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Abstract

U-duality imposes strong constraints on the structure of UV divergences in supergravity

But Gaillard-Zumino symplectic Sp(2n, ‘R) duality in 4D has more symmetries than U-duality
(nis a number of vectors)

For example, in N=8, Sp(56) has a dimension of 1596, whereas the dimension of its U-duality
subgroup Ey( is 133.
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Abstract

U-duality imposes strong constraints on the structure of UV divergences in supergravity

But Gaillard-Zumino symplectic Sp(2n, ‘R) duality in 4D has more symmetries than U-duality
(nis a number of vectors)

For example, in N=8, Sp(56) has a dimension of 1596, whereas the dimension of its U-duality
subgroup Ey( is 133.

In comparison, in D > 4 maximal duality symmetry is U-duality, there are no enhanced dualities

We argue that the extra dualities, enhancing U-dualities, determine the properties of
perturbative quantum supergravity, being implemented into a Hamiltonian path integral

The presence/absence of enhanced dualities suggests a possible explanation of known
amplitude loop computations in D-dimensional ‘N > 4 supergravities and of the special status

of D =4 in this respect

Enhanced duality explains enhanced cancellations in N>4 supergravity in 4D

More 4D supergravity amplitude computations are desirable. New amplitude
computations will show that either perturbative 4D supergravity is as bad as D > 4,
or it continues to be special due to 4D enhanced symmetries!



Geometric Superinvariants, candidate counterterms, at the critical loop order RK, 2023
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Sep = k2 Fer=l) /d4Nde det E' L(x,0) supergravities
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Geometric Superinvariants, candidate counterterms, at the critical loop order RK, 2023

G/H coset space
_ 2 (Ler—1) AN 1D
Ser = K /d d”zdet B L(z,0) supergravities
Below critical order there is no local H-symmetry, no global G symmetry and no local nonlinear
supersymmetr
Persy Y 2N +n
Ler = ——— ) n =0
(D—2)
D=4 N>4no UV divergences so far
D=4, Ly =8: /114/d4:pD10R4+... n=0 ??? L., =N
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D=8, L, =3: m4/d8:cD12R4+... n=3 Lyy =1< Ly =3
D=9 L, =3: K4/d9xD15R4+... n=>5 Lyy =2< Ler =3
Maximal supergravities Z. Bern et al
_ . Local H-symmetry and G-symmetry
All D>4 UV divergences are at loop order below criticall  wmp must have anomalies!



Cremmer-Julia 1979 gauge-fixed local H=SU(8) of 4D maximal supergravity in
the symmetric gauge

They also mention Iwaswa gauge: "The choice of gauge is up to the user; 11D people
seem to like the "lwasawa" or triangular gauge best (we have seen that it has a
remarkable polynomiality). The canonical or symmetrical gauge is more familiar

In KSVP in 2024 we have gauge-fixed different versions of D-dimensional
supergravities in various gauges.



Cremmer-Julia 1979 gauge-fixed local H=SU(8) of 4D maximal supergravity in
the symmetric gauge

They also mention Iwaswa gauge: "The choice of gauge is up to the user; 11D people
seem to like the "lwasawa" or triangular gauge best (we have seen that it has a
remarkable polynomiality). The canonical or symmetrical gauge is more familiar

In KSVP in 2024 we have gauge-fixed different versions of D-dimensional
supergravities in various gauges.

We agree with CJ, the choice of the gauge is up to the user

However, quantum theory is consistent only if these gauges give the same
S-matrix: the gauge equivalence of all these versions has to be investigated.

The local H-symmetry must be anomaly-free for
the S-matrix to be independent of the user’s choice!
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4D: Cremmer Julia, 1979 de Wit, Nicolai 1982

6D Tanii, 1984 Bergshoeff, Samtleben, Sezgin 2008
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It is not widely recognized that there are two different types of supergravities in dimension D, with
the same amount of local supersymmetry.

Supergravity | and supergravity I, KSVP

I: Supergravities with global U-duality symmetry G and local H symmetry, where H is the maximal
compact subgroup of G, physical scalars in (G/H), coset space
all scalars in the action in symmetric H-gauge are dilatons,

have non-polynomial dependence

4D: Cremmer Julia, 1979 de Wit, Nicolai 1982

6D Tanii, 1984 Bergshoeff, Samtleben, Sezgin 2008

Il: Supergravities dimensionally reduced from higher dimensions D+n, without dualization. These have
less global and local symmetries: higher dimensions have smaller U-dualities and smaller maximal
subgroups inherited from higher dimensions

Some of the scalars in the action necessarily have polynomial dependence: axions

D+1—=D examples

4D: Andrianopoli, D’Auria, Ferrara and Lledo, 2002
6D Cowdall, 1998
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Global H-symmetry where ¢ is in @a noncompact part of the algebra . |
anomalies Amplitudes!
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(dilatons) have non-polynomial dependence V ¢
Marcus, 1985 natural physical parameterization of the scalar vielbein 1s any D
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anomalies Amplitudes!

Il: Supergravities where some of the scalars in the action (axions) necessarily have
polynomial dependence. Dimensionally reduced (D+n) supergravities, no dualization,
less symmetries:

no global H-symmetry Marcus anomaly?

For every D

Andrianopoli, D’Auria, Ferrara, Fr’e, Minasian, Trigiante, 1996
D+1—D

Dimension of abelian nilpotent ideals = min number of axionic scalars in any D in partial Iwasawa gauges

translational symmetries
of the scalar manifolds




4D supergravity |
Cremmer Julia, 1979 de Wit, Nicolai 1982

4D supergravity Il
Andrianopoli, D’Auria, Ferrara and Lledo, 2002

Sezgin, Nieuwenhuizen, 1982
Cremmer, Scherk, Schwarz, 1979

5D supergravity compactified on a circle,
in the limit of vanishing masses/gaugings

Eq7em
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70 = 78-36  +1 +27
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4D supergravity | Eq e
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Andrianopoli, D’Auria, Ferrara and Lledo, 2002
Sezgin, Nieuwenhuizen, 1982
Cremmer, Scherk, Schwarz, 1979
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5D supergravity compactified on a circle, SU(8) ~ (Usp(g)

in the limit of vanishing masses/gaugings
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Both have maximal 4D ‘N=8 local supersymmetry



4D supergravity |
Cremmer Julia, 1979 de Wit, Nicolai 1982

4D supergravity Il

Andrianopoli, D’Auria, Ferrara and Lledo, 2002

Sezgin, Nieuwenhuizen, 1982
Cremmer, Scherk, Schwarz, 1979

5D supergravity compactified on a circle,

in the limit of vanishing masses/gaugings

Both have maximal 4D ‘N=8 local supersymmetry

4D gauged supergravity |

1/8-BPS ‘N=8 extremal

black holes: one of the
N=8 attractors with finite

area of the horizon

Eq7em
SU(3)
70=133-63

L) N( Lug(6)
SUR) ~ \USp(8)

70 = 78-36  +1 +27

,y O, 27&:1:1'0713)

4D gauged supergravity |l

Non-BPS ‘N=8 extremal

black holes: one of the
N=8 attractors with finite

area of the horizon

Spontaneously broken N=8 supergravity
Cremmer, Scherk, Schwarz, 1979



Symmetric, Iwasawa and partial Iwasawa unitary gauges

In supergravities with physical scalars in G/H coset space, the Lie algebra g of a group G can
be decomposed into two orthogonal subspaces: the Lie algebra h of a group H and a coset

space €. Here H is the maximal compact group in G.
g=hot [hoch;  bhEgce  [BYchaf

1. Symmetric gauges

These correspond to a generalization of the polar decomposition of a Y — 6¢-269-A
linear matrix into a product of the orthogonal and asymmetric matrix
and A are the generators of the H group and X are the coset generators.

A symmetric gauge is a choice 0=0
Veym (@") = e? Kr ¢ exp(t) r=1,...,ns

where K, is a basis of the coset algebra All scalars occur in the action non-

olynomiall
the on shell Lagrangian has global H-invariance POTY —

Coset
generators
arenotina
subalgebra of G



Symmetric, Iwasawa and partial Iwasawa unitary gauges

In supergravities with physical scalars in G/H coset space, the Lie algebra g of a group G can
be decomposed into two orthogonal subspaces: the Lie algebra h of a group H and a coset

space €. Here H is the maximal compact group in G.
g=bot [hoch;  [hHce  [LHchaf

1. Symmetric gauges

These correspond to a generalization of the polar decomposition of a Y — 6¢-269-A
linear matrix into a product of the orthogonal and asymmetric matrix
and A are the generators of the H group and X are the coset generators.

A symmetric gauge is a choice 0=0
Veym (@") = e? Kr ¢ exp(t) r=1,...,ns

where K, is a basis of the coset algebra All scalars occur in the action non-

olynomiall
the on shell Lagrangian has global H-invariance POTY —

Coset
generators
arenotina
subalgebra of G

All amplitude computations fit supergravities in symmetric gauges: there is global
SU(8) in 4D superamplitudes and global USp(4)xUSp(4) in 6D etc



2. lwasawa gauge of the local H-symmetry : the right node deleted from the Dynkin diagram
of E;11.p: in this gauge the theory is related to compactified D+1 supergravity
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In this gauge there is no global E; or E., these are broken, at best itis Ec or E,

3. Partial Iwasawa gauge of local H-symmetry, where the related D+1 theory was gauge-

fixed in the symmetric gauge for (G/H)p., before compactification on a circle of the theory
from D+1 to D dimensions was performed.



2. lwasawa gauge of the local H-symmetry : the right node deleted from the Dynkin diagram
of E;11.p: in this gauge the theory is related to compactified D+1 supergravity
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In this gauge there is no global E, or E., these are broken, at best itis Ec or E,

3. Partial lIwasawa gauge of local H-symmetry, where the related D+1 theory was gauge-

fixed in the symmetric gauge for (G/H)p.1 before compactification on a circle of the theory
from D+1 to D dimensions was performed.

Marcus computation of global H-symmetry anomaly is relevant in symmetric gauges,

but not in lwasawa-type gauges, unless on shell the observables in these gauges are
equivalent.



Iwasawa gauge with the right node deleted

These gauges are suitable for addressing the relation between D-dimensional supergravity with (G/H)p
coset space with the one in D derived from compactified D+1 dimension where the coset space is (G/H)p.4

These gauges are associated with the lwasawa decomposition of G with respect to H and
with a solvable parametrization of the coset space so that the gauge-fixed vielbein V belongs

to a solvable Lie group
TTT_
VIwasafwa(SOr) = e’ S exp(Y)

Here {7} is a basis of .¥ (r = 1,...,ns) 7 generators are in
a subalgebra of G
S =COhHN
\

Cartan subspace of .
nilpotent subalgebra

the coset space

When the theory originates from a higher dimensional supergravity, C is parametrized by the dilatonic
moduli. N being nilpotent, is parametrized by axionic moduli.

The axionic scalars occur in the action polynomially



Iwasawa gauge with the right node deleted

These gauges are suitable for addressing the relation between D-dimensional supergravity with (G/H)p
coset space with the one in D derived from compactified D+1 dimension where the coset space is (G/H)p.4

These gauges are associated with the Iwasawa decomposition of G with respect to H and

with a solvable parametrization of the coset space so that the gauge-fixed vielbein V belongs
to a solvable Lie group

VIwasafwa(SOr) = QCPTTT S eXp(y)

Here {T}} is a basis of .7 (r = 1,...,n) .~ generators are in
a subalgebra of G
S =CEHN
Cartan subspace of / \
the coset space nilpotent subalgebra

When the theory originates from a higher dimensional supergravity, C is parametrized by the dilatonic
moduli. N being nilpotent, is parametrized by axionic moduli.

The axionic scalars occur in the action polynomially

Partial Iwasawa gauge (not a triangular one)

Example: Sezgin, Nieuwenhuizen, 1982 on spontaneously broken gauged N=8 in 4D,
derived by compactification from 5D with local USp(8)

Andrianopoli, D’Auria, Ferrara and Lledo, 2002
Type Il 4D ungauged supergravity
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... a non-linearly realized E ,;, symmetry. We elucidate how non-linearly realized symmetries are reflected in
the more familiar setting of pion scattering amplitudes, and go on to identify the action of E ;;, on amplitudes

in SUGRA.
2010

E7¢7) constraints on counterterms in N’ = 8 supergravity

N. Beisert?, H. Elvang <, D. Freedman 9-¢, M. Kiermaier*, A. Morales 9, S. Stieberger 8

Soft Scalar Limit, direct proof that no E ;) (R) -invariant candidate counterterm exists below 7-loop order

E 7i7) (R) protects maximal 4D supergravity up to L=6



Cremmer, Julia 1978 Amplitudes and E 7(7)

What is the simplest quantum field theory?

hep-th 0808.1446

Nima Arkani-Hamed,” Freddy Cachazo’ and Jared Kaplan®®

... a non-linearly realized E ,;, symmetry. We elucidate how non-linearly realized symmetries are reflected in
the more familiar setting of pion scattering amplitudes, and go on to identify the action of E ;;, on amplitudes
in SUGRA.

E7¢7) constraints on counterterms in N’ = 8 supergravity

N. Beisert?, H. Elvang <, D. Freedman 9-¢, M. Kiermaier*, A. Morales 9, S. Stieberger 8

Soft Scalar Limit, direct proof that no E ;) (R) -invariant candidate counterterm exists below 7-loop order

E 7i7) (R) protects maximal 4D supergravity up to L=6

Freedman, RK, Yamada, SSL, analogous results for ‘N=5,6,8, all groups of type E7, soft
scalar limit does not explain ‘N=5, L=4 cancellation of UV infinities in 82 diagrams

analog of N=8, L=7

2010

2018



E;7) (R): Amplitudes, single scalar soft limit
RK and Soroush, 2008
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Gauge-fixed maximal supergravity in a symmetric gauge:
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non-linearly realized exact continuous Ey7 (R) linear  E;;) (R) symmetry
7(7

Sy=y —y=3+yA - Ay —yXy, 0Pijrl = 2ijki

constant SU(8) nonlinear
shift

Today’s talk is about more symmetries in maximal 4D supergravity and their role in quantum theory

Gaillard-Zumino 1981 now
dimension of the
Sp(56,R) O L (7) (R) double quotient takeaway
message
1596-133-784=679
1596 > 133

enhanced duality
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where there are UV divergences at some loop order?
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Electro-magnetic dualities are dimension dependent
Gaillard-Zumino, 1981, Tanii, 1984

N Sp(56) - Es(s) - E3s)

A question is: Why E;;y symmetry appears to protect, so far, maximal 4D supergravity from UV
divergences, whereas Eg) Es(s) Eq), E33), Ez(2) already failed to do so in all D>4 maximal supergravities
where there are UV divergences at some loop order?

A quick answer is: Only in 4D dimension a maximal duality, including GZ duality, is bigger than that of
U-duality:

dim [Sp(56)] >> dim [E; )]

Only in 4D one can argue quantum equivalence of different gauges in supergravities, using these
extra symmetries
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DUALITY ROTATIONS FOR INTERACTING FIELDS*
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We study the properties of interacting field theories which are invariant under duality
rotations which transform a vector field strength into its dual. We consider non-abelian duality
groups and find that the largest group for n interacting field strengths is the non-compact
Sp(2n,R), which has U(n) as its maximal compact subgroup. We show that invariance of the
equations of motion requires that the lagrangian change in a particular way under duality. We use
this property to demonstrate the existence of conserved currents, the invariance of the energy-
momentum tensor and the S-matrix, and also 1n the general construction of the lagrangian.

e.g. 4D, N=8 case  n=28: Sp(56) duality, maximal compact subgroup U(28)
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Maximal Gaillard-Zumino (GZ) electro-magnetic duality is available in even dimensions D=2k
For even k duality group is symplectic Sp(2n), for odd k it is orthogonal SO(n,n).
Supergravities with G/H coset spaces have local H symmetry which can be gauge-fixed in
symmetric, or Iwasawa type gauges
dim|[Sp(56)] > dim|[E7 7)) N=8
dim[Sp(2n)] > dim|Gy] N=5,6

In 4D
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In 6D and 8D GZ duality groups have the same dimension as U-duality groups G, in odd dimensions there
is no GZ duality. Therefore for all D >4 enhanced symmetries are not available to establish
guantum equivalence
This is consistent with UV divergences below critical loop order in all D > 4 supergravities and
absence of these so far in 4D N > 4 supergravities.
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On Lagrangians and gaugings of maximal supergravities

Bernard de Wit, Henning Samtleben, Mario Trigiante (2002)

We discuss the subtleties in four spacetime dimensions, where the ungauged Lagrangians are
not unique and encoded in an E7(7)\Sp(56; R)/GL(28) matrix.

Symplectic Frames and Lagrangians
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The measure of enhanced duality is a dimension of the double quotient

de Wit, Samtleben, Trigiante, 2002

4D

E = GuR)\Sp(2n,,R)/GL(n,,R)
EL° = E;(R)\Sp(56,R)/GL(28,R)

N=8

Non-trivial only in 4D, N=5,6,8

quotient space: G/H

G modulo H
Coset Double quotient
G/H G\X/Y
where G is a group and where X is a group and

H is the subgroup of G G,Y are subgroups of X
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Supergravity | in various gauges, shows that the on-shell S-matrix is gauge-independent. For example it
must be the same in symmetric and Iwasawa gauges. Also supergravity | and Il are equivalent on shell
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The classical dWST result when applied to quantization of local H-symmetry of the D-dimensional
Supergravity | in various gauges, shows that the on-shell S-matrix is gauge-independent. For example it
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It was necessary to have dim[ Sp(2n,)] > dim[ Gy] + dim GL(n,)
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Bona fide Noether symmetry, bona fide Sp(2n, ‘R) current conservation
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for Lorentz covariant 4D maximal supergravity



To promote classical equivalence due to Sp(2n, ‘R) duality of different versions of
supergravities to quantum equivalence one has to address the problem: duality
symmetry acts on
F,, =0,A, —0,A4,
Noether-Gaillard-Zumino Sp(2n,)
and its dual conserved current in 4D supergravity

e (6) - (45 (5)

But in the Lorentz covariant path integral the integration variable is a vector field A,
To claim symplectic duality symmetry via a change of variables in the path integral one has

to use a Hamiltonian path integral of the kind studied since 1969 by Faddeev, Fradkin,
Vilkoviski, Batalin, Tyutin, Henneaux ... l

Bona fide Noether symmetry, bona fide Sp(2n, ‘R) current conservation

Classical on shell Sp(2n, ‘R) equivalence was proven by de Wit, Samtleben, Trigiante
for Lorentz covariant 4D maximal supergravity

Hamiltonian: simplified version of 4D maximal supergravity with vector-scalar action
(no gravity and no fermions, which are duality neutral)
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Start with 4D classical vector-scalar action of DeWit, Hamtleben, Trigiante,
any symplectic frame, any gauge
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classical symmetries for different actions which are the same on shell!

50(5,5) = E5(5)
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Therefore, no proof of quantum equivalence is available in 6D

Consistent with 6D Es) and local SO(5)xSO(5) anomalies and 3-loop UV divergences

RK, 2311.10084, 2402.03453
2402.03453
JHEP06(2024)035

Same for D=5,6,7,8,9


https://arxiv.org/abs/2402.03453
https://doi.org/10.1007/JHEP06(2024)035
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“...in absence of duality and supersymmetry anomalies, which still require a better understanding,
N > 5 perturbative supergravities may be UV finite at higher-loops” RK, 2019

“...in the absence of anomalies, E7 type duality together with supersymmetry, might protect N>5

supergravity from UV divergences” M. Gunaydin and RK, 2019
RK, Yamada, 2020

by 2024 we learned more about anomalies, and about the role of Sp(2n) duality in quantum theory,
strong evidence of absence of anomalies in ‘N > 4 supergravities in 4D

UV divergences in loops below critical order signify local H symmetry, global G symmetry anomaly
and local supersymmetry anomaly

InD >4 New loop computations are not helpful: there is a local H-symmetry anomaly, \/
perturbative supergravities are inconsistent

In 4D New loop computations are highly desirable:

N> 5 if duality enhancement is an explanation of absence of 4D UV Closure or opening?

divergences so far, we will see UV finiteness at higher loops

Sp(56,R) D Er ey, Sp(32,R) D SO*(12), Sp(20,R) D SU(1,5)
N=8 N=6 N=5
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The crucial test of my arguments: is the double quotient in 4D N=5 supergravity non-trivial?
EP = SU(1,5)(R)\Sp(20,R)/GL(10,R) : 210 — 35 — 100 = 75

Yes! A decent amount of enhanced dualities

Cancellation of 82 diagrams supports “no local H-anomaly ”
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Enhanced duality explains enhanced cancellations in N>4 supergravity in 4D

Absence of enhanced duality consistent with the UV divergence in 6D maximal supergravity
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Paul Ehrenfest,

In what way does it become manifest in the fundamental laws of physics that
space has three dimensions?

The Royal Netherlands Academy of Arts and Sciences (KNAW),
Proceedings, 201, 1918, Amsterdam, 1918, pp. 200-209
Communicated by Prof. Dr. H. A. Lorentz

https://dwc.knaw.nl/DL/publications/PU00012213.pdf

Mm
Vir)= —K}(D — 3y D3 ° D >3

In Rz a small disturbance leaves the trajectory finite if the energy is not too great

In Rp.; D >4 the planet falls on the attracting centre or flies away infinitely, there is no elliptic motion.
- All trajectories have the character of spirals.

There is no stable planetary motion at D>4, therefore D=4 is special in classical gravity

Anthropic argument: we leave in D=4 where planetary motion is stable and supports life

String theoretic models of the universe postulate more than three physical space dimensions,
but those beyond three are typically small and unobservable.



Amplitudes 2024

ERC Synergy Project UNIVERSE+

One may wonder why so many experts in amplitudes, quantum gravity, and string theory are
interested in cosmology?

Four decades ago, a prediction was made that galaxies were formed from quantum fluctuations
generated at the universe’s first moments of existence. This was the single most significant
experimentally confirmed achievement that brings together fundamental theoretical particle

physics and cosmology.



Theory and experiment: primordial gravitational waves Targets include: cosmological

a-attractor inflation models
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universe Waiting for new data!

Today'’s talk
Theory versus the data: amplitude loop computations



2007, Lance Dixon call SLAC to Stanford
Hi, Renata, we have found that 3-loop UV divergence in N=8 supergravity cancels
Hi, Lance, in what supergravity gauge you made your computation?

We do not use supergravity: we compute an on-shell S-matrix using unitarity and maximal SYM

= we do not care about the choice of the gauge

But some properties of supergravities might be behind the scene

Why UV divergences cancel sometimes?



Global Local Table from de Wit, Louis, 1998

D G H dim [G] — dim [H]

11 1 1 0—-0=0

10A  SO(1,1)/Z 1 1-0=1

By =R10B  SL(2) SO(2) 3—1=2

Faysay 9 GL(2) SO(2) 4—1=3
—_— 8 Fa(ra) ~ SL(3)xSL(2) U(2) 11—4=7

7 Ei(44) ~ SL(5) USp(4) 24 — 10 = 14
—_— 6 Es(45) ~ SO(5,5) USp(4)x USp(4) 45 — 20 = 25

5 Fe(1e) USp(R) 78 — 36 = 42
—_ 4 Er(47) SU(8) 133 — 63 = 70

3 Fs (1) SO(16) 248 — 120 = 128

Homogeneous scalar manifolds G/H for maximal supergravities in integer dimensions

U'dua“ty: Ed+1 = GU: Ell—D(ll-D)= Ed+1 (d+1) often called Ed+1 d=10-D
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Homogeneous scalar manifolds G/H for maximal supergravities in integer dimensions

U'dua“ty: Ed+1 = GU= Ell-D(ll—D)= Ed+1 (d+1) Often called Ed+]_ d=10-D

We have added blue arrows in D=4,6,8 where GZ type duality is available



| Bosonic 4D supergravity of Cremmer-Julia-de Wit-Nicolai (G/H)ap= E77)/SU(8)
28 Fand 28 G form a 56-dimensional

= 1 “AMTY 4 Le FUEwGHY b=1..8
£| eR+ 4etr((3’MM§ M7+ g€ Fy_,, ¥y a, rep of E7(7)
/ \ In symmetric gauge

28-dimensional rep of SL(8,R) scalar-dependent linear M=VTyy 70 physical scalars in
combination of F and *F complex 35 of SU(8)

| -1 1 4T F (0 T

£2 =g R + Zetl’(l;#Maﬂ'M ) -— §H(2)MH(2) H(ZJ = ..QM*H(Q) H(z, = G 2= 7 0

silver rule

Il Bosonic 4D supergravity derived by Andrianopoli, D’Auria, Ferrara and Lledo’, 2002 from
Sezgin, Nieuwenhuizen 5D supergravity compactified on a circle, 1982, in the limit of vanishing gaugings

133 ———— T8 + 1o +27 2 + 27 ,;
E(),@XSO(].,].)

>D— 4D | | G/H)sp= Eq(/USP(8
Lip = —VR+ gvaﬂgba% + Ve P Nind,a' 0" + ;vagbcdpalgcd + (6/H)sp= Eee/USP(E)
+ VS(Noo)Bu B + 2VS(Noa) Zi, B* + VS(Nas) Zi, 274 +
1
+ 3 P [R(Noo) Buw Boo + 2R(Nao) Buw Zhy + R(Nas) Z, 2, |

uv = po

Decomposition of E; under the subgroup  Egg x SO(1,1)

. . Same field content,
PN ( D+1a7"D+1aV71«)+1> 70 sl maximal number of

Hp \Hpy USp(8) _
local supersymmetries

abelian ideal 56 ———— 27, +27 , +1,3+1 3
E676><SO(1,1)
CJdWN classical action in the SL(8,R) dWST classical action in the Eg

i i . . AD’AFL 1
frame in a symmetric gauge frame in a parabolic gauge — 5D—>4D action



‘N=8 4D extremal black hole attractors Ferrara, RK, 2006

Non-BPS black holes Erny = Eg) x SO (1,1) Relation to 5D —> 4D type Il supergravity

Orbits of Exceptional Groups, Duality and Ferrara, Gunaydin, 1997
BPS States in String Theory

Extremal BPS black hole states coming from string and M theory compactifications to 4D and 5D,
preserving various fractions of the original N=8 supersymmetry, can be invariantly classified in

terms of orbits of the fundamental representations of the exceptional groups E;(7) and Egg

Only 1/8 BPS and non-BPS states have non vanishing entropy and regular horizons, while 1/4
and 1/2 BPS configurations lead to vanishing classical entropy

Ceresole, Ferrara, Gnecchi, Marrani, 2009

4D Non-BPS extremal KK black hole solutions with spontaneously broken N=8
supersymmetry are based on solvable Lie algebra

E7(7) _>E6(6) x SO (1,1); 70 =424+ 27 +1

56 — (27,1) + (1,3) + (27", —1) + (1/,-3)

Instead of a standard 56 — 28 + 28  of SU(8)
N=8 70, 4-fold antisymmetric self-real irrep of SU(8)



N=8 D=4 extremal black holes

RK, Kol 1996
Ferrara, RK, 2006 1 1 1

~ —. = BPS

2 48

1 £

4 complex central charges <5 — P4€ 4
72 BPS |21]= 12;1=123] =] 24]
% BPS |21]> | 25| |z31=124]=0

1/8 BPS |z;| =|z3]|=]24]|=0

iﬂ
Non-BPS Z; = pe 4

and non-BPS



I Bosonic 6D supergravity of Tanii-Begshoeff-Samtleben-Sezgin (G/H)ep= Es5(5)/SO(5)xSO(5)

L=eR+ tetr(3,M™" 9* M) — Le Hy MH3) dHy =0, dx (MHg;y) =0,
Hiy = 0OM x Hp,

silver rule
The kinetic terms for the scalars and 2-form potentials can then be written in the manifestly Eg s
=S0(5, 5)-invariant form. In symmetric gauge ‘M is the S0(5,5)/ SO(5) x SO(5) coset matrix and the
action has a global H-symmetry SO(5) x SO(5) = Sp(4) x Sp(4)

Marcus, 1981: 1-loop Sp(4) x Sp(4) anomaly cancels

There is a local SO(5) x SO(5) H-symmetry and on shell global SO(5,5)

Il Bosonic 6D supergravity derived by Cowdall, 1998, from 7D supergravity of Pernici, Pilch, van
Nieuwenhuizen, 1984, and compactified on a circle, in the limit of vanishing gaugings

It has local SO(5) symmetry and an on shell global SL(5,R) inherited from 7D (G/H)p=SL(5)/SO(5)

1

_ 1 _50 1 2o _ o , :
7D — 6D € 1£6 = R - Ze m(fuu)2 - Ee VIO (11 ]; IH,quI>2 - Ze \/TO(HIZHJ]F;{;/]>2
1 80 1 40 : - 1 >
—eVo I Y 1GLn)? - §em(HIZHJ9FjJ)2 — 50, )2 — P, P*
L e_l E,w/pax\TB IJH H L 6_1 euupa)\TH B IJG
36\/§ 0 prpldloAtJ 6\/§ pvpl P4 ATJ

Same scalar field content, but
TBSS classical action in the Iwasawa gauge —> Cowdall action not vectors, maximal number

of local supersymmetries



Different symplectic frames constructed by dWST were given in the form preserving local H-symmetry

New: bridge between Sp(56) and SU(8) Old: bridge between E; ;) and SU(8)

There is a new 56-bein YR
no longer a group element of Ey; V(z) =E "V(z) ( u'p () UlclIJ<$))
V(z) =
_vinL(l,> uleL(x)
U] AB VI D
Ev\Sp(56;R)/GL(28) — - ( e ) B € Sp(O6R)
VKLAB UKLC’D

i,j SU(S), |,J in E7(7)
Lagrangian in SL(8, R) basis: CJAWN L with local SU(8) H-symmetry

Lagrangian in Eg) basis: dWST L with local SU(8) H-symmetry, related to
CJAWN L by a change of the symplectic frame

Off shell these two theories are different, but on shell equivalent
due to a property of the GZ duality

Take CJAWN £  InSL(8, R) frame and gauge-fix local H-symmetry in a symmetric gauge
e ) : 5D — 4D
Take dWST L In Eg6) frame and gauge-fix local H-symmetry in a

parabolic gauge, get supergravity

Quantum equivalence between standard 4D supergravity and 5D — 4D follows from
classical on shell equivalence of different symplectic frames in 4D supergravity

Gauge-independence



Noether-Gaillard-Zumino Sp(2n,) conserved current in 4D supergravity

Duality symmetry is different from Noether symmetries by the fact that it acts on doublets
of field strength’s rather than on vector fields as the standard Noether symmetry

F A B F
85p(2n) = , c=c", B=BT D=-AT
\ @ CD)\G

~ oL
FNV - 3MAV - (9,”4,“ G’uy — 2W
The action of duality on vector fields is non-local, why duality symmetry is
NOT a Noether symmetry
. .y ) YA 1 [ ~ _

NGZ identitiy o (SIF. )~ SIF e - /(FCF +GBG)) =0

Sp(2n,) conserved current consists of 2 parts: standard Noether current for scalars and Gaillard-

Zumino current

dLy

(GWA A, — F'CA, + G* BB, — FWDBV)
2(8,V)

N | =

T = 5V Jaz =

The classical Lagrangian provides the conservation of the total current,
the Noether current of the scalars and the Gaillard-Zumino current of vectors

OuInaz = Oulgz + 0uy =0

The proof that the Sp(2n, R) current conservation requires that scalar and vector field equa-
tions are satisfied follows from NGZ identity



Why E&M GZ duality is available only in even dimensions and why symplectic or orthogonal

Only in even dimensions D=2k there are both electric and magnetic k-forms

4D, 2-forms
V1.V 6D, 3-forms
8D 4-forms

: 1
electric Fj,, .,

: L] ... _ -1
magnetlc AP — Lo~ LMl -HEVT. I/kF

x

1
Only electric forms are in the Lagrangian Q_k'F *G 4+ L(¢) =L4 (F, *F)

the expression for the k-form G (F, *F) can be solved in terms of electric k-forms
using a constraint imposed on a k-form doublet

a-(f) w()x(f) () e (l)

silver rule
1
—4—k'HT/\/lH + L($)=Ly(H)

*H=OQM*™H = (-1)*""1OMH, H=(QM?(-1D)*'1H (0QM)?=(-1)"1I

even k=D/2 : Sp(2n) _
n is the number of k-forms

odd k=D/2 :SO(n,n)



