arbitrary (b, c symmetric) but the generators belonging to
the subalgebra e7,7 have some restrictions on these entries.

An electric subgroup of E7,7 is any subgroup with b = 0. Such a subgroup
acts linearly on the 28 dimensional space of the electric field strengths (or
vector potentials). If the 28 gauge potentials are in the adjoint representation
of an electric subgroup, then it is in principle possible to gauge it.

The standard example is SO(8) gauged supergravity [20]. SO(8) is the
maximal compact subgroup of SL(8,R), which is a maximal electric subgroup
of E7,7. In the representation (4) it has not only b = 0 but also c = 0. The
reason is that 56 → 28+ 28′ 2 under SL(8,R), so the field strengths are not
mixed with their duals by an SL(8,R) transformation.

We would like to give a parametrization of the group E7,7 which depicts
the embedding of different electric subgroups. If we think about N = 8
supergravity in d = 4 as obtained by dimensional reduction of N = 8 su-
pergravity in d = 5, it is pretty obvious that it must be possible to choose
an electric subgroup of E7,7 which contains E6,6. Indeed, E6,6 has a linear
action on the 27 vector potentials in dimension five, so it will have it also on
the dimensionally reduced vectors. The 28th four dimensional vector comes
from the metric, and it is an E6,6 singlet. This suggests that we should look
for new electric subgroups of E7,7 by considering the decomposition of the
representations of E7,7 under the subgroup E6,6 × SO(1, 1) (this subgroup is
maximal as a reductive subgroup of E7,7, but it is not a maximal subgroup,
as we will see later). The fundamental representation decomposes as follows
(the subindex indicates the charge under SO(1,1))

56 −−−−−−−→
E6,6×SO(1,1)

27+1 + 27′
−1

+ 1+3 + 1−3,

with 1+3 being the new vector that comes from the metric when performing
the dimensional reduction. The adjoint representation decomposes as

133 −−−−−−−→
E6,6×SO(1,1)

780 + 10 + 27−2 + 27′
+2; (5)

2We will denote by r′ the contragradient representation of r.

4

5D 4D

(G/H)4D= E7(7)/SU(8) 

(G/H)5D= E6(6)/USp(8) Finally, let us discuss the scalar sector. The coset of the scalars in four
and five dimensions are respectively E7,7/SU(8) and E6,6/USp(8). The cor-
responding Cartan decompositions are

e7,7 = su(8) + p, p = 70 of SU(8)

e6,6 = usp(8) + p′ p = 42 of USp(8),

and we have that the 70 of SU(8) is decomposed

70 −−−−→
USp(8)

42+ 27+ 1.

The physical meaning of the above decomposition is that the scalars in the
27 come from the fifth component of the 27 five dimensional vectors and the
singlet from the g55 component of the metric (radius of S1).

3 Standard form of N = 8 Scherk–Schwarz

supergravity and gauging of flat groups

We want to compare the maximally extended (N = 8) supergravity in four
dimensions with the theory found by Sezgin and Van Nieuwenhuizen [19]
through the Scherk–Schwarz dimensional reduction from five dimensions.

Let us first consider the case where all the mass parameters are set to zero
(standard dimensional reduction). In dimension five the U-duality group is
E6,6, and it acts linearly on the 27 vector potentials ÂΛ

µ̂ , with µ̂ = 1, . . . 5
and Λ = 1, . . . 27. We will denote the quantities in five dimensions with a
hat, “ ˆ ”, to distinguish them from the four dimensional ones. The local
symmetries acting on these vector potentials are general coordinate transfor-
mations in five dimensions with parameters ξ̂µ̂(xν̂) and 27 abelian U(1) gauge
transformations ΞΛ(xν̂). When performing the reduction to four dimensions,
the local symmetries that remain are: four dimensional general coordinate
transformations with parameters ξµ(xν) with µ, ν = 1, . . . 4, a gauge trans-
formation with parameter ξ5(xν), and the U(1) gauge transformations with
parameters ΞΛ(xν). Explicitly these transformations read

δξ5A
Λ
µ = ∂µξ

5AΛ
5

δΞA
Λ
µ = ∂µΞ

Λ

δξ5A
Λ
5 = 0

δΞA
Λ
5 = 0,

6
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CJdWN classical action in the SL(8,R) 
frame in a symmetric  gauge AD’AFL 5D      4D acWon

Same field content, 
maximal number of 
local supersymmetries

dWST classical action in the E6(6)
frame in a parabolic   gauge

In general, the cosets in D, GD/HD, are related to cosets in D+1, GD+1/HD+1, as follows

GD

HD
⇠

⇣GD+1

HD+1
, rD+1,V

D+1
r

⌘
(6.6)

Here rD+1 is a compactification radius, and VD+1
r are the compactified vectors presenting

the abelian ideal in D dimensions and

adjHD = adjHD+1 + adj IrrepUD+1 (6.7)

for example adjSU(8) = adjUSp(8)�27�, =) 63 = 36+27�. In 6D adj (SO(5)⇥SO(5)) =

adjSO(5)� 10�, =) 20 = 10+ 10�.

Thus the parabolic gauges both in 4D and in 6D supergravities are related to 5D and 7D

supergravities, due to properties of the solvable Lie algebra and their maximal abelian ideals.

In particular, the number of axionic, non-polynomial scalars in D-dimensional supergravities

in parabolic gauges is equal to dimension of the maximal abelian ideal of a solvable Lie algebra

of E11�D(11�D).
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N=8 4D extremal black hole attractors

Non-BPS black holes 

Ferrara, RK, 2006

The simplest way to obtain these configurations is to observe that the BPS and non-
BPS charge orbits with I4 ̸= 0 in N = 8, d = 4 supergravity are given by [1]

O1/8−BPS :
E7(7)

E6(2)
, I4 > 0; (1.5)

Onon−BPS :
E7(7)

E6(6)
, I4 < 0. (1.6)

The moduli spaces corresponding to the above disjoint orbits are [19]

M1/8−BPS =
E6(2)

SU(6)× SU(2)

Mnon−BPS =
E6(6)

USp(8)
. (1.7)

Hence, a convenient representative of these orbits is given by the (unique) E6-singlets
in the decomposition of the fundamental representation 56 of E7(7) into the two relevant
non-compact real forms of E6:

RN O1/8−BPS :

⎧
⎨

⎩

E7(7) → E6(2) × U (1) ;

56 → (27, 1) + (1, 3) +
(
27,−1

)
+ (1,−3) ;

(1.8)

KK Onon−BPS :

⎧
⎨

⎩

E7(7) → E6(6) × SO (1, 1) ;

56 → (27, 1) + (1, 3) + (27′,−1) + (1′,−3) ,
(1.9)

where the U (1) charges and SO (1, 1) weights are indicated, and the prime denotes the
contravariant representations. Notice that, consistently with the group factors U (1) and
SO (1, 1), 27 is complex for E6(2), whereas it is real for E6(6) . Both E6(2) × U(1) and
E6(6)×SO (1, 1) are maximal non-compact subgroups of E7(7), with symmetric embedding.

Our result is simply stated as follows.
The two extremal BH charge configurations determining the embedding of RN and

KK extremal BHs into N = 8, d = 4 supergravity with entropies (1.1) and (1.2), are
given by the two E6-singlets in the decompositions (1.8) and (1.9).

The two situations can be efficiently associated to two different parametrizations of the
real symmetric scalar manifold

E7(7)

SU(8) (dimR = 70, rank= 7) of N = 8, d = 4 supergravity.

For the branching (1.8), pertaining to the RN extremal BH, the relevant parametriza-
tion is the SU (8)-covariant one. This corresponds to the Cartan’s decomposition basis,
where the coset coordinates φijkl (i = 1, ...8) sit in the four-fold antisymmetric self-real
irrep 70 of SU(8). The attractor mechanism implies that at the horizon

φijkl,H = 0, (1.10)

i.e. the scalar configuration at the event horizon of the 1/8-BPS extremal BH is given by

the origin of
E7(7)

SU(8) . Some care should be taken with regards to “flat” directions [8, 19].

Due to the existence of the moduli space
E6(2)

SU(6)×SU(2) (dimR = 40, rank= 4) of the 1
8-BPS

2

RelaWon to 5D         4D type II supergravity 

Orbits of Exceptional Groups, Duality and 
BPS States in String Theory 

Ferrara, Gunaydin, 1997

Extremal BPS black hole states coming from string and M theory compacWficaWons to 4D and 5D, 
preserving various fracWons of the original N = 8 supersymmetry, can be invariantly classified in 
terms of orbits of the fundamental representaWons of the excepWonal groups E7(7) and E6(6)

Only 1/8 BPS and non-BPS states have non vanishing entropy and regular horizons, while 1/4 
and 1/2 BPS configurations lead to vanishing classical entropy 

4D Non-BPS extremal KK black hole solutions with spontaneously broken N = 8 
supersymmetry are based on solvable Lie algebra 

Non-BPS orbit
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BPS charge orbits with I4 ̸= 0 in N = 8, d = 4 supergravity are given by [1]

O1/8−BPS :
E7(7)

E6(2)
, I4 > 0; (1.5)

Onon−BPS :
E7(7)

E6(6)
, I4 < 0. (1.6)

The moduli spaces corresponding to the above disjoint orbits are [19]

M1/8−BPS =
E6(2)

SU(6)× SU(2)

Mnon−BPS =
E6(6)

USp(8)
. (1.7)

Hence, a convenient representative of these orbits is given by the (unique) E6-singlets
in the decomposition of the fundamental representation 56 of E7(7) into the two relevant
non-compact real forms of E6:

RN O1/8−BPS :

⎧
⎨

⎩

E7(7) → E6(2) × U (1) ;

56 → (27, 1) + (1, 3) +
(
27,−1

)
+ (1,−3) ;

(1.8)

KK Onon−BPS :

⎧
⎨

⎩

E7(7) → E6(6) × SO (1, 1) ;

56 → (27, 1) + (1, 3) + (27′,−1) + (1′,−3) ,
(1.9)

where the U (1) charges and SO (1, 1) weights are indicated, and the prime denotes the
contravariant representations. Notice that, consistently with the group factors U (1) and
SO (1, 1), 27 is complex for E6(2), whereas it is real for E6(6) . Both E6(2) × U(1) and
E6(6)×SO (1, 1) are maximal non-compact subgroups of E7(7), with symmetric embedding.

Our result is simply stated as follows.
The two extremal BH charge configurations determining the embedding of RN and

KK extremal BHs into N = 8, d = 4 supergravity with entropies (1.1) and (1.2), are
given by the two E6-singlets in the decompositions (1.8) and (1.9).

The two situations can be efficiently associated to two different parametrizations of the
real symmetric scalar manifold

E7(7)

SU(8) (dimR = 70, rank= 7) of N = 8, d = 4 supergravity.

For the branching (1.8), pertaining to the RN extremal BH, the relevant parametriza-
tion is the SU (8)-covariant one. This corresponds to the Cartan’s decomposition basis,
where the coset coordinates φijkl (i = 1, ...8) sit in the four-fold antisymmetric self-real
irrep 70 of SU(8). The attractor mechanism implies that at the horizon

φijkl,H = 0, (1.10)

i.e. the scalar configuration at the event horizon of the 1/8-BPS extremal BH is given by

the origin of
E7(7)

SU(8) . Some care should be taken with regards to “flat” directions [8, 19].

Due to the existence of the moduli space
E6(2)

SU(6)×SU(2) (dimR = 40, rank= 4) of the 1
8-BPS

2

Instead of a standard
N = 8

2 Symplectic Frames

The de Wit-Nicolai [24] formulation ofN = 8, d = 4 supergravity is based on a symplectic
frame where the maximal non-compact symmetry of the Lagrangian is SL (8,R) [25],
according to the decomposition

E7(7) → SL (8,R) ,

56 → 28+ 28′,
(2.1)

where SL (8,R) is a maximal non-compact subgroup of E7(7), and 28 is its two-fold
antisymmetric irreducible representation. Since the theory is pure, the R-symmetry,
namely SU (8), is the stabilizer of the scalar manifold. It is not a symmetry of the
Lagrangian, but only of the equations of motion. The maximal compact symmetry of the
Lagrangian is the intersection of SL (8,R) with SU (8), which is SO (8) (the maximal
compact subgroup of SL (8,R) itself).

Another symplectic frame corresponds to the decomposition (1.9). In this case, the
maximal non-compact symmetry of the Lagrangian is E6(6) ×SO (1, 1)⊗s T27, with “⊗s”
denoting the semi-direct group product and T27 standing for the 27-dimensional Abelian
subgroup of E7(7). The maximal compact symmetry is now USp (8), which is also the
maximal compact symmetry of the Lagrangian. Note that all terms in the Lagrangian
are SU(8) invariant, with the exception of the vector kinetic terms, which are SU (8)-
invariant only on-shell.

Let us decompose E7(7) along two different maximal non-compact subgroups according
to the following diagram:

E7(7) −→ SL(8,R)

↓ ↓

E6(6) × SO(1, 1) −→ SL(6,R)× SL(2,R)× SO(1, 1) .

(2.2)

If one goes first horizontally, the 56 of E7(7) decomposes as

56 → 28+ 28′ →

⎧
⎨

⎩

(15, 1, 1) + (6, 2,−1) + (1, 1,−3)+

+ (15′, 1,−1) + (6′, 2, 1) + (1, 1, 3) .
(2.3)

Alternatively, one can first go downward, and use that

E6(6) → SL(6,R)× SL (2,R) ;

27 → (15, 1) + (6′, 2) ,

1 → (1, 1) ,

(2.4)

thus obtaining:

56 → (27, 1) + (1, 3) + (27′,−1) + (1,−3) →

⎧
⎨

⎩

(15, 1, 1) + (6′, 2, 1) + (1, 1, 3)+

+ (15′, 1,−1) + (6, 2,−1) + (1, 1,−3) .
(2.5)

5

in , which allows one to recover the RN entropy

SRN = π( p2 + q2) . (4.30)

We conclude this Section by pointing out that the 70 scalars of N = 8, d = 4
supergravity have been decomposed according to representations of USp (8) (maximal
compact subgroup of E6(6) × SO (1, 1)) as follows:

70 → 42+ 27+ 1 . (4.31)

The 42 unstabilized fields are the coordinates of the corresponding moduli space [19].
The non-compact form of the exceptional group, E6(6), in fact, enters in the expression
of the coset

E6(6)

USp(8)
, (4.32)

which is the moduli space of the d = 4 non-BPS, ZAB ̸= 0 extremal BHs, whose orbit is
precisely

O =
E7(7)

E6(6)
. (4.33)

Indeed, the KK BH is indeed a non supersymmetric solution (see also Sect. 1).

5 Embedding of the Axion-Dilaton Extremal BH

The embedding of the axion-dilaton BH in N = 8, d = 4 supergravity can be performed
by a three step supersymmetry reduction, which can be schematically indicated as

N = 8 → N = 4, nV = 6 → pureN = 4 → N = 2 quadratic, nV = 1, (5.1)

where nV denotes the number of vector multiplets coupled to the supergravity multiplet.
More precisely, the first step consists in truncating N = 8 supergravity to an N = 4
theory interacting with six matter (vector) multiplets. In the second step, N = 4 reduces
to the pure theory, while in the last reduction one obtains N = 2 supergravity quadratic
[35] theory with a single vector multiplet.

Let us examine more precisely each intermediate step.
1) In the first step, the N = 8 central charge matrix ZAB assumes the block form

(a, b = 1, .., 4, i, j = 1, ..., 4):

ZAB →

⎛

⎝
Zab 0

0 iZ ij

⎞

⎠ . (5.2)

where Zab is the N = 4 central charge matrix and Zij are the matter charges of the 6
vector multiplets (sitting in the two-fold antisymmetric of SU (4), or equivalently in the
vector representation of SO (6) ∼ SU (4)).
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which can easily be verified to give the same equations of motion as the ones coming 
from (6.14) together with the constraint (6.16). Note that the truncation (6.16) is 
SL(2, ~ )  covariant, and thus the Bianchi identity and equation of motion (6.17) indeed 
inherit the global SL(2, ~ )  symmetry that was manifest in the Lagrangian (6.14) prior 
to the truncation. Before the truncation, AI3 ) and ,~3~ form an SL(2, ~ )  doublet and the 
symmetry is realised in the Lagrangian; after the truncation, F~4) and e -6  *F(4 ) form 
an SL(2, R)  doublet and the symmetry is realised only in the equations of motion. Note 
that prior to truncation, the Bianchi identities and equations of motion can be written in 
the manifestly SL(2, R)-covariant forms 

dH~4) = O, d * (.MH~4)) = 0. (6.19) 

The truncation (6.16) then takes the manifestly SL(2, ~)-covariant form 

H(4 ) = f2.M • H(4), (6.20) 

where S2 is the SL(2, •)-invariant antisymmetric rank-two tensor, which appears here 
in a (non-covariant) canonical form. One can raise one index of this afortiori SO(2)- 
invariant tensor and obtain the relation/22 = -1 .  

6.2.2. D = 6  
The global symmetry of the scalar manifold is E5 = 0 ( 5 , 5 )  in six dimensions. After 

dualising the 3-form potential to give an additional vector potential A(~), the vectors 
A(l)i.j, .Ai(l~ and A(I) (after appropriate field redefinitions) form a 16-dimensional ir- 
reducible multiplet under O(5 ,5) ,  corresponding to the weight vectors (aij, bi,-a). 
The highest-weight vector is - a .  The five 2-form potentials A(2)i cannot themselves 
form an 0 ( 5 , 5 )  multiplet, but their field strengths, together with the duals, form an 
irreducible ten-dimensional representation. The associated dilaton vectors (ai,--ai) are 
the weight vectors of the 10, with - a l  as the highest weight. We may give an analogous 
discussion to the one in D = 8, and focus just on the sectors comprising the scalars and 
the 3-form field strengths. (The vectors can be truncated consistently from the theory, 
thus simplifying the discussion.) We may then introduce a second set of five 2-form 
potentials Ai(2), in terms of which we define 

( dA(2)i "~ (6.21) : \ 

This set of field strengths transform as the ten-dimensional vector representation under 
0 (5 ,  5). The Lagrangian for the kinetic terms for the scalars and 2-form potentials can 
then be written in the manifestly 0 (5 ,  5)-invariant form 

12 = eR + ~el t r (OuM-I O~,M) _ ~el H~3)MHo) (6.22) 

where A4 is the ( 0 ( 5 )  x 0 (5 )  ) \ 0 ( 5 , 5 )  coset matrix defined in Section 4.1. Its explicit 
form is given by (C.4), with G and X as defined above (C.7) in Appendix C. The 
Bianchi identities and equations of motion that follow from this Lagrangian are 
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dHo) = O, d * (Ad H(3)) = 0, (6.23) 

from which we see that it is consistent to impose the 0(5 ,  5)-covariant truncation 

H(3 ) = a"2.Ad * H(3~. (6.24) 

Here s2 is an 0 (5 ,  5)-invariant metric that again can be considered to be an invariant 
of ( 0 ( 5 )  x 0 ( 5 ) ) .  One of its indices can be raised with the invariant (identity) metric 
of the maximal compact subgroup to obtain ,02 = 1. The subsector of the bosonic 
Lagrangian for six-dimensional maximal supergravity that we have obtained here agrees 
with the results obtained in [27], where the complete theory was obtained by direct 
construction, rather than by dimensional reduction from D = I I. 

6.2.3. D = 4 
The fully dualised scalar manifold in D = 4 has an E7 global symmetry. The only 

additional fields of higher degree are the 28 vectors, comprising 21 A(~)ij and 7 .Ai(1). 
Their associated field strengths, together with their duals, form the 56-dimensional 
irreducible representation of E7 [ 10]. The associated dilaton vectors, (aij, hi, --aij, -b i )  
are the weight vectors of the 56, with - b 7  as the highest weight. 

The D = 4, N = 8 supergravity with manifest E7 global symmetry was obtained by first 
dimensionally reducing eleven-dimensional supergravity, and then dualising the seven 2- 
form potentials A(2)i to give rise to additional scalars X i [ 10]. It is also necessary 
to dualise the 21 pseudo-vectors A(~ij to give twenty-one vectors. Together with the 
seven Kaluza-Klein vectors, they form a 28-dimensional representation of SL(8, R). 
The bosonic Lagrangian can then be written as [ 10] 

J F "/' *G~f (6.25) £1 = e R + ±e tr(0~A//0~.A//-j ) + ge. ~ 4 

where .Ad parameterises the coset SU(8)kET, constructed in Section 4, and F/~, with 
indices a, b = (i, 8), are the field strengths of the twenty-eight vectors. G~, is given by 

8£ • G "t' = - 4 - -  (6.26) #v  ~ F a b  ' 
" tzp 

and is therefore a linear combination of F ~  and *F"J'--u,'" At the level of the Lagrangian, 
the global symmetry is SL(8, R), which extends to E 7 at the level of the equations 
of motion, where the twenty-eight F "l' and twenty-eight G,bu, form a 56-dimensional - /zb'  

representation of E7. Writing 

H , 2 ) = ( F ) ,  (6.27) 

it was shown that they in fact satisfy the duality relation H(2 ) = f2Ad*H(2), with [ 10] 

`0= ( O 1  ~ ) .  (6.28) 
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additional fields of higher degree are the 28 vectors, comprising 21 A(~)ij and 7 .Ai(1). 
Their associated field strengths, together with their duals, form the 56-dimensional 
irreducible representation of E7 [ 10]. The associated dilaton vectors, (aij, hi, --aij, -b i )  
are the weight vectors of the 56, with - b 7  as the highest weight. 

The D = 4, N = 8 supergravity with manifest E7 global symmetry was obtained by first 
dimensionally reducing eleven-dimensional supergravity, and then dualising the seven 2- 
form potentials A(2)i to give rise to additional scalars X i [ 10]. It is also necessary 
to dualise the 21 pseudo-vectors A(~ij to give twenty-one vectors. Together with the 
seven Kaluza-Klein vectors, they form a 28-dimensional representation of SL(8, R). 
The bosonic Lagrangian can then be written as [ 10] 
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indices a, b = (i, 8), are the field strengths of the twenty-eight vectors. G~, is given by 
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and is therefore a linear combination of F ~  and *F"J'--u,'" At the level of the Lagrangian, 
the global symmetry is SL(8, R), which extends to E 7 at the level of the equations 
of motion, where the twenty-eight F "l' and twenty-eight G,bu, form a 56-dimensional - /zb'  

representation of E7. Writing 

H , 2 ) = ( F ) ,  (6.27) 

it was shown that they in fact satisfy the duality relation H(2 ) = f2Ad*H(2), with [ 10] 

`0= ( O 1  ~ ) .  (6.28) 

The kinetic terms for the scalars and 2-form potentials can then be written in the manifestly E5(5)

=S0(5, 5)-invariant form. In symmetric gauge M is the S0(5,5)/ S0(5) x S0(5)  coset matrix and the 
action has a global H-symmetry S0(5) x S0(5) = Sp(4) x Sp(4) 

Marcus, 1981: 1-loop Sp(4) x Sp(4)  anomaly cancels

II Bosonic 6D supergravity derived by Cowdall, 1998,   from 7D supergravity of Pernici, Pilch, van 
Nieuwenhuizen, 1984, and compacWfied on a circle, in the limit of vanishing gaugings

It has local SO(5) symmetry and an on shell  global SL(5,R) inherited from 7D 

There is a local S0(5) x S0(5) H-symmetry and on shell global S0(5,5)

Both V and V transform under E5(5) from the left and on local SO(5) ⇥ SO(5) from the

right. This serves to preserve local SO(5)⇥SO(5) and global E5(5) symmetries of the action.

The scalar currents defined the SO(5)⇥SO(5) connections Q and scalar kinetic terms PµPµ

V A
↵↵̇ @µVA

��̇ =
1

4
Qab

µ (�ab)↵
��↵̇

�̇ +
1

4
Qȧḃ

µ �↵
�(�ȧḃ)↵̇

�̇ +
1

4
P aȧ
µ (�a)↵

�(�ȧ)↵̇
�̇ . (B.4)

Note that the action is manifestly invariant under reflection: flipping chirality and SO(5)1 to

SO(5)2.

to fix Once this is done, it will be a unitary gauge of the 6D supergravity in [3] for which

anomaly computation in [13] would be relevant.

C Action of maximal 7D ! 6D supergravity

The maximal 6D supergravity action in eq. (C.2) in [23] has SO(5) local symmetry. All

bosonic terms in the action and fermionic kinetic terms are
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where the . . . involve terms with fermion interaction with bosons. Here ⇧ i
I , an element of

SL(5,R), depends on 24 scalars. It is a vielbein transforming under SL(5,R) from the left

and local SO(5) from the right. The rest of notation is

fµ⌫ ! f2 = dA Gµ⌫I ! G2I = dS1I

F IJ
µ⌫ ! F J

2I = dB J
1I +B J

0I dA (Fµ)I I ! F J
1I = dB J

0I

Hµ⌫⇢I = 3(@[µC⌫⇢]I +
1
2G[µ⌫IA⇢])

Pµij = ⇧�1 I
(i @µ⇧Ij)

Qµij = ⇧�1 I
[i @µ⇧Ij], (C.2)

Here covariant derivatives acting on fermions are

rµ⇠⌫i = @µ⇠⌫i +
1

4
!µ⌫⇢⌧

⌫⇢⇠⌫i + � ⇢
µ⌫⇠⇢i +

1

4
Qµjk�

jk⇠⌫i +Q j
µi ⇠⌫j , (C.3)

The fermions are 6D Lorentz covariant and SO(5)-covariant.
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Different symplectic frames constructed by dWST were given in the form preserving local H-symmetry 

There is a new 56-bein 

quantities Qµ and Pµ,

V−1∂µV =

⎛

⎝

Qµ ij
mn Pµ ijpq

Pklmn
µ Qµ

kl
pq

⎞

⎠ , (2.8)

which leads to the expressions,

Qµ ij
kl = uij

IJ ∂µu
kl
IJ − vijIJ ∂µv

klIJ ,

P ijkl
µ = vijIJ ∂µu

kl
IJ − uij

IJ ∂µv
klIJ . (2.9)

Compatibility with the Lie algebra of E7(7) implies that P ijkl
µ is a selfdual SU(8) tensor,

P ijkl
µ = 1

24 ε
ijklmnpq Pµmnpq , (2.10)

and Qµ transforms as a connection associated with SU(8). Hence, Qµ ij
kl satisfies the

decomposition,

Qµ ij
kl = δ[k[i Qµ j]

l] , (2.11)

with

Qµ i
j = 2

3

[

uik
IJ ∂µu

jk
IJ − vikIJ ∂µv

jkIJ
]

, (2.12)

and Qµ
i
j = −Qµj

i and Qµi
i = 0.

While the index pairs [IJ ] refer to the row indices of V and are subject to E7(7),

the 28 gauge fields AAB
µ are labelled by index pairs [AB], where A,B = 1, . . . , 8. As it

turns out [17], the ungauged Lagrangians can be encoded into a matrix E belonging to

E7(7)\Sp(56;R)/GL(28), which defines the embedding of the 28 vector fields into the

56-bein and thus connects the two types of index pairs [IJ ] and [AB],2

E =

⎛

⎝

UIJ
AB VIJCD

VKLAB UKL
CD

⎞

⎠ . (2.13)

Two Lagrangians related by electric-magnetic duality correspond to two matrices E

related by multiplication from the left by an element of Sp(56;R). These matrices are

not unique, because an E7(7) transformation can always be absorbed into the 56-bein

and a GL(28;R) transformation can be absorbed into the gauge fields. It is convenient

to include E into the 56-bein according to,

V̂(x) = E
−1 V(x) , (2.14)

where we have to remember that V̂ is now no longer a group element of E7(7)! This

definition leads to corresponding submatrices uij
AB and vijAB.

2Similar additional parameters in four-dimensional Lagrangians have been exploited also in N =

2, 4 supergravity [18, 19].
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no longer a group element of E7(7)

d HR p = 0 p = 1 p = 2 p = 3 p = 4

11 1 0 0 0 1 0

10A 1 1 1 1 1 0

10B SO(2) 2 0 2 0 1∗

9 SO(2) 2 + 1 2 + 1 2 1

8 U(2) 5 + 1 + 1̄ 3 + 3̄ 3 [1]

7 USp(4) 14 10 5

6 USp(4)×USp(4) (5,5) (4,4) (5, 1) + (1, 5)

5 USp(8) 42 27

4 U(8) 35 + 35 [28]

3 SO(16) 128

Table 2: Bosonic field content for maximal supergravities described by p-rank antisymmetric

gauge fields; p = 0 corresponds to a scalar field and the graviton fields has been suppressed.

The p = 4 gauge field in d = 10B has a self-dual field strength. The representations [1]

and [28] (in d = 8, 4, respectively) are extended to U(1) and SU(8) representations through

duality transformations on the field strengths. These transformations can not be represented

on the vector potentials. In d = 3 dimensions, the graviton does not describe propagating

degrees of freedom. For p > 0 the fields can be assigned to representations of a bigger group

than HR.

complication is specific to 4 dimensions; for d ̸= 4 the situation is simpler and the

results of this section can be taken over without much difficulty.

For d = 4, V(x) is a 56×56 matrix, sometimes called the 56-bein, which decomposes

as follows,

V(x) =

⎛

⎝

uij
IJ(x) −vklIJ(x)

−vijKL(x) ukl
KL(x)

⎞

⎠ . (2.7)

The indices I, J, . . . and i, j, . . . take the values 1, . . . , 8, so that there are 28 anti-

symmetrized index pairs representing the matrix indices of V; the row indices are

([IJ ], [KL]), and the column indices are ([ij], [kl]), so as to remain consistent with the

conventions of [1]. The above matrix is pseudoreal and belongs to E7(7) ⊂ Sp(56;R)

in the fundamental representation.1 We use the convention where uij
IJ = (uij

IJ)∗ and

vijIJ = (vijIJ)∗. The indices i, j, . . . refer to SU(8) and capital indices I, J, . . . are

subject to E7(7) transformations. Using the above definition, one may evaluate the
1The pseudoreal representation stresses the maximal compact SU(8) subgroup. It would perhaps

be appropriate to denote the pseudoreal representation by USp(28, 28), but for reasons of uniformity

we will always refer to Sp(56;R).
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duality transformations on the field strengths. These transformations can not be represented

on the vector potentials. In d = 3 dimensions, the graviton does not describe propagating

degrees of freedom. For p > 0 the fields can be assigned to representations of a bigger group

than HR.

complication is specific to 4 dimensions; for d ̸= 4 the situation is simpler and the

results of this section can be taken over without much difficulty.

For d = 4, V(x) is a 56×56 matrix, sometimes called the 56-bein, which decomposes

as follows,

V(x) =

⎛

⎝

uij
IJ(x) −vklIJ(x)

−vijKL(x) ukl
KL(x)

⎞

⎠ . (2.7)

The indices I, J, . . . and i, j, . . . take the values 1, . . . , 8, so that there are 28 anti-

symmetrized index pairs representing the matrix indices of V; the row indices are

([IJ ], [KL]), and the column indices are ([ij], [kl]), so as to remain consistent with the

conventions of [1]. The above matrix is pseudoreal and belongs to E7(7) ⊂ Sp(56;R)

in the fundamental representation.1 We use the convention where uij
IJ = (uij

IJ)∗ and

vijIJ = (vijIJ)∗. The indices i, j, . . . refer to SU(8) and capital indices I, J, . . . are

subject to E7(7) transformations. Using the above definition, one may evaluate the
1The pseudoreal representation stresses the maximal compact SU(8) subgroup. It would perhaps

be appropriate to denote the pseudoreal representation by USp(28, 28), but for reasons of uniformity

we will always refer to Sp(56;R).
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Old: bridge between E7(7) and SU(8)

i,j SU(8),       I,J in E7(7)

quantities Qµ and Pµ,

V−1∂µV =

⎛

⎝

Qµ ij
mn Pµ ijpq

Pklmn
µ Qµ

kl
pq

⎞

⎠ , (2.8)

which leads to the expressions,

Qµ ij
kl = uij

IJ ∂µu
kl
IJ − vijIJ ∂µv

klIJ ,

P ijkl
µ = vijIJ ∂µu

kl
IJ − uij

IJ ∂µv
klIJ . (2.9)

Compatibility with the Lie algebra of E7(7) implies that P ijkl
µ is a selfdual SU(8) tensor,

P ijkl
µ = 1

24 ε
ijklmnpq Pµmnpq , (2.10)

and Qµ transforms as a connection associated with SU(8). Hence, Qµ ij
kl satisfies the

decomposition,

Qµ ij
kl = δ[k[i Qµ j]

l] , (2.11)

with

Qµ i
j = 2

3

[

uik
IJ ∂µu

jk
IJ − vikIJ ∂µv

jkIJ
]

, (2.12)

and Qµ
i
j = −Qµj

i and Qµi
i = 0.

While the index pairs [IJ ] refer to the row indices of V and are subject to E7(7),

the 28 gauge fields AAB
µ are labelled by index pairs [AB], where A,B = 1, . . . , 8. As it

turns out [17], the ungauged Lagrangians can be encoded into a matrix E belonging to

E7(7)\Sp(56;R)/GL(28), which defines the embedding of the 28 vector fields into the

56-bein and thus connects the two types of index pairs [IJ ] and [AB],2

E =

⎛

⎝

UIJ
AB VIJCD

VKLAB UKL
CD

⎞

⎠ . (2.13)

Two Lagrangians related by electric-magnetic duality correspond to two matrices E

related by multiplication from the left by an element of Sp(56;R). These matrices are

not unique, because an E7(7) transformation can always be absorbed into the 56-bein

and a GL(28;R) transformation can be absorbed into the gauge fields. It is convenient

to include E into the 56-bein according to,

V̂(x) = E
−1 V(x) , (2.14)

where we have to remember that V̂ is now no longer a group element of E7(7)! This

definition leads to corresponding submatrices uij
AB and vijAB.

2Similar additional parameters in four-dimensional Lagrangians have been exploited also in N =

2, 4 supergravity [18, 19].
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Lagrangian in SL(8, R) basis: CJdWN L with local SU(8) H-symmetry

Lagrangian in E6(6)  basis: dWST L with local SU(8) H-symmetry, related to 
CJdWN L by a  change of the symplecWc frame 

Off shell these two theories are different, but on shell equivalent 
due to a property of the GZ duality

Take CJdWN L In SL(8, R)  frame and gauge-fix  local H-symmetry in a symmetric gauge 

Take dWST L In E6(6)  frame and gauge-fix local H-symmetry in a 
parabolic gauge, get  

Quantum equivalence between standard 4D supergravity and 5D 4D follows from 
classical on shell equivalence of different symplectic frames in 4D supergravity  

5D 4D
supergravity

Gauge-independence

New: bridge between Sp(56) and SU(8)



Noether-Gaillard-Zumino Sp(2nv) conserved current in 4D supergravity 

Duality symmetry is different from Noether symmetries by the fact that it acts on doublets 
of field strength’s rather than on vector fields as the standard Noether symmetry 

This is a property of scalars in a parabolic gauge. Note that in supergravity I in the standard

symmetric gauge 70 is a representation of SU(8).

In general, the cosets in D, GD/HD, are related to cosets in D+1, GD+1/HD+1, as follows

GD

HD

⇠

⇣GD+1

HD+1
, rD+1,V

D+1
r

⌘
(2.8)

Here rD+1 is a compactification radius, and VD+1
r are the compactified vectors presenting

the abelian ideal in D dimensions and

adjHD = adjHD+1 + adj IrrepUD+1 (2.9)

for example adjSU(8) = adjUSp(8)�27�, =) 63 = 36+27�. In 6D adj (SO(5)⇥SO(5)) =

adjSO(5)� 10�, =) 20 = 10+ 10�.

Thus the parabolic gauges both in 4D and in 6D supergravities are related to 5D and 7D

supergravities, due to properties of the solvable Lie algebra and their maximal abelian ideals.

The fact that the number of axionic, non-polynomial scalars in D-dimensional supergravities

in parabolic gauges is equal to dimension of the maximal abelian ideal of a solvable Lie algebra

of E11�D(11�D) shows that the existence of the di↵erent supergravities in the same dimension

D is a generic phenomenon.

As such, the issue of quantum equivalence between di↵erent gauges of a local H-symmetry

becomes important: how can we compare the on shell S-matrix in these di↵erent gauges?

Especially in the situation that all loop computations are performed using superamplitudes

which typically correspond to symmetric gauges of linearized supergravity.

3 GZ duality in even and odd k=D/2 : Sp(2n) and SO(n,n)

The original Sp(2nv,R) duality in 4D was discovered by Gaillard and Zumino in [6]. It shows

that the scalar-vector part of the Lagrangian of supergravity under infinitesimal Sp(2nv,R)

transformations, where there are nv vectors, transforms as follows

�L =
1

4
(FCF̃ +GBG̃) , Fµ⌫ = @µA⌫ � @⌫Aµ , G̃µ⌫ = 2

@L

@Fµ⌫
(3.1)

as we see in eq. (2.20) in [6]. Here on vector doublet the Sp(2nv,R) transformation in a real

basis acts as follows

�Sp(2nv)

 
F

G

!
=

 
A B

C D

! 
F

G

!
, C = CT , B = BT , D = �AT (3.2)
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The action of duality on vector fields is non-local, why duality symmetry is 
NOT a Noether symmetry

NGZ identitiy

consistency requirement here that the dual field strength G in the doublet transforms accord-

ing to the chain rule, when expressed as a functional of F and '. This consistency condition

is given in the form of NGZ Sp(2n,R) duality identify: it requires that the Lagrangian must

transform under duality in a certain way, defined by NGZ identitiy [6, 40] and [39]

�

�F⇤

⇣
S[F 0,'0]� S[F,']�

1

4

ˆ
(F̃CF + G̃BG)

⌘
= 0. (7.1)

NGZ conserved current

In the SU(8) local version of the theory the Noether Sp(2n,R) current of scalars consists of

two parts: part from all scalar term LV = �
1
2Tr

⇣
(DµV)V�1(Dµ

V)V�1
⌘
, this is a standard

Noether current,

Jµ

V =
@LV

@(@µV)
� V (7.2)

and part of the scalar-vector terms. This one is not a standard Noether current since Sp(2n,R)

duality acts on a vector field strength rather than on a vector. In this case the corresponding

current is a Gaillard-Zumino current [6]

Ĵµ

GZ
⌘

1

2

⇣
G̃µ⌫AA⌫ � F̃µ⌫CA⌫ + G̃µ⌫BB⌫ � F̃µ⌫DB⌫

⌘
, (7.3)

Its divergence cancels the scalar variation of the Lagrangian when equations of motion are

satisfied. The classical Lagrangian provides the conservation of the total current, the Noether

current of the scalars and the Gaillard-Zumino current of vectors:

@µJ
µ

NGZ
= @µĴ

µ

GZ
+ @µJ

µ

V = 0 (7.4)

The proof that the Sp(2n,R) current conservation requires that scalar and vector field equa-

tions are satisfied follows from NGZ identity (7.1).

8 Discussion

All D > 4 supergravities have UV divergences below critical loop order [25–27]

L
D

cr =
2N + n

D � 2
, n � 0 (8.1)

This means that the relevant superinvariant counterterms, can’t have local H-symmetry.

Therefore these UV divergences signify local H-symmetry anomaly.

This is consistent with the fact that it is not possible to prove that in D > 4 supergravities

the S-matrix is independent on the choice of the local H-symmetry gauge-fixing condition:

symmetric or parabolic.

– 21 –
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µ

GZ
+ @µJ

µ

V = 0 (7.4)

The proof that the Sp(2n,R) current conservation requires that scalar and vector field equa-

tions are satisfied follows from NGZ identity (7.1).

8 Discussion

All D > 4 supergravities have UV divergences below critical loop order [25–27]

L
D

cr =
2N + n

D � 2
, n � 0 (8.1)

This means that the relevant superinvariant counterterms, can’t have local H-symmetry.

Therefore these UV divergences signify local H-symmetry anomaly.

This is consistent with the fact that it is not possible to prove that in D > 4 supergravities

the S-matrix is independent on the choice of the local H-symmetry gauge-fixing condition:

symmetric or parabolic.

– 21 –

The classical Lagrangian provides the conservation of the total current, 
the Noether current of the scalars and the Gaillard-Zumino current of vectors 

consistency requirement here that the dual field strength G in the doublet transforms accord-

ing to the chain rule, when expressed as a functional of F and '. This consistency condition

is given in the form of NGZ Sp(2n,R) duality identify: it requires that the Lagrangian must

transform under duality in a certain way, defined by NGZ identitiy [6, 40] and [39]

�

�F⇤

⇣
S[F 0,'0]� S[F,']�

1

4

ˆ
(F̃CF + G̃BG)

⌘
= 0. (7.1)

NGZ conserved current

In the SU(8) local version of the theory the Noether Sp(2n,R) current of scalars consists of

two parts: part from all scalar term LV = �
1
2Tr

⇣
(DµV)V�1(Dµ

V)V�1
⌘
, this is a standard

Noether current,

Jµ

V =
@LV

@(@µV)
� V (7.2)

and part of the scalar-vector terms. This one is not a standard Noether current since Sp(2n,R)

duality acts on a vector field strength rather than on a vector. In this case the corresponding

current is a Gaillard-Zumino current [6]

Ĵµ
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Why E&M GZ duality is available only in even dimensions and why symplectic or orthogonal 

even k=D/2 : Sp(2n) 

odd k=D/2   : SO(n,n)

Only in even dimensions D=2k there are both electric and magneWc k-forms 

Gaillard-Zumino duality symmetry in 4D supergravity [8] was generalized to 6D and 2D

in [3] and [10], respectively, and described in general even dimension in [9] and in [6, 11–

13]. It is a generalizations of the electric-magnetic duality in the Maxwell theory. Is is

available only in even dimensions D=2k where there are both electric Fµ1...µk and magnetic

F̃µ1...µk = 1
k!e

�1✏µ1...µk⌫1...⌫kF⌫1...⌫k k-forms. It was observed in [10] that

F1F̃2 = (�1)kF̃1F2 (2.4)

and therefore a duality operator X acting on a duality doublet

�X

 
F

G

!
= X

 
F

G

!
(2.5)

must satisfy a condition (depending on D
2 = k being even or odd) that

XT⌦ = �⌦X : ⌦k=2p =

 
0 �1

1 0

!
, ⌦k=2p+1 =

 
0 1

1 0

!
(2.6)

Therefore the duality group, for n of (D/2-1)-form fields, when D
2 = k = 2p is even, is

Sp(2n,R). The duality group, for n of (D/2-1)-form fields, when D
2 = k = 2p+ 1 being odd

is SO(n, n). Thus for maximal supergravities a duality group including GZ duality group is

given in eq. (1.1).

It is convenient here to use the “doubled Lagrangian” formalism in [6] which is valid for

even dimensions D=2k. In eq. (4.1) we have shown the infinitesimal change of L in 4D case.

Here we will describe the action of the finite GZ duality on the supergravity Lagrangian in

D=2k dimensions.

The form-field-scalar part of the supergravity Lagrangian is

L1 =
1

2k!
F · ⇤G+ L(�) (2.7)

where the expression for the k-form G can be solved in terms of a k-forms F and ⇤F using a

constraint imposed on a k-form doublet

H =

 
F

G

!
(2.8)

which states that

H = ⌦M ⇤H (2.9)

It is sometimes called silver rule or twisted self-duality condition. Using the fact that

⇤⇤H = (�1)k�1H (2.10)
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4D, 2-forms
6D, 3-forms
8D  4-forms

Only electric forms are in the Lagrangian
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it follows that

⇤H = ⌦M ⇤⇤H = (�1)k�1⌦MH, H = (⌦M)2 (�1)k�1H, (⌦M)2 = (�1)k�1I (2.11)

The Lagrangian can also be given in the form

L2 = � 1

4k!
HTMH + L(�) (2.12)

The Bianchi identities and equations of motion take an elegant form

dH = 0 , d(M⇤H) = 0 (2.13)

are invariant under GU -duality symmetry, i. e. E7(7) symmetry in 4D and SO(5, 5) in 6D

and SL(2,R) in 8D.

Consider now a GZ duality transformation of the form of a Sp(2n) or SO(n, n) matrix

for even or odd k=D/2, respectively
 
F

G

!
0

=

 
U Z

W V

! 
F

G

!
(2.14)

where

UTV + (�1)k�1W TZ = V TU + (�1)k�1ZTW = I (2.15)

W TU + (�1)k�1UTW = V TZ + (�1)k�1ZTV = 0 (2.16)

We can now look at silver rule (2.9) transformation under a finite GZ duality, it is duality

covariant

H 0 = XH ! H 0 = (⌦M)0 ⇤XH ! H = X�1(⌦M)0X ⇤H (2.17)

which is satisfied since

X�1(⌦M)0X = (⌦M) ! (⌦M)0 = X(⌦M)X�1 (2.18)

Also the Bianchi identities and equations of motion after GZ duality transformations are the

same

dH 0 = 0 , d(M⇤H)0 = 0 (2.19)

However, the Lagrangian o↵ shell changes under GZ transformations as follows

L0

1 = L1 +
1

2k!
(F TUTWF̃ +GTZTV G̃) (2.20)

The first term with F = dA is a total derivative, so the change of the Lagrangian o↵ shell

where G 6= dB is up to total derivatives

L0

1 = L1 +
1

2k!
GTZTV G̃ (2.21)
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n is the number of k-forms


