Enhanced Duality In 4D supergravity

Renata Kallosh, Stanford

Amplitudes 2024, Princeton, June 10, 2024

1. Gauge-fixing local H symmetry in supergravity

RK, Samtleben, Van Proeyen, KSVP work in progress
2. The role of $\operatorname{Sp}(2 n, \mathcal{R})$ duality in quantum theory

RK work in progress
3. Enhanced duality in 4D supergravity

RK arXiv:2405.20275
And earlier work of RK in 2023,2024
Is 4D maximal supergravity special?

Ward Identities for Superamplitudes,

Abstract

U-duality imposes strong constraints on the structure of UV divergences in supergravity
But Gaillard-Zumino symplectic $\operatorname{Sp}(\mathbf{2 n}, \mathcal{R})$ duality in 4D has more symmetries than U-duality (\mathbf{n} is a number of vectors)

For example, in $\mathcal{N}=8, \mathbf{S p}(56)$ has a dimension of 1596 , whereas the dimension of its U-duality subgroup $\mathrm{E}_{7(7)}$ is 133 .

Abstract

U-duality imposes strong constraints on the structure of UV divergences in supergravity
But Gaillard-Zumino symplectic $\operatorname{Sp}(\mathbf{2 n}, \mathcal{R})$ duality in 4D has more symmetries than U-duality (\mathbf{n} is a number of vectors)

For example, in $\mathcal{N}=8, \mathbf{S p}(56)$ has a dimension of 1596 , whereas the dimension of its U-duality subgroup $\mathrm{E}_{7(7)}$ is 133 .

In comparison, in D > 4 maximal duality symmetry is U-duality, there are no enhanced dualities
We argue that the extra dualities, enhancing U-dualities, determine the properties of perturbative quantum supergravity, being implemented into a Hamiltonian path integral

The presence/absence of enhanced dualities suggests a possible explanation of known amplitude loop computations in D-dimensional $\mathfrak{N}>4$ supergravities and of the special status of $D=4$ in this respect

Abstract

U-duality imposes strong constraints on the structure of UV divergences in supergravity
But Gaillard-Zumino symplectic $\operatorname{Sp}(\mathbf{2 n}, \mathcal{R})$ duality in 4D has more symmetries than U-duality (\mathbf{n} is a number of vectors)

For example, in $\mathcal{N}=8, \mathbf{S p}(56)$ has a dimension of 1596 , whereas the dimension of its U-duality subgroup $\mathrm{E}_{7(7)}$ is 133 .

In comparison, in D > 4 maximal duality symmetry is U-duality, there are no enhanced dualities
We argue that the extra dualities, enhancing U-dualities, determine the properties of perturbative quantum supergravity, being implemented into a Hamiltonian path integral

The presence/absence of enhanced dualities suggests a possible explanation of known amplitude loop computations in D-dimensional $\mathfrak{N}>4$ supergravities and of the special status of $D=4$ in this respect

Enhanced duality explains enhanced cancellations in $\mathfrak{N}>4$ supergravity in 4D

Abstract

U-duality imposes strong constraints on the structure of UV divergences in supergravity
But Gaillard-Zumino symplectic $\operatorname{Sp}(\mathbf{2 n}, \mathcal{R})$ duality in 4D has more symmetries than U-duality (\mathbf{n} is a number of vectors)

For example, in $\mathcal{N}=8, \mathbf{S p}(56)$ has a dimension of 1596 , whereas the dimension of its U-duality subgroup $\mathrm{E}_{7(7)}$ is 133 .

In comparison, in D > 4 maximal duality symmetry is U-duality, there are no enhanced dualities
We argue that the extra dualities, enhancing U-dualities, determine the properties of perturbative quantum supergravity, being implemented into a Hamiltonian path integral

The presence/absence of enhanced dualities suggests a possible explanation of known amplitude loop computations in D-dimensional $\mathfrak{N}>4$ supergravities and of the special status of $D=4$ in this respect

Enhanced duality explains enhanced cancellations in $\mathcal{N}>4$ supergravity in 4D

More 4D supergravity amplitude computations are desirable. New amplitude computations will show that either perturbative 4D supergravity is as bad as $D>4$, or it continues to be special due to 4D enhanced symmetries!

Geometric Superinvariants, candidate counterterms, at the critical loop order

$$
S_{c r}=\kappa^{2\left(L_{c r}-1\right)} \int d^{4 \mathcal{N}} d^{D} x \operatorname{det} E \mathcal{L}(x, \theta) \quad \begin{aligned}
& \text { G/H coset space } \\
& \text { supergravities }
\end{aligned}
$$

Below critical order there is no local H-symmetry, no global G symmetry and no local nonlinear supersymmetry

$$
L_{c r}=\frac{2 \mathcal{N}+n}{(D-2)}, \quad n \geq 0
$$

Geometric Superinvariants, candidate counterterms, at the critical loop order

$$
S_{c r}=\kappa^{2\left(L_{c r}-1\right)} \int d^{4 \mathcal{N}} d^{D} x \operatorname{det} E \mathcal{L}(x, \theta)
$$

G/H coset space supergravities

Below critical order there is no local H-symmetry, no global G symmetry and no local nonlinear supersymmetry

$$
L_{c r}=\frac{2 \mathcal{N}+n}{(D-2)}, \quad n \geq 0
$$

$D=4 \mathfrak{N}>4$ no UV divergences so far

$$
\begin{array}{llll}
D=4, L_{c r}=8: & \kappa^{14} \int d^{4} x D^{10} R^{4}+\ldots & n=0 & \\
D=5, L_{c r}=6: & \kappa^{10} \int d^{5} x D^{12} R^{4}+\ldots & n=2 & L_{U V}=5<L_{c r}=6 \\
D=6, L_{c r}=4: & \kappa^{6} \int d^{6} x D^{10} R^{4}+\ldots & n=0 & L_{U V}=3<L_{c r}=4 \\
D=7, L_{c r}=4: & \kappa^{6} \int d^{7} x D^{14} R^{4}+\ldots & n=4 & L_{U V}=2<L_{c r}=4 \\
D=8, L_{c r}=3: & \kappa^{4} \int d^{8} x D^{12} R^{4}+\ldots & n=3 & L_{U V}=1<L_{c r}=3 \\
D=9, L_{c r}=3: & \kappa^{4} \int d^{9} x D^{15} R^{4}+\ldots & n=5 & L_{U V}=2<L_{c r}=3
\end{array}
$$

Maximal supergravities
Z. Bern et al

Geometric Superinvariants, candidate counterterms, at the critical loop order

$$
S_{c r}=\kappa^{2\left(L_{c r}-1\right)} \int d^{4 \mathcal{N}} d^{D} x \operatorname{det} E \mathcal{L}(x, \theta)
$$

G/H coset space supergravities

Below critical order there is no local H-symmetry, no global G symmetry and no local nonlinear supersymmetry

$$
L_{c r}=\frac{2 \mathcal{N}+n}{(D-2)}, \quad n \geq 0
$$

D=4 $\mathcal{N}>4$ no UV divergences so far

\[

\]

Geometric Superinvariants, candidate counterterms, at the critical loop order

$$
S_{c r}=\kappa^{2\left(L_{c r}-1\right)} \int d^{4 \mathcal{N}} d^{D} x \operatorname{det} E \mathcal{L}(x, \theta)
$$

G/H coset space supergravities

Below critical order there is no local H-symmetry, no global G symmetry and no local nonlinear supersymmetry

$$
\begin{array}{cll}
L_{c r}=\frac{2 \mathcal{N}+n}{(D-2)}, & n \geq 0 & \\
D=4, L_{c r}=8: & \kappa^{14} \int d^{4} x D^{10} R^{4}+\ldots & n=0 \\
D=5, L_{c r}=6: & \kappa^{10} \int d^{5} x D^{12} R^{4}+\ldots & n=2 \\
D=6, L_{c r}=4: & \kappa^{6} \int d^{6} x D^{10} R^{4}+\ldots & n=0 \\
D=7, L_{c r}=4: & \kappa^{6} \int d^{7} x D^{14} R^{4}+\ldots & n=4 \\
D=8, L_{c r}=3: & \kappa^{4} \int d^{8} x D^{12} R^{4}+\ldots & n=3 \\
D=9, L_{c r}=3: & \kappa^{4} \int d^{9} x D^{15} R^{4}+\ldots & n=5 \\
& L_{U V}=3<L_{c r}=6 \\
\text { Maximal supergravities } & & L_{U V}=1<L_{c r}=4 \\
& & L_{U V}=2<L_{c r}=3 \\
D & \text { Z. Bern et al }
\end{array}
$$

Cremmer-Julia 1979 gauge-fixed local $\mathrm{H}=\mathrm{SU}(8)$ of 4D maximal supergravity in the symmetric gauge

They also mention Iwaswa gauge: "The choice of gauge is up to the user; 11D people seem to like the "Iwasawa" or triangular gauge best (we have seen that it has a remarkable polynomiality). The canonical or symmetrical gauge is more familiar

In KSVP in 2024 we have gauge-fixed different versions of D-dimensional supergravities in various gauges.

Cremmer-Julia 1979 gauge-fixed local $\mathrm{H}=\mathrm{SU}(8)$ of 4D maximal supergravity in the symmetric gauge

They also mention Iwaswa gauge: "The choice of gauge is up to the user; 11D people seem to like the "Iwasawa" or triangular gauge best (we have seen that it has a remarkable polynomiality). The canonical or symmetrical gauge is more familiar

In KSVP in 2024 we have gauge-fixed different versions of D-dimensional supergravities in various gauges.

We agree with CJ, the choice of the gauge is up to the user
However, quantum theory is consistent only if these gauges give the same S-matrix: the gauge equivalence of all these versions has to be investigated.

The local H-symmetry must be anomaly-free for the S-matrix to be independent of the user's choice!

A Tale of Two Supergravities in dimension D:

$$
\begin{aligned}
\mathrm{G} & E_{8(8)} \supset E_{7(7)} \supset E_{6(6)} \supset E_{5(5)} \supset E_{4(4)} \supset E_{3(3)} \supset E_{2(2)} \supset E_{1(1)} \supset E_{0(0)} \\
& D=3 \leftarrow D=4 \leftarrow D=5 \leftarrow D=6 \leftarrow D=7 \leftarrow D=8 \leftarrow D=9 \leftarrow D=10 \leftarrow D=11
\end{aligned}
$$

B. Julia

A Tale of Two Supergravities in dimension D:

$$
\begin{array}{ll}
\mathrm{G} & E_{8(8)} \supset E_{7(7)} \supset E_{6(6)} \supset E_{5(5)} \supset E_{4(4)} \supset E_{3(3)} \supset E_{2(2)} \supset E_{1(1)} \supset E_{0(0)} \\
& D=3 \leftarrow D=4 \leftarrow D=5 \leftarrow D=6 \leftarrow D=7 \leftarrow D=8 \leftarrow D=9 \leftarrow D=10 \leftarrow D=11 \quad \text { B. Julia } \\
\quad \text { Group }
\end{array}
$$

It is not widely recognized that there are two different types of supergravities in dimension D , with the same amount of local supersymmetry.

Supergravity I and supergravity II, KSVP
I: Supergravities with global U-duality symmetry G and local H symmetry, where H is the maximal compact subgroup of G, physical scalars in (G/H) $)_{D}$ coset space all scalars in the action in symmetric H -gauge are dilatons, have non-polynomial dependence

4D: Cremmer Julia, 1979 de Wit, Nicolai 1982
6D Tanii,1984 Bergshoeff, Samtleben, Sezgin 2008

A Tale of Two Supergravities in dimension D:

$$
\begin{array}{ll}
\mathrm{G} & E_{8(8)} \supset E_{7(7)} \supset E_{6(6)} \supset E_{5(5)} \supset E_{4(4)} \supset E_{3(3)} \supset E_{2(2)} \supset E_{1(1)} \supset E_{0(0)} \\
& D=3 \leftarrow D=4 \leftarrow D=5 \leftarrow D=6 \leftarrow D=7 \leftarrow D=8 \leftarrow D=9 \leftarrow D=10 \leftarrow D=11 \quad \text { B. Julia } \\
\quad \text { Group }
\end{array}
$$

It is not widely recognized that there are two different types of supergravities in dimension D , with the same amount of local supersymmetry.

Supergravity I and supergravity II, KSVP
I: Supergravities with global U-duality symmetry G and local H symmetry, where H is the maximal compact subgroup of G, physical scalars in (G/H) $)_{D}$ coset space all scalars in the action in symmetric H -gauge are dilatons, have non-polynomial dependence

4D: Cremmer Julia, 1979 de Wit, Nicolai 1982
6D Tanii,1984 Bergshoeff, Samtleben, Sezgin 2008

II: Supergravities dimensionally reduced from higher dimensions D+n, without dualization. These have less global and local symmetries: higher dimensions have smaller U-dualities and smaller maximal subgroups inherited from higher dimensions

Some of the scalars in the action necessarily have polynomial dependence: axions
$D+1 \rightarrow D \quad$ examples
4D: Andrianopoli, D'Auria, Ferrara and Lledo, 2002
6D Cowdall, 1998

I: Supergravities where all scalars in the action in symmetric gauge (dilatons) have non-polynomial dependence

G/H coset space

Marcus, 1985
Global H-symmetry anomalies
natural physical parameterization of the scalar vielbein is where ϕ is in a noncompact part of the algebra
any D

Amplitudes!

I: Supergravities where all scalars in the action in symmetric gauge (dilatons) have non-polynomial dependence

G/H coset space
 any D
Amplitudes!

II: Supergravities where some of the scalars in the action (axions) necessarily have polynomial dependence. Dimensionally reduced ($D+n$) supergravities, no dualization, less symmetries:
no global H -symmetry
Marcus anomaly?

I: Supergravities where all scalars in the action in symmetric gauge (dilatons) have non-polynomial dependence

Global H -symmetry anomalies

G/H coset space

any D
Amplitudes!

II: Supergravities where some of the scalars in the action (axions) necessarily have polynomial dependence. Dimensionally reduced ($D+n$) supergravities, no dualization, less symmetries:
no global H -symmetry

```
Marcus anomaly?
```


For every D

Andrianopoli, D’Auria, Ferrara, Fr'e, Minasian, Trigiante, 1996

$$
D+1 \rightarrow D
$$

Dimension of abelian nilpotent ideals = min number of axionic scalars in any \mathbf{D} in partial Iwasawa gauges translational symmetries of the scalar manifolds

4D supergravity I

Cremmer Julia, 1979 de Wit, Nicolai 1982

$$
\frac{E_{7(7)}}{S U(8)}
$$

$70=133-63$

4D supergravity II

Andrianopoli, D'Auria, Ferrara and Lledo, 2002
Sezgin, Nieuwenhuizen, 1982
Cremmer, Scherk, Schwarz, 1979

5D supergravity compactified on a circle, in the limit of vanishing masses/gaugings

$$
\begin{aligned}
& \frac{E_{7(7)}}{S U(8)} \sim\left(\frac{E_{6(6)}}{U S p(8)}, \sigma, 27_{\text {axions }}\right) \\
& 70 \quad=\quad 78-36+1+27
\end{aligned}
$$

4D supergravity I

Cremmer Julia, 1979 de Wit, Nicolai 1982

$$
\frac{E_{7(7)}}{S U(8)}
$$

$70=133-63$

4D supergravity II

Andrianopoli, D'Auria, Ferrara and Lledo, 2002
Sezgin, Nieuwenhuizen, 1982
Cremmer, Scherk, Schwarz, 1979

5D supergravity compactified on a circle, in the limit of vanishing masses/gaugings

Both have maximal 4D $\mathfrak{N}=8$ local supersymmetry

$$
\begin{aligned}
& \frac{E_{7(7)}}{S U(8)} \sim\left(\frac{E_{6(6)}}{U S p(8)}, \sigma, 27_{\text {axions }}\right) \\
& 70 \quad=\quad 78-36+1+27
\end{aligned}
$$

4D supergravity I

Cremmer Julia, 1979 de Wit, Nicolai 1982

4D supergravity II

Andrianopoli, D’Auria, Ferrara and Lledo, 2002
Sezgin, Nieuwenhuizen, 1982
Cremmer, Scherk, Schwarz, 1979

5D supergravity compactified on a circle, in the limit of vanishing masses/gaugings

Both have maximal 4D $\mathcal{N}=8$ local supersymmetry

4D gauged supergravity I
1/8-BPS $\mathcal{N}=8$ extremal black holes: one of the
$\mathcal{N}=8$ attractors with finite area of the horizon
$\frac{E_{7(7)}}{S U(8)}$
$70=133-63$

$$
\begin{aligned}
& \frac{E_{7(7)}}{S U(8)} \sim\left(\frac{E_{6(6)}}{U S p(8)}, \sigma, 27_{\text {axions }}\right) \\
& 70=78-36+1+27
\end{aligned}
$$

4D gauged supergravity II
Non-BPS $\mathcal{N}=8$ extremal black holes: one of the $\mathcal{N}=8$ attractors with finite area of the horizon

Spontaneously broken $\mathrm{N}=8$ supergravity Cremmer, Scherk, Schwarz, 1979

Symmetric, Iwasawa and partial Iwasawa unitary gauges

In supergravities with physical scalars in G/H coset space, the Lie algebra \mathfrak{g} of a group G can be decomposed into two orthogonal subspaces: the Lie algebra \mathfrak{h} of a group H and a coset space \mathfrak{k}. Here H is the maximal compact group in G .

$$
\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{k} \quad[\mathfrak{h}, \mathfrak{h}] \subset \mathfrak{h} ; \quad[\mathfrak{h}, \mathfrak{k}] \subset \mathfrak{k} ; \quad[\mathfrak{k}, \mathfrak{k}] \subset \mathfrak{h} \oplus \mathfrak{k}
$$

1. Symmetric gauges

These correspond to a generalization of the polar decomposition of a linear matrix into a product of the orthogonal and asymmetric matrix

$$
\mathcal{V}=e^{\phi \cdot \boldsymbol{\Sigma}} e^{\theta \cdot \boldsymbol{\Lambda}}
$$ and Λ are the generators of the H group and Σ are the coset generators.

$$
\text { A symmetric gauge is a choice } \quad \theta=0
$$

$$
\mathcal{V}_{\text {sym }}\left(\phi^{r}\right)=e^{\phi^{r} K_{r}} \in \exp (\mathfrak{k}) \quad r=1, \ldots, n_{s c}
$$

where K_{r} is a basis of the coset algebra
the on shell Lagrangian has global H-invariance

All scalars occur in the action nonpolynomially

Coset
generators are not in a subalgebra of G

Symmetric, Iwasawa and partial Iwasawa unitary gauges

In supergravities with physical scalars in G/H coset space, the Lie algebra \mathfrak{g} of a group G can be decomposed into two orthogonal subspaces: the Lie algebra \mathfrak{h} of a group H and a coset space \mathfrak{k}. Here H is the maximal compact group in G .

$$
\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{k} \quad[\mathfrak{h}, \mathfrak{h}] \subset \mathfrak{h} ; \quad[\mathfrak{h}, \mathfrak{k}] \subset \mathfrak{k} ; \quad[\mathfrak{k}, \mathfrak{k}] \subset \mathfrak{h} \oplus \mathfrak{k}
$$

1. Symmetric gauges

These correspond to a generalization of the polar decomposition of a linear matrix into a product of the orthogonal and asymmetric matrix

$$
\mathcal{V}=e^{\phi \cdot \boldsymbol{\Sigma}} e^{\theta \cdot \boldsymbol{\Lambda}}
$$ and Λ are the generators of the H group and Σ are the coset generators.

$$
\begin{aligned}
& \text { A symmetric gauge is a choice } \quad \theta=0 \\
& \mathcal{V}_{\text {sym }}\left(\phi^{r}\right)=e^{\phi^{r} K_{r}} \in \exp (\mathfrak{k}) \quad r=1, \ldots, n_{s c}
\end{aligned}
$$

where K_{r} is a basis of the coset algebra the on shell Lagrangian has global H-invariance

All scalars occur in the action nonpolynomially

```
Coset
generators
are not in a
subalgebra of G
```

All amplitude computations fit supergravities in symmetric gauges: there is global SU(8) in 4D superamplitudes and global USp(4)xUSp(4) in 6D etc
2. Iwasawa gauge of the local H-symmetry : the right node deleted from the Dynkin diagram of $E_{11-\mathrm{D}}$: in this gauge the theory is related to compactified $\mathrm{D}+1$ supergravity

$E_{5}=D_{5}$

In this gauge there is no global E_{7} or E_{5}, these are broken, at best it is E_{6} or E_{4}
2. Iwasawa gauge of the local H-symmetry : the right node deleted from the Dynkin diagram of $E_{11-\mathrm{D}}$: in this gauge the theory is related to compactified $\mathrm{D}+1$ supergravity

E_{7}

$E_{5}=D_{5}$

In this gauge there is no global E_{7} or E_{5}, these are broken, at best it is E_{6} or E_{4}
3. Partial Iwasawa gauge of local H-symmetry, where the related $D+1$ theory was gaugefixed in the symmetric gauge for $(\mathrm{G} / \mathrm{H})_{\mathrm{D}+1}$ before compactification on a circle of the theory from $\mathrm{D}+1$ to D dimensions was performed.
2. Iwasawa gauge of the local H-symmetry : the right node deleted from the Dynkin diagram of $E_{11-\mathrm{D}}$: in this gauge the theory is related to compactified $\mathrm{D}+1$ supergravity

E_{7}

$E_{5}=D_{5}$

In this gauge there is no global E_{7} or E_{5}, these are broken, at best it is E_{6} or E_{4}
3. Partial Iwasawa gauge of local H-symmetry, where the related D+1 theory was gaugefixed in the symmetric gauge for $(\mathrm{G} / \mathrm{H})_{\mathrm{D}+1}$ before compactification on a circle of the theory from $\mathrm{D}+1$ to D dimensions was performed.

Marcus computation of global H-symmetry anomaly is relevant in symmetric gauges, but not in Iwasawa-type gauges, unless on shell the observables in these gauges are equivalent.

Iwasawa gauge with the right node deleted

These gauges are suitable for addressing the relation between D-dimensional supergravity with (G/H) coset space with the one in D derived from compactified $D+1$ dimension where the coset space is $(G / H)_{D+1}$

These gauges are associated with the Iwasawa decomposition of G with respect to H and with a solvable parametrization of the coset space so that the gauge-fixed vielbein \mathcal{V} belongs to a solvable Lie group

$$
\mathcal{V}_{\text {Iwasawa }}\left(\varphi^{r}\right)=e^{\varphi^{r} T_{r}} \in \exp (\mathscr{S})
$$

Here $\left\{T_{r}\right\}$ is a basis of $\mathscr{S}\left(r=1, \ldots, n_{s c}\right)$
\mathscr{S} generators are in a subalgebra of G

When the theory originates from a higher dimensional supergravity, \mathbf{C} is parametrized by the dilatonic moduli. \mathbf{N} being nilpotent, is parametrized by axionic moduli.
The axionic scalars occur in the action polynomially

Iwasawa gauge with the right node deleted

These gauges are suitable for addressing the relation between D-dimensional supergravity with (G/H) coset space with the one in D derived from compactified $D+1$ dimension where the coset space is $(G / H)_{D+1}$

These gauges are associated with the Iwasawa decomposition of G with respect to H and with a solvable parametrization of the coset space so that the gauge-fixed vielbein \mathcal{V} belongs to a solvable Lie group

$$
\mathcal{V}_{\text {Iwasawa }}\left(\varphi^{r}\right)=e^{\varphi^{r} T_{r}} \in \exp (\mathscr{S})
$$

Here $\left\{T_{r}\right\}$ is a basis of $\mathscr{S}\left(r=1, \ldots, n_{s c}\right)$
\mathscr{S} generators are in a subalgebra of G

When the theory originates from a higher dimensional supergravity, \mathbf{C} is parametrized by the dilatonic moduli. \mathbf{N} being nilpotent, is parametrized by axionic moduli.
The axionic scalars occur in the action polynomially

Partial Iwasawa gauge (not a triangular one)

Example: Sezgin, Nieuwenhuizen, 1982 on spontaneously broken gauged $\mathfrak{N}=8$ in 4D, derived by compactification from 5D with local USp(8)
Andrianopoli, D'Auria, Ferrara and Lledo, 2002
Type II 4D ungauged supergravity

Amplitudes and $\mathrm{E}_{7(7)}$

What is the simplest quantum field theory?
hep-th 0808.1446
Nima Arkani-Hamed, ${ }^{a}$ Freddy Cachazo ${ }^{b}$ and Jared Kaplan ${ }^{a, c}$
... a non-linearly realized $\mathrm{E}_{7(7)}$ symmetry. We elucidate how non-linearly realized symmetries are reflected in the more familiar setting of pion scattering amplitudes, and go on to identify the action of $\mathrm{E}_{7(7)}$ on amplitudes in SUGRA.
$E_{7(7)}$ constraints on counterterms in $\mathcal{N}=8$ supergravity
N. Beisert ${ }^{\text {a }}$, H. Elvang ${ }^{\text {b,c }}$, D. Freedman ${ }^{\text {d,e }}$, M. Kiermaier ${ }^{\mathrm{f}, *}$, A. Morales ${ }^{\mathrm{d}}$, S. Stieberger ${ }^{\text {g }}$

Soft Scalar Limit, direct proof that no $E_{7(7)}(\mathcal{R})$-invariant candidate counterterm exists below 7-loop order
$E_{7(7)}(\mathcal{R})$ protects maximal 4D supergravity up to $\mathrm{L}=6$

Amplitudes and $\mathrm{E}_{7(7)}$

What is the simplest quantum field theory?
hep-th 0808.1446
Nima Arkani-Hamed, ${ }^{a}$ Freddy Cachazo ${ }^{b}$ and Jared Kaplan ${ }^{a, c}$
... a non-linearly realized $\mathrm{E}_{7(7)}$ symmetry. We elucidate how non-linearly realized symmetries are reflected in the more familiar setting of pion scattering amplitudes, and go on to identify the action of $\mathrm{E}_{7(7)}$ on amplitudes in SUGRA.
$E_{7(7)}$ constraints on counterterms in $\mathcal{N}=8$ supergravity
N. Beisert ${ }^{\text {a }}$, H. Elvang ${ }^{\text {b,c }}$, D. Freedman ${ }^{\text {d,e }}$, M. Kiermaier ${ }^{\mathrm{f}, *}$, A. Morales ${ }^{\mathrm{d}}$, S. Stieberger ${ }^{\mathrm{g}}$

Soft Scalar Limit, direct proof that no $E_{7(7)}(\mathcal{R})$-invariant candidate counterterm exists below 7-loop order
$E_{7(7)}(\mathcal{R})$ protects maximal 4D supergravity up to $L=6$

Freedman, RK, Yamada, SSL, analogous results for $\mathcal{N}=5,6,8$, all groups of type E7, soft scalar limit does not explain $\mathfrak{N}=5, L=4$ cancellation of UV infinities in 82 diagrams

$$
\text { analog of } \mathcal{N}=8, L=7
$$

$E_{7(7)}(\mathcal{R}): \quad$ Amplitudes, single scalar soft limit

RK and Soroush, 2008
Gauge-fixed maximal supergravity in a symmetric gauge:

$$
\mathscr{V}=\mathscr{V}^{\dagger} \quad \mathscr{V}=\exp \left(\begin{array}{cc}
0 & a \phi_{i j k l} \\
a \bar{\phi}^{m n p q} & 0
\end{array}\right) \quad \phi_{i j k l}=\frac{1}{24} \eta \epsilon_{i j k l m n p q} \bar{\phi}^{m n p q} \quad y_{i j, k l} \equiv \phi_{i j m n}\left(\frac{\tanh \left(\sqrt{\frac{1}{8} \bar{\phi} \phi}\right.}{\sqrt{\bar{\phi} \phi}}\right)_{k l}^{m n}
$$

non-linearly realized exact continuous $\mathrm{E}_{7(7)}(\mathcal{R})$

$$
\delta y \equiv y^{\prime}-y=\Sigma+y \bar{\Lambda}-\Lambda y-y \bar{\Sigma} y
$$

$$
\begin{gathered}
\text { linear } \mathrm{E}_{7(7)}(\mathcal{R}) \text { symmetry } \\
\delta \phi_{i j k l}=\Sigma_{i j k l}
\end{gathered}
$$

$E_{7(7)}(\mathcal{R}): \quad$ Amplitudes, single scalar soft limit

RK and Soroush, 2008
Gauge-fixed maximal supergravity in a symmetric gauge:

$$
\begin{array}{lll}
\mathscr{V}=\mathscr{V}^{\dagger} & \mathscr{V}=\exp \left(\begin{array}{cc}
0 & a \phi_{i j l l} \\
a \bar{\phi}^{m n p q} & 0
\end{array}\right) \quad \phi_{i j k l}=\frac{1}{24} \epsilon_{i j j l l m n p q q} \bar{m}^{m n p q} & y_{i, k l} \equiv \phi_{i j m n}\left(\frac{\tanh \left(\sqrt{\frac{1}{8} \bar{\phi} \phi}\right.}{\sqrt{\bar{\phi} \phi}}\right)^{m n} \\
\text { non-linearly realized exact continuous } \mathrm{E}_{7(7)}(\mathcal{R}) & \text { linear } & \mathrm{E}_{7(7)}(\mathcal{R}) \text { symmetry } \\
\delta y \equiv y^{\prime}-y=\Sigma+y \bar{\Lambda}-\Lambda y-y \bar{\Sigma} y, & \delta \phi_{i j k l}=\Sigma_{i j k l}
\end{array}
$$

Today's talk is about more symmetries in maximal 4D supergravity and their role in quantum theory Gaillard-Zumino 1981

$$
\begin{aligned}
S p(56, \mathbb{R}) & \supset E_{7(7)}(\mathbb{R}) \\
1596 & \gg 133
\end{aligned}
$$

$E_{7(7)}(R)$: Amplitudes, single scalar soft limit

RK and Soroush, 2008
Gauge-fixed maximal supergravity in a symmetric gauge:

$$
\begin{aligned}
& \mathscr{V}=\mathscr{V}^{\dagger} \quad \mathscr{V}=\exp \left(\begin{array}{cc}
0 & a \phi_{i j k l} \\
a \bar{\phi}^{m n p q} & 0
\end{array}\right) \quad \phi_{i j k l}=\frac{1}{24} \eta \epsilon_{i j k l m n p q} \bar{\phi}^{m n p q} \quad y_{i j, k l} \equiv \phi_{i j m n}\left(\frac{\tanh \left(\sqrt{\frac{1}{8} \bar{\phi} \phi}\right.}{\sqrt{\bar{\phi} \phi}}\right)^{m n} \\
& \text { non-linearly realized exact continuous } \mathrm{E}_{7(7)}(\mathcal{R}) \\
& \begin{array}{c}
\delta l
\end{array} \quad \text { linear } \quad \mathrm{E}_{7(7)}(\mathcal{R}) \text { symmetry } \\
& \begin{array}{l}
\text { constant } \\
\text { shift }
\end{array} \quad \operatorname{SU}(8) \quad \text { nonlinear }
\end{aligned}
$$

Today's talk is about more symmetries in maximal 4D supergravity and their role in quantum theory

Gaillard-Zumino 1981

$$
\begin{aligned}
S p(56, \mathbb{R}) & \supset E_{7(7)}(\mathbb{R}) \\
1596 & \gg 133
\end{aligned}
$$

now
dimension of the
double quotient
1596-133-784=679
enhanced duality

Computational data from amplitudes

4D Three-Loop Superfiniteness of $N=8$ Supergravity Bern, Carrasco, Dixon, Johansson, Kosower , Roiban, 2007

The Ultraviolet Behavior of $N=8$ Supergravity at 4D Four Loops, $E_{7(7)}(\mathcal{R})$ Bern, Carrasco, Dixon, Johansson, Roiban, 2009

Ultraviolet Properties of $N=8$ Supergravity at Five Loops
Bern, Carrasco, Wei-Ming Chen, Edison, Johansson, Parra-Martinez, Roiban, Mao Zenga, 2018
the five-loop critical dimension where ultraviolet divergences first occur is $D_{c}=24 / 5>4$

Soft scalar limit

Soft scalar limit
$\mathrm{E}_{7(7)}(\mathrm{R})$
Soft scalar limit

Beisert, Elvang,
Freedman, Kiermaier,
Morales, Stieberger
Up to $L=6$ for $\mathcal{N}=8$

Computational data from amplitudes

4D Three-Loop Superfiniteness of $\mathrm{N}=8$ Supergravity
Bern, Carrasco, Dixon, Johansson, Kosower , Roiban, 2007
$\mathrm{E}_{\text {(7) }}(\mathcal{R})$

Soft scalar limit

The Ultraviolet Behavior of $N=8$ Supergravity at 4D Four Loops, $E_{7(7)}(\mathcal{R})$ Bern, Carrasco, Dixon, Johansson, Roiban, 2009

Ultraviolet Properties of $\mathrm{N}=8$ Supergravity at Five Loops
Bern, Carrasco, Wei-Ming Chen, Edison, Johansson, Parra-Martinez, Roiban, Mao Zenga, 2018
the five-loop critical dimension where ultraviolet divergences first occur is $D_{c}=24 / 5>4$

4-loop 4D $\mathfrak{N}=5$ UV finiteness
Bern, Davies, Dennen, 2014
$L_{\mathrm{cr}}=5$

Soft scalar limit of E7 type group $\operatorname{SU}(1,5)$ does not explain the cancellation! Freedman, RK, Yamada

$$
E_{7(7)}(\mathcal{R})
$$

Soft scalar limit

Soft scalar limit

Beisert, Elvang,
Freedman, Kiermaier,
Morales, Stieberger
Up to $L=6$ for $\mathcal{N}=8$

Computational data from amplitudes

4D Three-Loop Superfiniteness of $N=8$ Supergravity
Bern, Carrasco, Dixon, Johansson, Kosower , Roiban, 2007

$$
\mathrm{E}_{(7)}(\mathcal{R})
$$

Soft scalar limit

The Ultraviolet Behavior of $\mathrm{N}=8$ Supergravity at 4D Four Loops, $\mathrm{E}_{7(7)}(\mathcal{R})$ Bern, Carrasco, Dixon, Johansson, Roiban, 2009

Ultraviolet Properties of $\mathrm{N}=8$ Supergravity at Five Loops
Bern, Carrasco, Wei-Ming Chen, Edison, Johansson, Parra-Martinez, Roiban, Mao Zenga, 2018
the five-loop critical dimension where ultraviolet divergences first occur is $D_{c}=24 / 5>4$

Soft scalar limit

$$
E_{7(7)}(\mathcal{R})
$$

Soft scalar limit

Beisert, Elvang, Freedman, Kiermaier, Morales, Stieberger Up to $L=6$ for $\mathcal{N}=8$

Soft scalar limit of E7 type

4-loop 4D $\mathfrak{N}=5$ UV finiteness
Bern, Davies, Dennen, 2014
$L_{c r}=5$
group $S U(1,5)$ does not explain the cancellation! Freedman, RK, Yamada

Manifest Ultraviolet Behavior for the ThreeLoop Four-Point Amplitude of $\mathrm{N}=86 \mathrm{D}$
Supergravity,
Bern, Carrasco, Dixon, Johansson Roiban, 2008

$$
\begin{gathered}
\mathrm{E}_{5(5)}(\mathcal{R}) \\
M_{4}^{\mathcal{N}=(2,2) \mathrm{L}=3}=\frac{1}{\epsilon} \frac{5 \zeta_{3}}{(4 \pi)^{9}}\left(\frac{\kappa}{2}\right)^{4} \delta^{6}\left(\sum_{i=1}^{4} p_{i}^{A B}\right) \delta^{8}\left(\sum_{i=1}^{4} q_{i}^{A, I}\right) \delta^{8}\left(\sum_{i=1}^{4} \tilde{q}_{i, \hat{A}}^{\hat{I}}\right) s_{12} s_{23} s_{34}
\end{gathered}
$$

Bernard Julia: Group Disintegrations

Chain of U-dualities

$$
\begin{aligned}
& E_{8(8)} \supset E_{7(7)} \supset E_{6(6)} \supset E_{5(5)} \supset E_{4(4)} \supset E_{3(3)} \supset E_{2(2)} \supset E_{1(1)} \supset E_{0(0)} \\
& D=3 \leftarrow D=4 \leftarrow D=5 \leftarrow D=6 \leftarrow D=7 \leftarrow D=8 \leftarrow D=9 \leftarrow D=10 \leftarrow D=11
\end{aligned}
$$

Electro-magnetic dualities are dimension dependent
Gaillard-Zumino, 1981, Tanii, 1984

--	$\operatorname{Sp}(56)$	--	$E_{5(5)}$	--	$E_{3(3)}$	--	--	--

Bernard Julia: Group Disintegrations

Chain of U-dualities

$$
E_{8(8)} \supset E_{7(7)} \supset E_{6(6)} \supset E_{5(5)} \supset E_{4(4)} \supset E_{3(3)} \supset E_{2(2)} \supset E_{1(1)} \supset E_{0(0)}
$$

$$
D=3 \leftarrow D=4 \leftarrow D=5 \leftarrow D=6 \leftarrow D=7 \leftarrow D=8 \leftarrow D=9 \leftarrow D=10 \leftarrow D=11
$$

Electro-magnetic dualities are dimension dependent
Gaillard-Zumino, 1981, Tanii, 1984

--	$S p(56)$	--	$E_{5(5)}$	--	$E_{3(3)}$	--	--	--

A question is: Why $\mathrm{E}_{7(7)}$ symmetry appears to protect, so far, maximal 4D supergravity from UV divergences, whereas $\mathrm{E}_{6(6),} \mathrm{E}_{5(5)}, \mathrm{E}_{4(4)}, \mathrm{E}_{3(3)}, \mathrm{E}_{2(2)}$ already failed to do so in all $\mathrm{D}>4$ maximal supergravities where there are UV divergences at some loop order?

Bernard Julia: Group Disintegrations

$$
E_{8(8)} \supset E_{7(7)} \supset E_{6(6)} \supset E_{5(5)} \supset E_{4(4)} \supset E_{3(3)} \supset E_{2(2)} \supset E_{1(1)} \supset E_{0(0)}
$$

$$
D=3 \leftarrow D=4 \leftarrow D=5 \leftarrow D=6 \leftarrow D=7 \leftarrow D=8 \leftarrow D=9 \leftarrow D=10 \leftarrow D=11
$$

Electro-magnetic dualities are dimension dependent
Gaillard-Zumino, 1981, Tanii, 1984

--	$S p(56)$	--	$E_{5(5)}$	--	$E_{3(3)}$	--	--	--

A question is: Why $\mathrm{E}_{7(7)}$ symmetry appears to protect, so far, maximal 4D supergravity from UV divergences, whereas $E_{6(6)}, E_{5(5)}, E_{4(4)}, E_{3(3),}, E_{2(2)}$ already failed to do so in all $D>4$ maximal supergravities where there are UV divergences at some loop order?
A quick answer is: Only in 4D dimension a maximal duality, including GZ duality, is bigger than that of U-duality:

$$
\operatorname{dim}[\mathrm{Sp}(56)] \gg \operatorname{dim}\left[\mathrm{E}_{7(7)}\right]
$$

Only in 4D one can argue quantum equivalence of different gauges in supergravities, using these extra symmetries

Was undervalued

DUALITY ROTATIONS FOR INTERACTING FIELDS ${ }^{\star}$

Mary K. GAILLARD
LAPP, Annecy-le-Vieux, France

Bruno ZUMINO
CERN, Geneva, Switzerland

Received 26 May 1981

We study the properties of interacting field theories which are invariant under duality rotations which transform a vector field strength into its dual. We consider non-abelian duality groups and find that the largest group for n interacting field strengths is the non-compact $\mathrm{Sp}(2 n, \mathrm{R})$, which has $\mathrm{U}(n)$ as its maximal compact subgroup. We show that invariance of the equations of motion requires that the lagrangian change in a particular way under duality. We use this property to demonstrate the existence of conserved currents, the invariance of the energymomentum tensor and the S-matrix, and also in the general construction of the lagrangian.

e. g. $4 \mathrm{D}, \mathcal{N}=8$ case	$\mathrm{n}=28: \mathrm{Sp}(56)$ duality, maximal compact subgroup $\mathrm{U}(28)$
	1596
	$\mathrm{E}_{7(7)}$
	133

Was undervalued

DUALITY ROTATIONS FOR INTERACTING FIELDS* ${ }^{\star}$

Mary K. GAILLARD
LAPP, Annecy-le-Vieux, France

Bruno ZUMINO
CERN, Geneva, Switzerland

Received 26 May 1981

We study the properties of interacting field theories which are invariant under duality rotations which transform a vector field strength into its dual. We consider non-abelian duality groups and find that the largest group for n interacting field strengths is the non-compact $\mathrm{Sp}(2 n, \mathrm{R})$, which has $\mathrm{U}(n)$ as its maximal compact subgroup. We show that invariance of the equations of motion requires that the lagrangian change in a particular way under duality. We use this property to demonstrate the existence of conserved currents, the invariance of the energymomentum tensor and the S-matrix, and also in the general construction of the lagrangian.

e. g. $4 D, \mathcal{N}=8$ case	$n=28: S p(56)$ duality, maximal compact subgroup
	1596
	$E_{7(7)}$
	133

What is new?
GZ duality in all D + data from amplitudes

Maximal Gaillard-Zumino (GZ) electro-magnetic duality is available in even dimensions $\mathbf{D}=\mathbf{2 k}$

For even k duality group is symplectic $\operatorname{Sp}(2 n)$, for odd k it is orthogonal $S O(n, n)$.

Supergravities with G/H coset spaces have local H symmetry which can be gauge-fixed in
symmetric, or Iwasawa type gauges

In 4D

$$
\begin{aligned}
\operatorname{dim}[S p(56)] \gg \operatorname{dim}\left[E_{7(7)}\right] & \mathbb{N}=8 \\
\operatorname{dim}[S p(2 n)] \gg \operatorname{dim}\left[G_{U}\right] & \mathbb{N}=5,6
\end{aligned}
$$

Maximal Gaillard-Zumino (GZ) electro-magnetic duality is available in even dimensions $\mathbf{D}=\mathbf{2 k}$

For even k duality group is symplectic $\operatorname{Sp}(2 n)$, for odd k it is orthogonal $S O(n, n)$.

Supergravities with G/H coset spaces have local H symmetry which can be gauge-fixed in
symmetric, or Iwasawa type gauges

$$
\begin{aligned}
\operatorname{dim}[S p(56)] & \gg \operatorname{dim}\left[E_{7(7)}\right] \\
\operatorname{dim}[S p(2 n)] & \gg \operatorname{dim}\left[G_{U}\right]
\end{aligned} \quad \mathbb{N}=5=5
$$

These extra symmetries allow to establish on shell equivalence of theories quantized in various gauges in supergravities I and II (to be described).

Maximal Gaillard-Zumino (GZ) electro-magnetic duality is available in even dimensions $\mathbf{D}=\mathbf{2 k}$

For even k duality group is symplectic $\operatorname{Sp}(2 n)$, for odd k it is orthogonal $S O(n, n)$.

Supergravities with G/H coset spaces have local H symmetry which can be gauge-fixed in
symmetric, or Iwasawa type gauges

$$
\begin{aligned}
\operatorname{dim}[S p(56)] & \gg \operatorname{dim}\left[E_{7(7)}\right]
\end{aligned} \quad \begin{aligned}
& \mathbb{N}=8 \\
& \operatorname{dim}[S p(2 n)]
\end{aligned}>\operatorname{dim}\left[G_{U}\right] \quad \mathrm{N}=5,6
$$

These extra symmetries allow to establish on shell equivalence of theories quantized in various gauges in supergravities I and II (to be described).

In 6D and 8D GZ duality groups have the same dimension as U-duality groups G, in odd dimensions there is no GZ duality. Therefore for all D > 4 enhanced symmetries are not available to establish quantum equivalence
This is consistent with UV divergences below critical loop order in all D > 4 supergravities and absence of these so far in 4D N > 4 supergravities.

Maximal Gaillard-Zumino (GZ) electro-magnetic duality is available in even dimensions $\mathrm{D}=\mathbf{2 k}$
For even k duality group is symplectic $\mathrm{Sp}(2 \mathrm{n})$, for odd k it is orthogonal $\mathrm{SO}(\mathrm{n}, \mathrm{n})$.
Supergravities with G / H coset spaces have local H symmetry which can be gauge-fixed in
symmetric, or Iwasawa type gauges
$\ln 4 D$

$$
\begin{aligned}
& \operatorname{dim}[S p(56)] \mathbb{\operatorname { d i m }}\left[E_{7(7)}\right] \\
& \operatorname{Nim}=8 \\
& {[S p(2 n)] \gg \operatorname{dim}\left[G_{U}\right] } \mathbb{N}=5,6
\end{aligned}
$$

These extra symmetries allow to establish on shell equivalence of theories quantized in various gauges in supergravities I and II (to be described).

In 6D and 8D GZ duality groups have the same dimension as U-duality groups G , in odd dimensions there is no GZ duality. Therefore for all $\mathrm{D}>4$ enhanced symmetries are not available to establish quantum equivalence
This is consistent with UV divergences below critical loop order in all D > 4 supergravities and absence of these so far in 4D $\mathrm{N}>4$ supergravities.

$$
\begin{array}{llll}
D=4, L_{c r}=8: & \kappa^{14} \int d^{4} x D^{10} R^{4}+\ldots & n=0 & \\
D=5, L_{c r}=6: & \kappa^{10} \int d^{5} x D^{12} R^{4}+\ldots & n=2 & L_{U V}=5<L_{c r}=6 \\
D=6, L_{c r}=4: & \kappa^{6} \int d^{6} x D^{10} R^{4}+\ldots & n=0 & L_{U V}=3<L_{c r}=4 \\
D=7, L_{c r}=4: & \kappa^{6} \int d^{7} x D^{14} R^{4}+\ldots & n=4 & L_{U V}=2<L_{c r}=4 \\
D=8, L_{c r}=3: & \kappa^{4} \int d^{8} x D^{12} R^{4}+\ldots & n=3 & L_{U V}=1<L_{c r}=3 \\
D=9, L_{c r}=3: & \kappa^{4} \int d^{9} x D^{15} R^{4}+\ldots & n=5 & L_{U V}=2<L_{c r}=3
\end{array}
$$

Maximal Gaillard-Zumino (GZ) electro-magnetic duality is available in even dimensions $\mathbf{D}=\mathbf{2 k}$
For even k duality group is symplectic $\mathrm{Sp}(2 \mathrm{n})$, for odd k it is orthogonal $\mathrm{SO}(\mathrm{n}, \mathrm{n})$.
Supergravities with G / H coset spaces have local H symmetry which can be gauge-fixed in
symmetric, or Iwasawa type gauges

In 4D

$$
\begin{aligned}
& \operatorname{dim}[S p(56)]>\operatorname{dim}\left[E_{7(7)}\right] \\
& \operatorname{Nim}=8 \\
& \operatorname{dim}[S p(2 n)]>\operatorname{dim}\left[G_{U}\right]
\end{aligned} \quad \mathcal{N}=5,6
$$

These extra symmetries allow to establish on shell equivalence of theories quantized in various gauges in supergravities I and II (to be described).

In 6D and 8D GZ duality groups have the same dimension as U-duality groups G, in odd dimensions there is no GZ duality. Therefore for all D>4 enhanced symmetries are not available to establish quantum equivalence
This is consistent with UV divergences below critical loop order in all D > 4 supergravities and absence of these so far in 4D $\mathrm{N}>4$ supergravities.

$$
\begin{array}{llll}
D=4, L_{c r}=8: & \kappa^{14} \int d^{4} x D^{10} R^{4}+\ldots & n=0 & \\
D=5, L_{c r}=6: & \kappa^{10} \int d^{5} x D^{12} R^{4}+\ldots & n=2 & L_{U V}=5<L_{c r}=6 \\
D=6, L_{c r}=4: & \kappa^{6} \int d^{6} x D^{10} R^{4}+\ldots & n=0 & L_{U V}=3<L_{c r}=4 \\
D=7, L_{c r}=4: & \kappa^{6} \int d^{7} x D^{14} R^{4}+\ldots & n=4 & L_{U V}=2<L_{c r}=4 \\
D=8, L_{c r}=3: & \kappa^{4} \int d^{8} x D^{12} R^{4}+\ldots & n=3 & L_{U V}=1<L_{c r}=3 \\
D=9, L_{c r}=3: & \kappa^{4} \int d^{9} x D^{15} R^{4}+\ldots & n=5 & L_{U V}=2<L_{c r}=3
\end{array}
$$

On Lagrangians and gaugings of maximal supergravities

Bernard de Wit, Henning Samtleben, Mario Trigiante (2002)

We discuss the subtleties in four spacetime dimensions, where the ungauged Lagrangians are not unique and encoded in an E (7) $\backslash \mathrm{Sp}(56 ; \mathrm{R}) / \mathrm{GL}(28)$ matrix.

Symplectic Frames and Lagrangians

The measure of enhanced duality is a dimension of the double quotient
quotient space: G/H
G modulo H
Coset Double quotient
G/H
where G is a group and
H is the subgroup of G
where X is a group and
G, Y are subgroups of X

The measure of enhanced duality is a dimension of the double quotient de Wit, Samtleben, Trigiante, 2002

$$
\begin{aligned}
& E^{4 D}=G_{U}(\mathbb{R}) \backslash S p\left(2 n_{v}, \mathbb{R}\right) / G L\left(n_{v}, \mathbb{R}\right) \\
& E_{\mathcal{N}=8}^{4 D}=E_{7(7)}(\mathbb{R}) \backslash S p(56, \mathbb{R}) / G L(28, \mathbb{R})
\end{aligned}
$$

quotient space: G/H
G modulo H
Coset
G/H
where G is a group and H is the subgroup of G

Double quotient
$G \backslash X / Y$
where X is a group and G, Y are subgroups of X

The measure of enhanced duality is a dimension of the double quotient de Wit, Samtleben, Trigiante, 2002

$$
\begin{aligned}
& E^{4 D}=G_{U}(\mathbb{R}) \backslash S p\left(2 n_{v}, \mathbb{R}\right) / G L\left(n_{v}, \mathbb{R}\right) \\
& E_{\mathcal{N}=8}^{4 D}=E_{7(7)}(\mathbb{R}) \backslash S p(56, \mathbb{R}) / G L(28, \mathbb{R})
\end{aligned}
$$

Non-trivial only in 4D, $\mathbf{N = 5 , 6 , 8}$
quotient space: G/H
G modulo H
Coset
G/H
where G is a group and H is the subgroup of G

Double quotient $G \backslash X / Y$
where X is a group and G, Y are subgroups of X

Combining theory with amplitude data one can understand the pattern, explain the data, make predictions
1.Faddeev-Fradkin-Tyutin-Batalin-Vilkovisky-Henneaux, Hamiltonian path integral for gauge theories, 1969
2.Gaillard-Zumino duality, 1981
3.Andrianopoli, D'Auria, Ferrara, Fr'e, Minasian, Trigiante: D+1-->D, abelian ideal, 1996
4.DeWit, Samtleben, Trigiante: symplectic frames, classical equivalence of various supergravities, 2002
6.Henneaux, Julia, Lekeu and Ranjbar: Hamiltonian formulation of duality, 2017
6. Bern et al: amplitude computations in D-dimensional supergravity, 1998
7. Recent RK (with Yamada, Samtleben, Van Proeyen),
and most recent: $\mathrm{Sp}(2 \mathrm{n}, \mathcal{R})$-invariant path integral, 2023-2024

Combining theory with amplitude data one can understand the pattern, explain the data, make predictions
1.Faddeev-Fradkin-Tyutin-Batalin-Vilkovisky-Henneaux, Hamiltonian path integral for gauge theories, 1969
2.Gaillard-Zumino duality, 1981
3.Andrianopoli, D'Auria, Ferrara, Fr'e, Minasian, Trigiante: D+1-->D, abelian ideal, 1996
4.DeWit, Samtleben, Trigiante: symplectic frames, classical equivalence of various supergravities, 2002
6.Henneaux, Julia, Lekeu and Ranjbar: Hamiltonian formulation of duality, 2017
6. Bern et al: amplitude computations in D-dimensional supergravity, 1998
7. Recent RK (with Yamada, Samtleben, Van Proeyen),
and most recent: $\mathrm{Sp}(2 \mathrm{n}, \mathcal{R})$-invariant path integral, 2023-2024

We apply classical results in $2,3,4$ to quantization of supergravity I, II in different gauges using Hamiltonian path integral based on 1,4 . We argue that the gauge-independence of the on shell S-matrix is possible due to existence of the non-trivial double quotient in 4D $\mathfrak{N}>4$

$$
E^{4 D}=G_{U}(\mathbb{R}) \backslash S p\left(2 n_{v}, \mathbb{R}\right) / G L\left(n_{v}, \mathbb{R}\right)
$$

all $\operatorname{Sp}(2 n)$ symmetries, modulo scalar and vector reparametrization

Combining theory with amplitude data one can understand the pattern, explain the data, make predictions
1.Faddeev-Fradkin-Tyutin-Batalin-Vilkovisky-Henneaux, Hamiltonian path integral for gauge theories, 1969
2.Gaillard-Zumino duality, 1981
3.Andrianopoli, D'Auria, Ferrara, Fr'e, Minasian, Trigiante: D+1-->D, abelian ideal, 1996
4.DeWit, Samtleben, Trigiante: symplectic frames, classical equivalence of various supergravities, 2002
6.Henneaux, Julia, Lekeu and Ranjbar: Hamiltonian formulation of duality, 2017
6. Bern et al: amplitude computations in D-dimensional supergravity, 1998
7. Recent RK (with Yamada, Samtleben, Van Proeyen),
and most recent: $\mathrm{Sp}(2 \mathrm{n}, \mathcal{R})$-invariant path integral, 2023-2024

We apply classical results in $2,3,4$ to quantization of supergravity I, II in different gauges using Hamiltonian path integral based on 1,4 . We argue that the gauge-independence of the on shell S-matrix is possible due to existence of the non-trivial double quotient in 4D $\mathcal{N}>4$

$$
E^{4 D}=G_{U}(\mathbb{R}) \backslash S p\left(2 n_{v}, \mathbb{R}\right) / G L\left(n_{v}, \mathbb{R}\right)
$$

all $\mathrm{Sp}(2 \mathrm{n})$ symmetries, modulo scalar and vector reparametrization

No evidence for local H-symmetry or global G-symmetry anomaly, and no UV divergences so far For all $D>4$ the corresponding quotient is trivial since the dimension of the maximal duality group, Including GZ duality, is the same as dimension of the U-duality group G_{u}
$E^{D>4}=\mathrm{I} \quad$ double quotient is trivial

Combining theory with amplitude data one can understand the pattern, explain the data, make predictions
1.Faddeev-Fradkin-Tyutin-Batalin-Vilkovisky-Henneaux, Hamiltonian path integral for gauge theories, 1969
2.Gaillard-Zumino duality, 1981
3.Andrianopoli, D'Auria, Ferrara, Fr'e, Minasian, Trigiante: D+1-->D, abelian ideal, 1996
4.DeWit, Samtleben, Trigiante: symplectic frames, classical equivalence of various supergravities, 2002
6.Henneaux, Julia, Lekeu and Ranjbar: Hamiltonian formulation of duality, 2017
6. Bern et al: amplitude computations in D-dimensional supergravity, 1998
7. Recent RK (with Yamada, Samtleben, Van Proeyen),
and most recent: $\operatorname{Sp}(2 n, \mathcal{R})$-invariant path integral, 2023-2024

We apply classical results in $2,3,4$ to quantization of supergravity I, II in different gauges using Hamiltonian path integral based on 1,4 . We argue that the gauge-independence of the on shell S-matrix is possible due to existence of the non-trivial double quotient in 4D $\mathfrak{N}>4$

$$
E^{4 D}=G_{U}(\mathbb{R}) \backslash S p\left(2 n_{v}, \mathbb{R}\right) / G L\left(n_{v}, \mathbb{R}\right)
$$

all $\mathrm{Sp}(2 \mathrm{n})$ symmetries, modulo scalar and vector reparametrization

No evidence for local H-symmetry or global G-symmetry anomaly, and no UV divergences so far For all $D>4$ the corresponding quotient is trivial since the dimension of the maximal duality group, Including GZ duality, is the same as dimension of the U-duality group G_{u}

$$
E^{D>4}=\mathrm{I} \quad \text { double quotient is trivial }
$$

No proof available of the gauge-independence of the on shell S-matrix on the choice of the gauge or supergravity type. Evidence that in all D > 4 there are UV divergences below critical loop \Rightarrow anomalies

How to prove the on shell gauge-independence of the S-matrix? Why $\operatorname{Sp}(2 n, \mathcal{R})$ helps? We use the classical construction of

$$
\left.\binom{F}{G}\right|_{\text {on shell }}=\binom{d \mathcal{A}}{d \mathcal{B}}
$$ de Wit, Samtleben, Trigianteof 4D symplectic frames

Use 4D GZ duality transformation to change the Lagrangian

$$
\begin{array}{ll}
\delta L=\frac{1}{4}(F C \tilde{F}+G B \tilde{G}) \quad & F_{\mu \nu}=\partial_{\mu} \mathcal{A}_{\nu}-\partial_{\nu} \mathcal{A}_{\mu} \\
& \tilde{G}_{\mu \nu}=2 \frac{\partial L}{\partial F^{\mu \nu}}
\end{array}
$$

$$
\delta_{S p\left(2 n_{v}\right)}\binom{F}{G}=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)\binom{F}{G}
$$

$B=0$ manifest electric subgroup G e

How to prove the on shell gauge-independence of the S-matrix?
$\left.\binom{F}{G}\right|_{\text {on shell }}=\binom{d \mathcal{A}}{d \mathcal{B}}$ Why $\operatorname{Sp}(2 n, \mathcal{R})$ helps? We use the classical construction of de Wit, Samtleben, Trigianteof 4D symplectic frames

Use 4D GZ duality transformation to change the Lagrangian

$$
\delta L=\frac{1}{4}(F C \tilde{F}+G B \tilde{G}) \quad \begin{aligned}
& F_{\mu \nu}=\partial_{\mu} \mathcal{A}_{\nu}-\partial_{\nu} \mathcal{A}_{\mu} \\
& \tilde{G}_{\mu \nu}=2 \frac{\partial L}{\partial F^{\mu \nu}}
\end{aligned}
$$

$$
\delta_{S p\left(2 n_{v}\right)}\binom{F}{G}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\binom{F}{G}
$$

$B=0$ manifest electric subgroup G_{e}
Different symplectic frames: different manifest global symmetries of the Lagrangian G_{e} Off shell Lagrangians are different in different frames: however, on shell equations of motion and BI are the same and have a U-duality G_{U} symmetry
$\mathcal{N}=8$ example $\begin{array}{llcl}\text { The } S L(8, R) \text { symplectic frame: } G_{e}=S L(8, R) & \text { Cremmer et al } & 4 D \text { action I } \\ & \text { The } E_{6(6)} \text { symplectic frame : } & G_{e}=E_{6(6)} & 5 D\end{array} \rightarrow \quad 4 \mathrm{D}$ action II

How to prove the on shell gauge-independence of the S-matrix? Why $\operatorname{Sp}(2 n, \mathcal{R})$ helps? We use the classical construction of de Wit, Samtleben, Trigianteof 4D symplectic frames

Use 4D GZ duality transformation to change the Lagrangian

$$
\begin{array}{ll}
\delta L=\frac{1}{4}(F C \tilde{F}+G B \tilde{G}) \quad & F_{\mu \nu}=\partial_{\mu} \mathcal{A}_{\nu}-\partial_{\nu} \mathcal{A}_{\mu} \\
& \tilde{G}_{\mu \nu}=2 \frac{\partial L}{\partial F^{\mu \nu}}
\end{array}
$$

$$
\delta_{S p\left(2 n_{v}\right)}\binom{F}{G}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\binom{F}{G}
$$

$B=0$ manifest electric subgroup G_{e}
Different symplectic frames: different manifest global symmetries of the Lagrangian G_{e} Off shell Lagrangians are different in different frames: however, on shell equations of motion and BI are the same and have a U-duality G_{U} symmetry

$\mathcal{N}=8$ example | The $\mathrm{SL}(8, R)$ symplectic frame: $\mathrm{G}_{\mathrm{e}}=\mathrm{SL}(8, \mathrm{R})$ |
| :--- |\quad Cremmer et al 4 D action I

dWST: A finite transformation of L from one symplectic frame to the other can be performed using a symplectic matrix E defined modulo redefinitions of the scalar and vector fields in the action
double quotient space

$$
E^{4 D}=G_{U}(\mathbb{R}) \backslash S p\left(2 n_{v}, \mathbb{R}\right) / G L\left(n_{v}, \mathbb{R}\right)
$$

$$
E_{\mathcal{N}=8}^{4 D}=E_{7(7)}(\mathbb{R}) \backslash S p(56, \mathbb{R}) / G L(28, \mathbb{R})
$$

How to prove the on shell gauge-independence of the S-matrix?
$\left.\binom{F}{G}\right|_{\text {on shell }}=\binom{d \mathcal{A}}{d \mathcal{B}}$ Why $\operatorname{Sp}(2 n, \mathcal{R})$ helps? We use the classical construction of de Wit, Samtleben, Trigianteof 4D symplectic frames

Use 4D GZ duality transformation to change the Lagrangian

$$
\delta L=\frac{1}{4}(F C \tilde{F}+G B \tilde{G}) \quad \begin{aligned}
& F_{\mu \nu}=\partial_{\mu} \mathcal{A}_{\nu}-\partial_{\nu} \mathcal{A}_{\mu} \\
& \\
& \tilde{G}_{\mu \nu}=2 \frac{\partial L}{\partial F^{\mu \nu}}
\end{aligned}
$$

$$
\delta_{S p\left(2 n_{v}\right)}\binom{F}{G}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\binom{F}{G}
$$

$B=0$ manifest electric subgroup G_{e}
Different symplectic frames: different manifest global symmetries of the Lagrangian G_{e}
Off shell Lagrangians are different in different frames: however, on shell equations of motion and BI are the same and have a U-duality G_{U} symmetry
$\mathcal{N}=8$ example $\begin{aligned} & \text { The } S L(8, R) \text { symplectic frame: } \mathrm{G}_{\mathrm{e}}=\mathrm{SL}(8, R) \\ & \text { The } \mathrm{E}_{6(6)} \text { symplectic frame : } \quad \mathrm{G}_{\mathrm{e}}=\mathrm{E}_{6(6)}\end{aligned}$
dWST: A finite transformation of L from one symplectic frame to the other can be performed using a symplectic matrix E defined modulo redefinitions of the scalar and vector fields in the action
double quotient space

$$
E^{4 D}=G_{U}(\mathbb{R}) \backslash S p\left(2 n_{v}, \mathbb{R}\right) / G L\left(n_{v}, \mathbb{R}\right)
$$

$$
E_{\mathcal{N}=8}^{4 D}=E_{7(7)}(\mathbb{R}) \backslash S p(56, \mathbb{R}) / G L(28, \mathbb{R})
$$

The classical dWST result when applied to quantization of local H-symmetry of the D-dimensional Supergravity I in various gauges, shows that the on-shell S-matrix is gauge-independent. For example it must be the same in symmetric and Iwasawa gauges. Also supergravity I and II are equivalent on shell

How to prove the on shell gauge-independence of the S-matrix?
$\left.\binom{F}{G}\right|_{\text {on shell }}=\binom{d \mathcal{A}}{d \mathcal{B}}$ Why $\operatorname{Sp}(2 n, \mathcal{R})$ helps? We use the classical construction of de Wit, Samtleben, Trigianteof 4D symplectic frames

Use 4D GZ duality transformation to change the Lagrangian

$$
\delta L=\frac{1}{4}(F C \tilde{F}+G B \tilde{G}) \quad \begin{aligned}
& F_{\mu \nu}=\partial_{\mu} \mathcal{A}_{\nu}-\partial_{\nu} \mathcal{A}_{\mu} \\
& \\
& \tilde{G}_{\mu \nu}=2 \frac{\partial L}{\partial F^{\mu \nu}}
\end{aligned}
$$

$$
\delta_{S p\left(2 n_{v}\right)}\binom{F}{G}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\binom{F}{G}
$$

$B=0$ manifest electric subgroup G_{e}
Different symplectic frames: different manifest global symmetries of the Lagrangian G_{e}
Off shell Lagrangians are different in different frames: however, on shell equations of motion and BI are the same and have a U-duality G_{U} symmetry
$\mathcal{N}=8$ example $\begin{aligned} & \text { The } S L(8, R) \text { symplectic frame: } \mathrm{G}_{\mathrm{e}}=\mathrm{SL}(8, R)\end{aligned} \begin{gathered}\text { Cremmer et al } \\ \text { The } \mathrm{E}_{6(6)} \text { symplectic frame : } \\ \mathrm{G}_{\mathrm{e}}=\mathrm{E}_{6(6)}\end{gathered} \quad 5 \mathrm{D}$ action I
dWST: A finite transformation of L from one symplectic frame to the other can be performed using a symplectic matrix E defined modulo redefinitions of the scalar and vector fields in the action
double quotient space

$$
\begin{gathered}
E^{4 D}=G_{U}(\mathbb{R}) \backslash S p\left(2 n_{v}, \mathbb{R}\right) / G L\left(n_{v}, \mathbb{R}\right) \\
E_{\mathcal{N}=8}^{4 D}=E_{7(7)}(\mathbb{R}) \backslash S p(56, \mathbb{R}) / G L(28, \mathbb{R})
\end{gathered}
$$

The classical dWST result when applied to quantization of local H-symmetry of the D-dimensional Supergravity I in various gauges, shows that the on-shell S-matrix is gauge-independent. For example it must be the same in symmetric and Iwasawa gauges. Also supergravity I and II are equivalent on shell
It was necessary to have

$$
\operatorname{dim}\left[\operatorname{Sp}\left(2 n_{v}\right)\right]>\operatorname{dim}\left[G_{u}\right]+\operatorname{dim} G L\left(n_{v}\right)
$$

To promote classical equivalence due to $\operatorname{Sp}(2 n, \mathcal{R})$ duality of different versions of supergravities to quantum equivalence one has to address the problem: duality symmetry acts on

$$
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}
$$

and its dual Noether-Gaillard-Zumino $\operatorname{Sp}\left(2 n_{v}\right)$ conserved current in 4D supergravity

$$
\delta_{S p\left(2 n_{v}\right)}\binom{F}{G}=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)\binom{F}{G}
$$

To promote classical equivalence due to $\operatorname{Sp}(2 n, \mathcal{R})$ duality of different versions of supergravities to quantum equivalence one has to address the problem: duality symmetry acts on

$$
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}
$$

and its dual conserved current in 4D supergravity

$$
\delta_{S p\left(2 n_{v}\right)}\binom{F}{G}=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)\binom{F}{G}
$$

But in the Lorentz covariant path integral the integration variable is a vector field A_{μ}

To promote classical equivalence due to $\operatorname{Sp}(2 n, \mathcal{R})$ duality of different versions of supergravities to quantum equivalence one has to address the problem: duality symmetry acts on

$$
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}
$$

and its dual conserved current in 4D supergravity

$$
\delta_{S p\left(2 n_{v}\right)}\binom{F}{G}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\binom{F}{G}
$$

But in the Lorentz covariant path integral the integration variable is a vector field A_{μ}
To claim symplectic duality symmetry via a change of variables in the path integral one has to use a Hamiltonian path integral of the kind studied since 1969 by Faddeev, Fradkin, Vilkoviski, Batalin, Tyutin, Henneaux ...

Bona fide Noether symmetry, bona fide $\operatorname{Sp}(2 n, \mathcal{R})$ current conservation

To promote classical equivalence due to $\operatorname{Sp}(2 n, \mathcal{R})$ duality of different versions of supergravities to quantum equivalence one has to address the problem: duality symmetry acts on

$$
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}
$$

and its dual conserved current in 4D supergravity

$$
\delta_{S p\left(2 n_{v}\right)}\binom{F}{G}=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)\binom{F}{G}
$$

But in the Lorentz covariant path integral the integration variable is a vector field A_{μ}
To claim symplectic duality symmetry via a change of variables in the path integral one has to use a Hamiltonian path integral of the kind studied since 1969 by Faddeev, Fradkin, Vilkoviski, Batalin, Tyutin, Henneaux ...

$$
\downarrow
$$

Bona fide Noether symmetry, bona fide $\operatorname{Sp}(2 n, \mathcal{R})$ current conservation
Classical on shell $\operatorname{Sp}(2 n, \mathcal{R})$ equivalence was proven by de Wit, Samtleben, Trigiante for Lorentz covariant 4D maximal supergravity

To promote classical equivalence due to $\operatorname{Sp}(2 n, \mathcal{R})$ duality of different versions of supergravities to quantum equivalence one has to address the problem: duality symmetry acts on

$$
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}
$$

Noether-Gaillard-Zumino Sp($\mathbf{2} \mathbf{n}_{\mathrm{v}}$)
and its dual conserved current in 4D supergravity

$$
\delta_{S p\left(2 n_{v}\right)}\binom{F}{G}=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)\binom{F}{G}
$$

But in the Lorentz covariant path integral the integration variable is a vector field A_{μ}
To claim symplectic duality symmetry via a change of variables in the path integral one has to use a Hamiltonian path integral of the kind studied since 1969 by Faddeev, Fradkin, Vilkoviski, Batalin, Tyutin, Henneaux ...

\downarrow

Bona fide Noether symmetry, bona fide $\operatorname{Sp}(2 n, \mathcal{R})$ current conservation
Classical on shell $\operatorname{Sp}(2 n, \mathcal{R})$ equivalence was proven by de Wit, Samtleben, Trigiante for Lorentz covariant 4D maximal supergravity

Hamiltonian: simplified version of 4D maximal supergravity with vector-scalar action (no gravity and no fermions, which are duality neutral)

Start with 4D classical vector-scalar action of DeWit, Hamtleben, Trigiante, any symplectic frame, any gauge

$$
\begin{gathered}
e^{-1} \mathcal{L}_{\text {vector }}=-\frac{1}{4} \mathcal{I}_{I J}(\phi) F_{\mu \nu}^{I} F^{J \mu \nu}+\frac{1}{8} \mathcal{R}_{I J}(\phi) \varepsilon^{\mu \nu \rho \sigma} F_{\mu \nu}^{I} F_{\rho \sigma}^{J} \\
\mathcal{L} \rightarrow \mathcal{L}^{\prime}+G B \tilde{G}
\end{gathered}
$$

Using double quotient and electric subgroups of $\mathrm{Sp}(56, \mathcal{R})$ on shell symmetry

Start with 4D classical vector-scalar action of DeWit, Hamtleben, Trigiante, any symplectic frame, any gauge

$$
\begin{gathered}
e^{-1} \mathcal{L}_{\text {vector }}=-\frac{1}{4} \mathcal{I}_{I J}(\phi) F_{\mu \nu}^{I} F^{J \mu \nu}+\frac{1}{8} \mathcal{R}_{I J}(\phi) \varepsilon^{\mu \nu \rho \sigma} F_{\mu \nu}^{I} F_{\rho \sigma}^{J} \\
\mathcal{L} \rightarrow \mathcal{L}^{\prime}+G B \tilde{G}
\end{gathered}
$$

Using double quotient and electric subgroups of $\operatorname{Sp}(56, \mathcal{R})$ on shell symmetry

Henneaux, Julia, Lekeu, Ranjbar, 2017

Start with 4D classical vector-scalar action of DeWit, Hamtleben, Trigiante, any symplectic frame, any gauge

$$
\begin{gathered}
e^{-1} \mathcal{L}_{\text {vector }}=-\frac{1}{4} \mathcal{I}_{I J}(\phi) F_{\mu \nu}^{I} F^{J \mu \nu}+\frac{1}{8} \mathcal{R}_{I J}(\phi) \varepsilon^{\mu \nu \rho \sigma} F_{\mu \nu}^{I} F_{\rho \sigma}^{J} \\
\mathcal{L} \rightarrow \mathcal{L}^{\prime}+G B \tilde{G}
\end{gathered}
$$

Using double quotient and electric subgroups of $\operatorname{Sp}(56, \mathcal{R})$ on shell symmetry

Henneaux, Julia, Lekeu, Ranjbar, 2017

Switch to canonical variables and the $1^{\text {st }}$ order action with manifest off-shell $\mathrm{Sp}(56, \mathcal{R})$ symmetry

$$
\mathrm{S}=\int d^{4} x\left(\Omega_{M N} \mathcal{B}^{M i} \dot{\mathcal{A}}_{i}^{N}-\mathcal{M}_{M N}(\phi) \mathcal{B}_{i}^{M} \mathcal{B}^{N i}\right)
$$

$$
\Omega=\left(\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right)
$$

Start with 4D classical vector-scalar action of DeWit, Hamtleben, Trigiante, any symplectic frame, any gauge

$$
\begin{gathered}
e^{-1} \mathcal{L}_{\text {vector }}=-\frac{1}{4} \mathcal{I}_{I J}(\phi) F_{\mu \nu}^{I} F^{J \mu \nu}+\frac{1}{8} \mathcal{R}_{I J}(\phi) \varepsilon^{\mu \nu \rho \sigma} F_{\mu \nu}^{I} F_{\rho \sigma}^{J} \\
\mathcal{L} \rightarrow \mathcal{L}^{\prime}+G B \tilde{G}
\end{gathered}
$$

Using double quotient and electric subgroups of $\mathrm{Sp}(56, \mathcal{R})$ on shell symmetry

Henneaux, Julia, Lekeu, Ranjbar, 2017

Switch to canonical variables and the $1^{\text {st }}$ order action with manifest off-shell $\mathrm{Sp}(56, \mathcal{R})$ symmetry

$$
\mathrm{S}=\int d^{4} x\left(\Omega_{M N} \mathcal{B}^{M i} \dot{\mathcal{A}}_{i}^{N}-\mathcal{M}_{M N}(\phi) \mathcal{B}_{i}^{M} \mathcal{B}^{N i}\right) \quad \Omega=\left(\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right)
$$

RK, hep-th 2024
Path integral (assuming no gravity and no fermions)

$$
\left.\langle\text { out }| S \mid \text { in }\rangle=\int \exp \left(\frac{i}{h} \int d^{4} x\left(P_{i}^{T} \dot{Q}^{i}-P^{T} \mathcal{M}(\phi) P\right)\right)\right) \prod_{x} \delta\left(P^{i}-P^{i}(Q)\right) d P_{i}(x) d Q^{i}(t)
$$

Start with 4D classical vector-scalar action of DeWit, Hamtleben, Trigiante, any symplectic frame, any gauge

$$
\begin{gathered}
e^{-1} \mathcal{L}_{\text {vector }}=-\frac{1}{4} \mathcal{I}_{I J}(\phi) F_{\mu \nu}^{I} F^{J \mu \nu}+\frac{1}{8} \mathcal{R}_{I J}(\phi) \varepsilon^{\mu \nu \rho \sigma} F_{\mu \nu}^{I} F_{\rho \sigma}^{J} \\
\mathcal{L} \rightarrow \mathcal{L}^{\prime}+G B \tilde{G}
\end{gathered}
$$

Using double quotient and electric subgroups of $\operatorname{Sp}(56, \mathcal{R})$ on shell symmetry

Henneaux, Julia, Lekeu, Ranjbar, 2017

Switch to canonical variables and the $1^{\text {st }}$ order action with manifest off-shell $\mathrm{Sp}(56, \mathcal{R})$ symmetry

$$
\mathrm{S}=\int d^{4} x\left(\Omega_{M N} \mathcal{B}^{M i} \dot{\mathcal{A}}_{i}^{N}-\mathcal{M}_{M N}(\phi) \mathcal{B}_{i}^{M} \mathcal{B}^{N i}\right) \quad \Omega=\left(\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right)
$$

RK, hep-th 2024
Path integral (assuming no gravity and no fermions)

$$
\left.\langle\text { out }| S \mid \text { in }\rangle=\int \exp \left(\frac{i}{h} \int d^{4} x\left(P_{i}^{T} \dot{Q}^{i}-P^{T} \mathcal{M}(\phi) P\right)\right)\right) \prod_{x} \delta\left(P^{i}-P^{i}(Q)\right) d P_{i}(x) d Q^{i}(t)
$$

$\mathrm{Sp}(56, \mathrm{R})$ symmetry of the path integral: canonical change of variables scanning various supergravities I and II, various symplectic frames, various local H-symmetry gauges

Start with 4D classical vector-scalar action of DeWit, Hamtleben, Trigiante, any symplectic frame, any gauge

$$
\begin{gathered}
e^{-1} \mathcal{L}_{\text {vector }}=-\frac{1}{4} \mathcal{I}_{I J}(\phi) F_{\mu \nu}^{I} F^{J \mu \nu}+\frac{1}{8} \mathcal{R}_{I J}(\phi) \varepsilon^{\mu \nu \rho \sigma} F_{\mu \nu}^{I} F_{\rho \sigma}^{J} \\
\mathcal{L} \rightarrow \mathcal{L}^{\prime}+G B \tilde{G}
\end{gathered}
$$

Using double quotient and electric subgroups of $\operatorname{Sp}(56, \mathcal{R})$ on shell symmetry

Henneaux, Julia, Lekeu, Ranjbar, 2017

Switch to canonical variables and the $1^{\text {st }}$ order action with manifest off-shell $\mathrm{Sp}(56, \mathcal{R})$ symmetry

$$
\mathrm{S}=\int d^{4} x\left(\Omega_{M N} \mathcal{B}^{M i} \dot{\mathcal{A}}_{i}^{N}-\mathcal{M}_{M N}(\phi) \mathcal{B}_{i}^{M} \mathcal{B}^{N i}\right) \quad \Omega=\left(\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right)
$$

RK, hep-th 2024
Path integral (assuming no gravity and no fermions)

$$
\left.\langle\text { out }| S \mid \text { in }\rangle=\int \exp \left(\frac{i}{h} \int d^{4} x\left(P_{i}^{T} \dot{Q}^{i}-P^{T} \mathcal{M}(\phi) P\right)\right)\right) \prod_{x} \delta\left(P^{i}-P^{i}(Q)\right) d P_{i}(x) d Q^{i}(t)
$$

Sp(56, R) symmetry of the path integral: canonical change of variables scanning various supergravities I and II, various symplectic frames, various local H-symmetry gauges

Local measure of integration: current consensus: one can discount the local measure of integration $\delta^{4}(0)$ in the functional integrals

Start with 4D classical vector-scalar action of DeWit, Hamtleben, Trigiante, any symplectic frame, any gauge

$$
\begin{gathered}
e^{-1} \mathcal{L}_{\text {vector }}=-\frac{1}{4} \mathcal{I}_{I J}(\phi) F_{\mu \nu}^{I} F^{J \mu \nu}+\frac{1}{8} \mathcal{R}_{I J}(\phi) \varepsilon^{\mu \nu \rho \sigma} F_{\mu \nu}^{I} F_{\rho \sigma}^{J} \\
\mathcal{L} \rightarrow \mathcal{L}^{\prime}+G B \tilde{G}
\end{gathered}
$$

Using double quotient and electric subgroups of $\operatorname{Sp}(56, \mathcal{R})$ on shell symmetry

Henneaux, Julia, Lekeu, Ranjbar, 2017

Switch to canonical variables and the $1^{\text {st }}$ order action with manifest off-shell $\mathrm{Sp}(56, \mathcal{R})$ symmetry

$$
\mathrm{S}=\int d^{4} x\left(\Omega_{M N} \mathcal{B}^{M i} \dot{\mathcal{A}}_{i}^{N}-\mathcal{M}_{M N}(\phi) \mathcal{B}_{i}^{M} \mathcal{B}^{N i}\right) \quad \Omega=\left(\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right)
$$

RK, hep-th 2024
Path integral (assuming no gravity and no fermions)

$$
\left.\langle\text { out }| S \mid \text { in }\rangle=\int \exp \left(\frac{i}{h} \int d^{4} x\left(P_{i}^{T} \dot{Q}^{i}-P^{T} \mathcal{M}(\phi) P\right)\right)\right) \prod_{x} \delta\left(P^{i}-P^{i}(Q)\right) d P_{i}(x) d Q^{i}(t)
$$

$\mathrm{Sp}(56, \mathrm{R})$ symmetry of the path integral: canonical change of variables scanning various supergravities I and II, various symplectic frames, various local H-symmetry gauges

Local measure of integration: current consensus: one can discount the local measure of integration $\delta^{4}(0)$ in the functional integrals

How to prove quantum equivalence of the 6D supergravity in different gauges and supergravity I and II?

This would be the proof that a local $\mathrm{H}=\mathrm{SO}(5) \times \mathrm{SO}(5)$ and global $\mathrm{E}_{5(5)}$ symmetries have no anomalies: a symmetric and Iwasawa gauges give the same S-matrix

There is no non-trivial quotient $\operatorname{SO}(5,5) / E_{5(5)}$, so there are no different frames, no extra classical symmetries for different actions which are the same on shell!

$$
\mathrm{SO}(5,5)=\mathrm{E}_{5(5)}
$$

How to prove quantum equivalence of the 6D supergravity in different gauges and supergravity I and II?

This would be the proof that a local $\mathrm{H}=\mathrm{SO}(5) \times \mathrm{SO}(5)$ and global $\mathrm{E}_{5(5)}$ Symmetries have no anomalies: a symmetric and Iwasawa gauges give the same S-matrix

There is no non-trivial quotient $\operatorname{SO}(5,5) / E_{5(5)}$, so there are no different frames, no extra classical symmetries for different actions which are the same on shell!

$$
\mathrm{SO}(5,5)=\mathrm{E}_{5(5)}
$$

Therefore, no proof of quantum equivalence is available in 6D

Consistent with $6 \mathrm{D} \mathrm{E}_{5(5)}$ and local $\mathrm{SO}(5) \times \mathrm{SO}(5)$ anomalies and 3-loop UV divergences

How to prove quantum equivalence of the 6D supergravity in different gauges and supergravity I and II?

This would be the proof that a local $\mathrm{H}=\mathrm{SO}(5) \times \mathrm{SO}(5)$ and global $\mathrm{E}_{5(5)}$ symmetries have no anomalies: a symmetric and Iwasawa gauges give the same S-matrix

There is no non-trivial quotient $\mathrm{SO}(5,5) / \mathrm{E}_{5(5)}$, so there are no different frames, no extra classical symmetries for different actions which are the same on shell!

$$
S O(5,5)=E_{5(5)}
$$

Therefore, no proof of quantum equivalence is available in 6D

Consistent with $6 \mathrm{D} \mathrm{E}_{5(5)}$ and local $\mathrm{SO}(5) \times \mathrm{xO}(5)$ anomalies and 3-loop UV divergences

Same for D=5,6,7,8,9
"... in absence of duality and supersymmetry anomalies, which still require a better understanding, $\mathrm{N} \geq 5$ perturbative supergravities may be UV finite at higher-loops"

RK, 2019
"...in the absence of anomalies, E7 type duality together with supersymmetry, might protect $\mathcal{N} \geq 5$ supergravity from UV divergences"
M. Gunaydin and RK, 2019

RK, Yamada, 2020
"... in absence of duality and supersymmetry anomalies, which still require a better understanding, $\mathrm{N} \geq 5$ perturbative supergravities may be UV finite at higher-loops" RK, 2019
"...in the absence of anomalies, E7 type duality together with supersymmetry, might protect $\mathcal{N} \geq 5$ supergravity from UV divergences"
M. Gunaydin and RK, 2019

RK, Yamada, 2020
by 2024 we learned more about anomalies, and about the role of $\mathrm{Sp}(2 \mathrm{n})$ duality in quantum theory, strong evidence of absence of anomalies in $\mathcal{N}>4$ supergravities in 4D

UV divergences in loops below critical order signify local H symmetry, global G symmetry anomaly and local supersymmetry anomaly
"... in absence of duality and supersymmetry anomalies, which still require a better understanding, $N \geq 5$ perturbative supergravities may be UV finite at higher-loops"

RK, 2019
"...in the absence of anomalies, E7 type duality together with supersymmetry, might protect $\mathcal{N} \geq 5$
supergravity from UV divergences"
M. Gunaydin and RK, 2019

RK, Yamada, 2020
by 2024 we learned more about anomalies, and about the role of $\mathrm{Sp}(2 \mathrm{n})$ duality in quantum theory, strong evidence of absence of anomalies in $\mathcal{N}>4$ supergravities in 4D

UV divergences in loops below critical order signify local H symmetry, global G symmetry anomaly and local supersymmetry anomaly
$\ln \mathrm{D}>4$
New loop computations are not helpful: there is a local H-symmetry anomaly, perturbative supergravities are inconsistent
"... in absence of duality and supersymmetry anomalies, which still require a better understanding, $\mathrm{N} \geq 5$ perturbative supergravities may be UV finite at higher-loops" RK, 2019
"...in the absence of anomalies, E7 type duality together with supersymmetry, might protect $\mathbb{N} \geq 5$ supergravity from UV divergences"
M. Gunaydin and RK, 2019

RK, Yamada, 2020
by 2024 we learned more about anomalies, and about the role of $\mathrm{Sp}(2 \mathrm{n})$ duality in quantum theory, strong evidence of absence of anomalies in $\mathcal{N}>4$ supergravities in 4D

UV divergences in loops below critical order signify local H symmetry, global G symmetry anomaly and local supersymmetry anomaly

In D > 4
New loop computations are not helpful: there is a local H-symmetry anomaly, perturbative supergravities are inconsistent

In 4D
$\mathcal{N} \geq 5$

New loop computations are highly desirable:
if duality enhancement is an explanation of absence of 4D UV divergences so far, we will see UV finiteness at higher loops

Closure or opening?
"... in absence of duality and supersymmetry anomalies, which still require a better understanding, $\mathrm{N} \geq 5$ perturbative supergravities may be UV finite at higher-loops"

RK, 2019
"...in the absence of anomalies, E 7 type duality together with supersymmetry, might protect $\mathcal{N} \geq 5$
supergravity from UV divergences"
M. Gunaydin and RK, 2019

RK, Yamada, 2020
by 2024 we learned more about anomalies, and about the role of $\mathrm{Sp}(2 \mathrm{n})$ duality in quantum theory, strong evidence of absence of anomalies in $\mathcal{N}>4$ supergravities in 4D

UV divergences in loops below critical order signify local H symmetry, global G symmetry anomaly and local supersymmetry anomaly

In D > 4
New loop computations are not helpful: there is a local H-symmetry anomaly, perturbative supergravities are inconsistent

In 4D
New loop computations are highly desirable:
$\mathcal{N} \geq 5$ if duality enhancement is an explanation of absence of 4D UV Closure or opening?

$$
\begin{array}{ccc}
S p(56, \mathbb{R}) \supset E_{7(7)}, \quad S p(32, \mathbb{R}) \supset S O^{*}(12), \quad S p(20, \mathbb{R}) \supset S U(1,5) \\
\mathfrak{N}=8 & \mathcal{N}=6 & \mathcal{N}=5
\end{array}
$$

The crucial test of my arguments: is the double quotient in 4D $\mathcal{N}=5$ supergravity non-trivial?

$$
E_{\mathcal{N}=5}^{4 D}=S U(1,5)(\mathbb{R}) \backslash S p(20, \mathbb{R}) / G L(10, \mathbb{R}): \quad 210-35-100=75
$$

The crucial test of my arguments: is the double quotient in 4D $\mathcal{N}=5$ supergravity non-trivial?

$$
E_{\mathcal{N}=5}^{4 D}=S U(1,5)(\mathbb{R}) \backslash S p(20, \mathbb{R}) / G L(10, \mathbb{R}): \quad 210-35-100=75
$$

Yes! A decent amount of enhanced dualities
Cancellation of 82 diagrams supports "no local H-anomaly "

The crucial test of my arguments: is the double quotient in 4D $\mathcal{N}=5$ supergravity non-trivial?

$$
E_{\mathcal{N}=5}^{4 D}=S U(1,5)(\mathbb{R}) \backslash S p(20, \mathbb{R}) / G L(10, \mathbb{R}): \quad 210-35-100=75
$$

Yes! A decent amount of enhanced dualities
Cancellation of 82 diagrams supports "no local H-anomaly"

Enhanced duality explains enhanced cancellations in $\mathcal{N}>4$ supergravity in 4D

The crucial test of my arguments: is the double quotient in 4D $\mathcal{N}=5$ supergravity non-trivial?

$$
E_{\mathcal{N}=5}^{4 D}=S U(1,5)(\mathbb{R}) \backslash S p(20, \mathbb{R}) / G L(10, \mathbb{R}): \quad 210-35-100=75
$$

Yes! A decent amount of enhanced dualities
Cancellation of 82 diagrams supports "no local H-anomaly "

Enhanced duality explains enhanced cancellations in $\mathfrak{N}>4$ supergravity in 4D
Absence of enhanced duality consistent with the UV divergence in 6D maximal supergravity

$$
M_{4}^{\mathcal{N}=(2,2) \mathrm{L}=3}=\frac{1}{\underline{\epsilon}} \frac{5 \zeta_{3}}{(4 \pi)^{9}}\left(\frac{\kappa}{2}\right)^{4} \delta^{6}\left(\sum_{i=1}^{4} p_{i}^{A B}\right) \delta^{8}\left(\sum_{i=1}^{4} q_{i}^{A, I}\right) \delta^{8}\left(\sum_{i=1}^{4} \tilde{q}_{i, \hat{A}}^{\hat{I}}\right) s_{12} s_{23} s_{34}
$$

Back up slides

Paul Ehrenfest,

In what way does it become manifest in the fundamental laws of physics that space has three dimensions?

The Royal Netherlands Academy of Arts and Sciences (KNAW),
Proceedings, 20 I, 1918, Amsterdam, 1918, pp. 200-209
Communicated by Prof. Dr. H. A. Lorentz
https://dwc.knaw.nl/DL/publications/PU00012213.pdf

$$
V(r)=-\kappa \frac{M m}{(D-3) r^{D-3}}, \quad D>3
$$

In R_{3} a small disturbance leaves the trajectory finite if the energy is not too great
In $R_{D-1} D>4$ the planet falls on the attracting centre or flies away infinitely, there is no elliptic motion.

- All trajectories have the character of spirals.

There is no stable planetary motion at $D>4$, therefore $D=4$ is special in classical gravity
Anthropic argument: we leave in $D=4$ where planetary motion is stable and supports life

String theoretic models of the universe postulate more than three physical space dimensions, but those beyond three are typically small and unobservable.

Amplitudes 2024

ERC Synergy Project UNIVERSE+

One may wonder why so many experts in amplitudes, quantum gravity, and string theory are interested in cosmology?

Four decades ago, a prediction was made that galaxies were formed from quantum fluctuations generated at the universe's first moments of existence. This was the single most significant experimentally confirmed achievement that brings together fundamental theoretical particle physics and cosmology.

Theory and experiment: primordial gravitational waves

LiteBIRD
Launch date: 2032

BICEP

Targets include: cosmological α-attractor inflation models

Probing Cosmic Inflation with Cosmic Microwave Background Polarization Survey CMB-S4, South Pole Telescope, Simons Observatory

LISA

Launch date: 2035
GW from black hole merger

Primordial black holes
Stochastic gravitational waves from the early evolution of the universe

Targets include: cosmological α-attractor inflation models

Probing Cosmic Inflation with Cosmic Microwave Background Polarization Survey CMB-S4, South Pole Telescope, Simons Observatory

LISA

Launch date: 2035
GW from black hole merger
H_{0} tension?
Primordial black holes
Stochastic gravitational waves
from the early evolution of the universe

Waiting for new data!

Today's talk
Theory versus the data: amplitude loop computations

2007, Lance Dixon call SLAC to Stanford

Hi , Renata, we have found that 3-loop UV divergence in $\mathfrak{N}=8$ supergravity cancels

Hi , Lance, in what supergravity gauge you made your computation?

We do not use supergravity: we compute an on-shell S-matrix using unitarity and maximal SYM
$=$ we do not care about the choice of the gauge

But some properties of supergravities might be behind the scene

Why UV divergences cancel sometimes?

	Global	Local	Table from de Wit, Louis, 199
D	G	H	$\operatorname{dim}[\mathrm{G}]-\operatorname{dim}[\mathrm{H}]$
11	1	1	$0-0=0$
10A	$\mathrm{SO}(1,1) / Z_{2}$	1	$1-0=1$
$E_{1(+1)}=\mathbb{R} 10 \mathrm{~B}$	SL(2)	$\mathrm{SO}(2)$	$3-1=2$
$E_{2(+2)} \quad 9$	GL(2)	$\mathrm{SO}(2)$	$4-1=3$
$\rightarrow 8$	$\mathrm{E}_{3(+3)} \sim \mathrm{SL}(3) \times \mathrm{SL}(2)$	U(2)	$11-4=7$
7	$\mathrm{E}_{4(+4)} \sim \mathrm{SL}(5)$	USp(4)	$24-10=14$
$\rightarrow 6$	$\mathrm{E}_{5(+5)} \sim \mathrm{SO}(5,5)$	$\mathrm{USp}(4) \times \mathrm{USp}(4)$	$45-20=25$
5	$\mathrm{E}_{6(+6)}$	USp(8)	$78-36=42$
$\rightarrow 4$	$\mathrm{E}_{7(+7)}$	$\mathrm{SU}(8)$	$133-63=70$
3	$\mathrm{E}_{8(+8)}$	SO(16)	$248-120=128$

Homogeneous scalar manifolds G/H for maximal supergravities in integer dimensions
U-duality: $E_{d+1}=G_{U=} E_{11-D(11-D)}=E_{d+1(d+1)}$ often called $E_{d+1} \quad d=10-D$

	Global	Local	Table from de Wit, Louis, 199
D	G	H	$\operatorname{dim}[\mathrm{G}]-\operatorname{dim}[\mathrm{H}]$
11	1	1	$0-0=0$
10A	$\mathrm{SO}(1,1) / Z_{2}$	1	$1-0=1$
$E_{1(+1)}=\mathbb{R} 10 \mathrm{~B}$	SL(2)	$\mathrm{SO}(2)$	$3-1=2$
$E_{2(+2)} \quad 9$	GL(2)	$\mathrm{SO}(2)$	$4-1=3$
$\rightarrow 8$	$\mathrm{E}_{3(+3)} \sim \mathrm{SL}(3) \times \mathrm{SL}(2)$	U(2)	$11-4=7$
7	$\mathrm{E}_{4(+4)} \sim \mathrm{SL}(5)$	USp(4)	$24-10=14$
$\rightarrow 6$	$\mathrm{E}_{5(+5)} \sim \mathrm{SO}(5,5)$	$\mathrm{USp}(4) \times \mathrm{USp}(4)$	$45-20=25$
5	$\mathrm{E}_{6(+6)}$	USp(8)	$78-36=42$
$\rightarrow 4$	$\mathrm{E}_{7(+7)}$	$\mathrm{SU}(8)$	$133-63=70$
3	$\mathrm{E}_{8(+8)}$	SO(16)	$248-120=128$

Homogeneous scalar manifolds G/H for maximal supergravities in integer dimensions
U-duality: $E_{d+1}=G_{U=} E_{11-D(11-D)}=E_{d+1(d+1)}$ often called $E_{d+1} \quad d=10-D$
We have added blue arrows in $D=4,6,8$ where $G Z$ type duality is available

I Bosonic 4D supergravity of Cremmer-Julia-de Wit-Nicolai

$(\mathrm{G} / \mathrm{H})_{4 \mathrm{D}}=\mathrm{E}_{7(7)} / \mathrm{SU}(8)$

$$
\mathcal{L}_{1}=e R+\frac{1}{4} e \operatorname{tr}\left(\partial_{\mu} \mathcal{M} \partial^{\mu} \mathcal{M}^{-1}\right)+\frac{1}{8} e F_{\mu \nu}^{a b} * G_{a b}^{\mu l^{\prime}}, \quad \mathrm{a}, \mathrm{~b}=1 \ldots 8
$$

28-dimensional rep of $\operatorname{SL}(8, R) \quad$ scalar-dependent linear combination of F and ${ }^{*} F$

28 F and 28 G form a 56 -dimensional rep of $\mathrm{E}_{7(7)}$

In symmetric gauge
$\mathcal{M}=\mathcal{V}^{\mathrm{T}} \eta \mathcal{V}$
70 physical scalars in complex 35 of $S U(8)$

$$
\begin{aligned}
& \mathcal{L}_{2}=e R+\frac{1}{4} e \operatorname{tr}\left(\partial_{\mu} \mathcal{M} \partial^{\mu} \mathcal{M}^{-1}\right)-\frac{1}{8} H_{(2)}^{\mathrm{T}} \mathcal{M} H_{(2)} \\
& H_{(2)}=\Omega \mathcal{M} * H_{(2)} \\
& H_{(2)}=\binom{F}{G} \\
& \Omega=\left(\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right) \\
& \text { silver rule }
\end{aligned}
$$

II Bosonic 4D supergravity derived by Andrianopoli, D'Auria, Ferrara and Lledo', 2002 from Sezgin, Nieuwenhuizen 5D supergravity compactified on a circle, 1982, in the limit of vanishing gaugings

$$
5 D \rightarrow 4 D
$$

$$
133 \xrightarrow[\mathrm{E}_{6,6} \times \mathrm{SO}(1,1)]{ } 78_{0}+1_{0}+27_{-2}+27_{+2}^{\prime}
$$

$$
\begin{aligned}
\mathcal{L}_{4 D} & =-\frac{1}{4} V R+\frac{3}{2} V \partial_{\mu} \phi \partial^{\mu} \phi+\frac{1}{4} V e^{-4 \phi} \hat{\mathcal{N}}_{\Lambda \Sigma} \partial_{\mu} a^{\Lambda} \partial^{\mu} a^{\Sigma}+\frac{1}{24} V P_{\mu}^{a b c d} P_{a b c d}^{\mu}+ \\
& +V \Im\left(\mathcal{N}_{00}\right) B_{\mu \nu} B^{\mu \nu}+2 V \Im\left(\mathcal{N}_{0 \Lambda}\right) Z_{\mu \nu}^{\Lambda} B^{\mu \nu}+V \Im\left(\mathcal{N}_{\Lambda \Sigma}\right) Z_{\mu \nu}^{\Lambda} Z^{\Sigma \mu \nu}+ \\
& +\frac{1}{2} \epsilon^{\mu \nu \rho \sigma}\left[\Re\left(\mathcal{N}_{00}\right) B_{\mu \nu} B_{\rho \sigma}+2 \Re\left(N_{\Lambda 0}\right) B_{\mu \nu} Z_{\rho \sigma}^{\Lambda}+\Re\left(\mathcal{N}_{\Lambda \Sigma}\right) Z_{\mu \nu}^{\Lambda} Z_{\rho \sigma}^{\Sigma}\right]
\end{aligned}
$$

Decomposition of $\mathrm{E}_{7(7)}$ under the subgroup $\quad \mathrm{E}_{6,6} \times \mathrm{SO}(1,1)$

$$
\begin{aligned}
\frac{G_{D}}{H_{D}} \sim\left(\frac{G_{D+1}}{H_{D+1}}, r_{D+1}, \mathbf{V}_{r}^{D+1}\right) & 70 \xrightarrow[\mathrm{USp}(8)]{\longrightarrow} 42+27+1 \\
\text { abelian ideal } & 56 \xrightarrow[\mathrm{E}_{6,6} \times \operatorname{SO}(1,1)]{ } 27_{+1}+27_{-1}^{\prime}+\mathbf{1}_{+3}+\mathbf{1}_{-\mathbf{3}}
\end{aligned}
$$

Same field content, maximal number of local supersymmetries

CJdWN classical action in the $\operatorname{SL}(8, \mathrm{R})$ frame in a symmetric gauge
dWST classical action in the $\mathrm{E}_{6(6)}$ frame in a parabolic gauge
$(G / H)_{5 D}=E_{6(6)} / U S p(8)$

Non-BPS black holes

$$
E_{7(7)} \rightarrow E_{6(6)} \times S O(1,1) \quad \text { Relation to 5D } \longrightarrow 4 \mathrm{D} \text { type II supergravity }
$$

Orbits of Exceptional Groups, Duality and Ferrara, Gunaydin, 1997 BPS States in String Theory

Extremal BPS black hole states coming from string and M theory compactifications to 4D and 5D, preserving various fractions of the original $\mathcal{N}=8$ supersymmetry, can be invariantly classified in terms of orbits of the fundamental representations of the exceptional groups $\mathrm{E}_{7(7)}$ and $\mathrm{E}_{6(6)}$

Only 1/8 BPS and non-BPS states have non vanishing entropy and regular horizons, while $1 / 4$ and $1 / 2$ BPS configurations lead to vanishing classical entropy

4D Non-BPS extremal KK black hole solutions with spontaneously broken $\mathcal{N}=8$ supersymmetry are based on solvable Lie algebra
Non-BPS orbit $\quad \mathcal{O}_{n o n-B P S}:\left\{\begin{array}{l}E_{7(7)} \rightarrow E_{6(6)} \times S O(1,1) ; \quad 70 \rightarrow \mathbf{4 2}+\mathbf{2 7}+\mathbf{1} \\ 56 \rightarrow(\mathbf{2 7}, 1)+(1,3)+\left(\mathbf{2 7}^{\prime},-1\right)+\left(\mathbf{1}^{\prime},-3\right)\end{array}\right.$
Instead of a standard $56 \rightarrow 28+28^{\prime} \quad$ of $\operatorname{SU}(8)$
$\mathcal{N}=8$
70, 4-fold antisymmetric self-real irrep of SU(8)
$\mathcal{N}=8 \mathrm{D}=4$ extremal black holes
RK, Kol 1996
Ferrara, RK, 2006

$$
\frac{1}{2}, \frac{1}{4}, \frac{1}{8} \quad \text { BPS }
$$

and non-BPS

4 complex central charges $z_{i}=\rho_{i} e^{i \frac{\varphi}{4}}$
$1 / 2$ BPS

$$
\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=\left|z_{4}\right|
$$

$1 / 4 \mathrm{BPS}$

$$
\left|z_{1}\right|>\left|z_{2}\right| \quad\left|z_{3}\right|=\left|z_{4}\right|=0
$$

1/8 BPS

$$
\left|z_{2}\right|=\left|z_{3}\right|=\left|z_{4}\right|=0
$$

Non-BPS $\quad z_{i}=\rho e^{i \frac{\pi}{4}}$

I Bosonic 6D supergravity of Tanii-Begshoeff-Samtleben-Sezgin

$$
\mathcal{L}=e R+\frac{1}{4} e \operatorname{tr}\left(\partial_{\mu} \mathcal{M}^{-1} \partial^{\mu} \mathcal{M}\right)-\frac{1}{24} e H_{(3)}^{\mathrm{T}} \mathcal{M} H_{(3)}
$$

$$
d H_{(3)}=0, \quad d *\left(\mathcal{M} H_{(3)}\right)=0
$$

There is a local $\mathrm{SO}(5) \times \mathrm{SO}(5) \mathrm{H}$-symmetry and on shell global $\mathrm{SO}(5,5)$

$$
H_{(3)}=\Omega \mathcal{M} * H_{(3)}
$$

silver rule
The kinetic terms for the scalars and 2-form potentials can then be written in the manifestly $\mathrm{E}_{5(5)}$ $=S O(5,5)$-invariant form. In symmetric gauge \mathcal{M} is the $S O(5,5) / S O(5) \times S O(5)$ coset matrix and the action has a global H-symmetry $\mathrm{SO}(5) \times \mathrm{SO}(5)=\mathrm{Sp}(4) \times \mathrm{Sp}(4)$
Marcus, 1981: 1-loop $\operatorname{Sp}(4) \times \operatorname{Sp}(4)$ anomaly cancels
II Bosonic 6D supergravity derived by Cowdall, 1998, from 7D supergravity of Pernici, Pilch, van Nieuwenhuizen, 1984, and compactified on a circle, in the limit of vanishing gaugings

It has local $\mathrm{SO}(5)$ symmetry and an on shell global $\mathrm{SL}(5, R)$ inherited from 7D

$$
(G / H)_{7 D}=S L(5) / S O(5)
$$

$7 D \longrightarrow 6 D$

$$
\begin{aligned}
e^{-1} \mathcal{L}_{6}= & R-\frac{1}{4} e^{-\frac{5 \sigma}{\sqrt{10}}}\left(f_{\mu \nu}\right)^{2}-\frac{1}{12} e^{-\frac{2 \sigma}{\sqrt{10}}}\left(\Pi_{i}^{-1}{ }_{i}^{I} H_{\mu \nu \rho I}\right)^{2}-\frac{1}{4} e^{-\frac{\sigma}{\sqrt{10}}}\left(\Pi_{I}{ }^{i} \Pi_{J}{ }^{j} F_{\mu \nu}^{I J}\right)^{2} \\
& -\frac{1}{4} e^{\frac{3 \sigma}{\sqrt{10}}}\left(\Pi_{i}^{-1}{ }_{i}^{I} G_{\mu \nu I}\right)^{2}-\frac{1}{2} e^{\frac{4 \sigma}{\sqrt{10}}}\left(\Pi_{I}{ }^{i} \Pi_{J}^{j} F_{\mu}^{I J}\right)^{2}-\frac{1}{2}\left(\partial_{\mu} \sigma\right)^{2}-P_{\mu i j} P^{\mu i j} \\
& -\frac{e^{-1}}{36 \sqrt{2}} \epsilon^{\mu \nu \rho \sigma \lambda \tau} B_{0}{ }^{I J} H_{\mu \nu \rho I} H_{\sigma \lambda \tau J}-\frac{e^{-1}}{6 \sqrt{2}} \epsilon^{\mu \nu \rho \sigma \lambda \tau} H_{\mu \nu \rho I} B_{\sigma}{ }^{I J} G_{\lambda \tau J}
\end{aligned}
$$

TBSS classical action in the Iwasawa gauge \longrightarrow Cowdall action
Same scalar field content, but not vectors, maximal number of local supersymmetries

Different symplectic frames constructed by dWST were given in the form preserving local H-symmetry
New: bridge between $\mathrm{Sp}(56)$ and $\mathrm{SU}(8) \quad$ Old: bridge between $\mathrm{E}_{7(7)}$ and $\mathrm{SU}(8)$

There is a new 56-bein no longer a group element of $E_{7(7)}$

$$
\hat{\mathcal{V}}(x)=\mathrm{E}^{-1} \mathcal{V}(x)
$$

$$
\mathcal{V}(x)=\left(\begin{array}{cc}
u^{i j}{ }_{I J}(x) & -v_{k l I J}(x) \\
-v^{i j K L}(x) & u_{k l}^{K L}(x)
\end{array}\right)
$$

$$
\mathrm{E}=\left(\begin{array}{cc}
\mathrm{U}_{I J^{A B}} & \mathrm{~V}_{I J C D} \\
\mathrm{~V}^{K L A B} & \mathrm{U}^{K L}{ }_{C D}
\end{array}\right)
$$

$$
\mathrm{E}_{7(7)} \subset \operatorname{Sp}(56 ; \mathbb{R})
$$

i,j $\operatorname{SU}(8), \quad I, J$ in $E_{7(7)}$

Lagrangian in $\operatorname{SL}(8, R)$ basis: CJdWN \mathcal{L} with local $\operatorname{SU}(8)$ H-symmetry
Lagrangian in $\mathrm{E}_{6(6)}$ basis: dWST \mathcal{L} with local $\operatorname{SU(8)} \mathbf{H}$-symmetry, related to CJdWN \mathcal{L} by a change of the symplectic frame

Off shell these two theories are different, but on shell equivalent due to a property of the GZ duality

Take CJdWN $\mathcal{L} \quad \ln \operatorname{SL}(8, R)$ frame and gauge-fix local H -symmetry in a symmetric gauge
Take dWST $\mathcal{L} \quad$ In $E_{6(6)}$ frame and gauge-fix local H-symmetry in a 5D $\longrightarrow 4 D$ parabolic gauge, get
supergravity

Quantum equivalence between standard 4D supergravity and 5D \rightarrow 4D follows from classical on shell equivalence of different symplectic frames in 4D supergravity

Gauge-independence

Noether-Gaillard-Zumino $\operatorname{Sp}\left(2 \mathbf{n}_{\mathrm{v}}\right)$ conserved current in 4D supergravity

Duality symmetry is different from Noether symmetries by the fact that it acts on doublets of field strength's rather than on vector fields as the standard Noether symmetry

$$
\begin{aligned}
& \delta_{S p\left(2 n_{v}\right)}\binom{F}{G}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\binom{F}{G}, \quad C=C^{T}, \quad B=B^{T}, \quad D=-A^{T} \\
& F_{\mu \nu}=\partial_{\mu} \mathcal{A}_{\nu}-\partial_{\nu} \mathcal{A}_{\mu}, \quad \tilde{G}_{\mu \nu}=2 \frac{\partial L}{\partial F^{\mu \nu}}
\end{aligned}
$$

The action of duality on vector fields is non-local, why duality symmetry is NOT a Noether symmetry

NGZ identitiy

$$
\frac{\delta}{\delta F^{4}}\left(S\left[F^{\prime}, \varphi^{\prime}\right]-S[F, \varphi]-\frac{1}{4} \int(\tilde{F} C F+\tilde{G} B G)\right)=0
$$

$\mathrm{Sp}\left(2 \mathrm{n}_{\mathrm{v}}\right)$ conserved current consists of 2 parts: standard Noether current for scalars and GaillardZumino current

$$
J_{\nu}^{\mu}=\frac{\partial \mathcal{L}_{\nu}}{\partial\left(\partial_{\mu} \nu\right)} \delta \mathcal{V} \quad \hat{J}_{G Z}^{\mu} \equiv \frac{1}{2}\left(\tilde{G}^{\mu \nu} A \mathcal{A}_{\nu}-\tilde{F}^{\mu \nu} C \mathcal{A}_{\nu}+\tilde{G}^{\mu \nu} B \mathcal{B}_{\nu}-\tilde{F}^{\mu \nu} D \mathcal{B}_{\nu}\right)
$$

The classical Lagrangian provides the conservation of the total current, the Noether current of the scalars and the Gaillard-Zumino current of vectors

$$
\partial_{\mu} J_{N G Z}^{\mu}=\partial_{\mu} \hat{J}_{G Z}^{\mu}+\partial_{\mu} J_{\mathcal{V}}^{\mu}=0
$$

The proof that the $\operatorname{Sp}(2 n, R)$ current conservation requires that scalar and vector field equations are satisfied follows from NGZ identity

Why E\&M GZ duality is available only in even dimensions and why symplectic or orthogonal

Only in even dimensions $D=2 k$ there are both electric and magnetic k-forms
electric $F_{\mu_{1} \ldots \mu_{k}} \quad$ magnetic $\quad \tilde{F}^{\mu_{1} \ldots \mu_{k}}=\frac{1}{k!} e^{-1} \epsilon^{\mu_{1} \ldots \mu_{k} \nu_{1} \ldots \nu_{k}} F_{\nu_{1} \ldots \nu_{k}}$
4D, 2-forms
6D, 3-forms
8D 4-forms
Only electric forms are in the Lagrangian $\frac{1}{2 k!} F \cdot{ }^{*} G+L(\phi)=\mathrm{L}_{1}(\mathrm{~F}, * \mathrm{~F})$
the expression for the k-form $G(F, * F)$ can be solved in terms of electric k-forms using a constraint imposed on a k-form doublet

$$
{ }^{*} H=\Omega \mathcal{M}^{* *} H=(-1)^{k-1} \Omega \mathcal{M} H, \quad H=(\Omega \mathcal{M})^{2}(-1)^{k-1} H, \quad(\Omega \mathcal{M})^{2}=(-1)^{k-1} I
$$

$$
\begin{aligned}
& \text { even } k=D / 2: S p(2 n) \\
& \text { odd } k=D / 2: S O(n, n)
\end{aligned}
$$

$$
\begin{aligned}
& H=\binom{F}{G} \quad \delta_{X}\binom{F}{G}=X\binom{F}{G} \quad \Omega_{k=2 p}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad \Omega_{k=2 p+1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
& { }^{* *} H=(-1)^{k-1} H \quad X^{T} \Omega=-\Omega X \\
& H=\Omega \mathcal{M}^{*} H \\
& \text { silver rule } \\
& -\frac{1}{4 k!} H^{T} \mathcal{M} H+L(\phi)=\mathrm{L}_{\mathbf{2}}(\mathrm{H})
\end{aligned}
$$

