Finite Feynman Integrals

David A. Kosower
Institut de Physique Théorique, CEA-Saclay
work with Giulio Gambuti, Pavel Novichkov, and Lorenzo Tancredi, [2311.16907]
and in progress with Leonardo de la Cruz and Pavel Novichkov [2407.nnnnn]; and Marc Canay;
and in progress with Yang Zhang, Zhihou Wu, and Rourou Ma at Amplitudes 2024
Institute for Advanced Study
June 13, 2024

Goal

- Recast amplitudes in terms of Feynman integrals selected for degree of divergence

$$
I\left[\mathcal{N}\left(\ell_{i}\right)\right]=\int \prod_{i=1}^{L} \mathrm{~d}^{D} \ell_{i} \frac{\mathcal{N}\left(\ell_{i}\right)}{\mathcal{D}_{1} \cdots \mathcal{D}_{E}}
$$

- Hope: lead to simpler and more transparent representations
- First step: classify and organize finite integrals Henn, Peraro, Stahlhofen, \& Wasser; von Manteuffel, Panzer, \& Schabinger
- Mostly gloss over fine print
- look at locally IR-finite integrals (doable strictly in $D=4$)
- UV convergent by power counting ("strongly UV convergent")

One-Loop Example

- Canonical basis: box, triangle, bubble
\Rightarrow Tancredi's talk
- Box and Triangle have $\frac{1}{\epsilon^{2}}$ divergence (IR)
- Bubble has $\frac{1}{\epsilon}$ divergence (UV)

- Can trade $D=4$ box ($\frac{1}{\epsilon^{2}}$ divergence) for $D=6$ box (finite)

$$
\operatorname{Box}^{D=4}=c_{0} \operatorname{Box}^{D=6}+\sum c_{i}^{(3)} \operatorname{Tri}_{i}
$$

This isolates all IR divergences in triangles

How Do IR Singularities Arise?

- Look at

$$
\int d^{D} \ell \frac{1}{\cdots\left(\ell-K_{1}\right)^{2}\left(\ell-K_{2}\right)^{2}\left(\ell-K_{3}\right)^{2} \cdots}
$$

Singularities arise from regions where the denominator vanishes

- One denominator vanishing is integrable
- Two denominators vanishing in an invariant-independent way gives a $\frac{1}{\epsilon}$ singularity
- Three denominators vanishing in an invariant-independent way gives a $\frac{1}{\epsilon^{2}}$ singularity

How Do IR Singularities Arise?

- Generically,
- two denominators vanishing must be adjacent propagators separated by a massless leg: $K_{2}-K_{1}$ massless, singularity arises from $\ell \sim K_{2}-K_{1}$
- three denominators vanishing must be adjacent propagators separated by a pair of massless legs:
$K_{2}-K_{1}$ and $K_{3}-K_{2}$ massless, singularity arises when middle momentum is soft $\ell \sim K_{2}$
- Generalize this to higher loops
- Find numerators that vanish in those regions

Analytic Strategy

Gambuti, Novichkov, Tancredi, DAK

- Derivable
- Proceed topology by topology
- Solve Landau equations in mixed representation:
- for all loops $i, \quad \sum_{d=1}^{N} \alpha_{d} \frac{\partial}{\partial \ell_{i}} \operatorname{Den}_{d}=0$
- for all denominators $d, \alpha_{d} \operatorname{Den}_{d}=0$
- at least one α_{d} strictly positive, all nonnegative
- subtleties for nonplanar integrals
\Rightarrow McLeod's talk
- Each solution is a singular surface

Analytic Strategy

- Classify degree of divergence following Anastasiou \& Sterman (based on Libby \& Sterman)
- planar: logarithmic soft \& collinear singularities
- nonplanar: soft singularities can collide to give power divergences
- Build finite numerators
- start with all factors: $\ell_{1}^{2}, \ell_{1} \cdot \ell_{2}, \ell_{2}^{2} ; \ell_{i} \cdot k_{1,2,4}$
- build all numerators of fixed degree, e.g.

$$
c_{1} \ell_{1} \cdot \ell_{2}+c_{2} \ell_{1} \cdot k_{4} \ell_{2} \cdot k_{1}+c_{3}\left(\ell_{1} \cdot k_{2}\right)^{2}+\cdots
$$

- for each singular surface, require coefficients of singular scaling terms to vanish
\rightarrow Linear equation(s) for the c_{i}

Independent Numerators

- How many are there (cumulative)?
- 31 solutions to the Landau equations for planar double box

Max Order in ℓ	1	2	3	4	5
Finite	0	2	18	89	247

- Not all truly independent
$\operatorname{Poly}\left(\ell_{i}\right)$ (Finite numerator)
(subject to UV power-counting)
- Mathematical structure: ideal (before UV power-counting)
- "truncated ideal" (linear space) after

Independent Numerators

- Appropriate technology: Gröbner bases
- Compute Gröbner basis of order 2, retain independent remainders after dividing over the basis; iterate
- Or, just compute overall Gröbner basis all at once

Max Order in ℓ	1	2	3	4	5
Finite	0	2	18	89	247
Independent New	0	2	4	4	0

- Define (van Neerven \& Vermaseren)
$\left.v_{i}^{\mu} \equiv \frac{G\left(\begin{array}{lllll}k_{1} & \cdots & \mu & \cdots & k_{R} \\ k_{1} & \cdots & k_{i} & \cdots & k_{R}\end{array}\right)}{G\left(k_{1}\right.} \cdots \cdots, k_{R}\right), \quad \nu_{i j} \equiv G\left(\begin{array}{llll}l_{i} & k_{1} & \cdots & k_{R} \\ l_{j} & k_{1} & \cdots & k_{R}\end{array}\right) / G\left(\begin{array}{llll}k_{1} & \cdots & k_{R}\end{array}\right)$
to get nice forms for generators

All-Loop Ladder Conjecture

Max Order in ℓ	1	2	3	4	5	6	7	8
Independent	0	2	$2 L$	L^{2}	0	0	0	0
$\mathcal{O}(\boldsymbol{\epsilon})$ independent	0	0	0	$\left(3 L^{2}-9 L+8\right) / 2$	$(L-2)\left(L^{2}-4 L+5\right)$	$\left.\begin{array}{c}(L-2) \times \\ \left(L^{3}-9 L+16\right) / 8\end{array} \begin{array}{c}(L-2)(L-3) \times \begin{array}{c}(L-2)(L-3) \times \\ \left(L^{2}-5 L+8\right) / 4\end{array} \\ \hline\end{array} L^{2}-5 L+8\right) / 8$		

Geometric Strategy

De la Cruz, Novichkov, DAK

- Not yet derivable - lots of conjecture
- Parametric representation
- Focus on exponents of monomials

$$
\begin{gathered}
\alpha_{1}^{e_{1}} \alpha_{2}^{e_{2}} \cdots \alpha_{n}^{e_{n}} \\
\boldsymbol{e} \equiv\left(e_{1}, e_{2}, \ldots, e_{n}\right)
\end{gathered}
$$

- Build on theorem of Berkesch, Forsgård, \& Passare on convergence of Euler-Mellin integrals

Geometric Strategy

- Newton polytope: convex hull of all positive-weight linear combinations of all exponent vectors in a given polynomial
- H-representation: region bounded by set of inequalities
- Relation to tropical geometry to be explored
- BFP instructs us to look at Newton polytope of Symanzik polynomials

$$
\text { Newton }\left(\left[\mathcal{U}^{E-\frac{D}{2}(L+1)-r} \mathcal{F}^{\frac{D L}{2}-E}\right]^{-1}\right)
$$

E propagators, D dimensions, L loops, rank r

Geometric Strategy

- Reexpress polytope as weighted Minowski sum

$$
\left(r-E+\frac{D}{2}(L+1)\right) \operatorname{Newton}(\mathcal{U})+(E-D L / 2) \operatorname{Newton}(\mathcal{F})
$$

- BFP: integral of a Feynman-parameter monomial converges if
- \mathcal{U} and \mathcal{F} have no zeros on faces of polytope (true for planar integrals)
- the vector $\boldsymbol{e}+\mathbf{1}$ lies in the 'relative interior' of the polytope
- Find interior with tools like NConvex, or via conjecture on generating function
- Conjecture: integral is finite iff each Feynman-parameter monomial is in the relative interior

Geometric Strategy: Example

- Massless box

$$
\mathcal{U}=\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}, \quad \mathcal{F}=s \alpha_{1} \alpha_{3}+t \alpha_{2} \alpha_{4}
$$

- Look at rank two: exponents w/lattice points in polytope $(0,0,0),(0,0,1),(0,0,2),(0,1,0),(0,1,1),(0,2,0),(1,0,0),(1,0,1),(1,1,0)$, $(2,0,0)+18$ others
- Relative-interior exponents (1,0,1),(0,1,0)
- Require general loop-momentum numerator to yield only these
- Require coefficients to be D-independent
$N_{1}:(s+t) \ell \cdot k_{1}+t \ell \cdot k_{2}-s \ell \cdot k_{4}-(s+t) \ell^{2}$
$N_{2}:\left(t^{2}-s^{2}\right)\left(\ell \cdot k_{1}\right)^{2}+2 t^{2} \ell \cdot k_{1} \ell \cdot k_{2}+t^{2}\left(\ell \cdot k_{2}\right)^{2}-2 s^{2} \ell \cdot k_{1} \ell \cdot k_{4}-s^{2}\left(\ell \cdot k_{4}\right)^{2}$ $+s t^{2} \ell^{2}$
$N_{3}:-(s+t)\left(\ell \cdot k_{1}\right)^{2}-t \ell \cdot k_{1} \ell \cdot k_{2}-(2 s+t) \ell \cdot k_{1} \ell \cdot k_{4}+t \ell \cdot k_{2} \ell \cdot k_{4}-s\left(\ell \cdot k_{4}\right)^{2}$
$-\frac{1}{2} s t \ell^{2}$

Comparison

- Do the results of the two approaches agree?
- Yes...
...but the comparison is subtle
- Geometric numerators can vanish in parametric representation without being locally finite (special IBPs)
- Need to consider locally finite IBPs too

Integration by Parts

Canay, Novichkov, Ma, Wu, Zhang, DAK

- Can avoid doubled propagators using generating vectors aka "syzygy method"
- Choose v in

$$
\int d^{D} \ell_{j} \frac{\partial}{\partial \ell_{i}^{\mu}}\left[\frac{v^{\mu} N}{D_{1} D_{2} \cdots D_{E}}\right]
$$

Such that $v \cdot \frac{\partial}{\partial \ell_{i}} D_{j} \propto D_{j}$ for all D_{j}
Find only IBPs for finite numerators by also requiring

$$
v \cdot \frac{\partial}{\partial \ell_{i}} N_{j}=c_{m} N_{m}
$$

Use of New Integrals

Look at two-loop $A_{4}(++++)$

$$
\boldsymbol{N}_{1}=G\left(\begin{array}{lll}
\ell_{1} & 1 & 2 \\
1 & 2 & 4
\end{array}\right) G\left(\begin{array}{ccc}
\ell_{2} & 3 & 4 \\
1 & 2 & 4
\end{array}\right), \quad \mathcal{N}_{2}=G\left(\begin{array}{lll}
\ell_{1} & 1 & 2 \\
\ell_{2} & 3 & 4
\end{array}\right)
$$

$$
H_{++++}=\epsilon\left[r_{1}\right]
$$

Coefficients simpler too

Integrating

Canay, Novichkov, DAK

- New opportunity to use existing tool: HyperInt

Panzer

- Top-level topology has complicated functions
- Rank-two finite pentabox
- All integrations but one are linear
- Separate $\sqrt{ } \Delta$ by hand: $\alpha_{6}^{2}-\Delta$

Summary

With numerators
Feynman integrals settle happily bounded

- Finite integrals are a first step to exploring a new organization of scattering amplitudes
- Two approaches
- Analytic approach: Landau equations + Anastasiou-Sterman scaling
- Geometric approach: Newton polytopes + BFP theorem
- Applications
- Amplitude structure
- Integrating

