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Simple Questions
Why do massless particles have Lorentz-invariant helicities?

Helicity operator  is not Lorentz-invariant 

It is part of a covariant 4-vector  whose 3 independent components 
generate the little group and whose square is invariant (massive: , )  

The other two independent components combine transverse boost and rotation, 
e.g. for :  and  .  They commute ⇒ “translations” of 
ISO(2) group structure. 

 is an invariant, but independent of helicity! 

  determines a particle’s spin-scale , with units of momentum.

H = J ⋅ p̂

Wμ = − 1
2 ϵμνρσJνρpσ

p = (m, 0) W = (0,mJ)

p ∝ ̂z W1 ∝ Jx + Ky W2 ∝ − Jy + Kx

W2 = − W2
1 − W2

2 ≤ 0

W2 = − ρ2 ρ



Representations
It’s convenient to work in a helicity eigenstate basis:   , 

Eigenvalues  must be (half-)integer so that 4π rotation returns state to itself, 
since Lorentz group is doubly connected. 

Can group “translations” into raising/lowering operators ,  
which act as  (Coefficient fixed by ).

J ⋅ p̂ |p, σ⟩ = σ |p, σ⟩
σ

W± = W1 ± iW2
W± |p, σ⟩ = ρ |p, σ ± 1⟩ W2 = − ρ2

σ-independent coefficient ⇒ 
generic massless irrep has 

 infinite ladder of helicity states 
that mix under Lorentz

Exception: if  the states decouple.  
Each  is a singlet representation, 
related only to  by CPT. 

This choice is the way to get Lorentz-
invariant helicity.

ρ = 0
|σ⟩

| − σ⟩

Called “continuous spin”  
particles or “CSPs” 
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Simple Questions
Why do massless particles have Lorentz-invariant helicities?

Why can we write massless amplitudes in spinor helicity variables?

Is there a deep reason why this assumption was required?   
Or have we confused local custom with physical law? 

Because we have always assumed  – it’s all we know how to doρ = 0

Spinor helicity’s job is encoding Little Group covariance of amplitudes 
 rephase under rotations generated by .  But they are annihilated by , so 

cannot encode general little group transformations.  

Spinor helicity enforces the  orthodoxy. 

λ, λ̃ H W±

ρ = 0



Why has this possibility been ignored?
Massless high spin is sick ➝ continuous spin is sick too?  

Robust constraints(e.g. Weinberg so theorems, Weinberg-Witten) rely deeply on boost-invariance of 
helicity states, don’t transfer to . (CSP so factors a la Weinberg: Schuster+NT 1302.1198+1577) 
(Note: massive high spin can be consistent — e.g. nuclei and string theory) 

Incompatible with field theory?   
Early analyses didn’t allow for gauge redundancy — would have excluded QED! 
Gauge theory exists! (Schuster+NT 1404.0675) 

Infinitely many states at fixed energy ⇒ divergent cross-sections & thermodynamics? 
Lorentz symmetry heavily constrains interactions — yields calculable and well-behaved results: 

Interactions at energies  can be “scalar-like”, “vector-like”, or “tensor-like”  
Other helicities’ interactions suppressed by powers of 

ρ ≠ 0

≫ ρ
ρ/E

Many counter-arguments sound serious, but don’t survive scrutiny. 
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Many counter-arguments sound serious, but don’t survive scrutiny. 

This basic structure intrigued us a decade ago.  New (2023) current-coupling framework enables 
more general calculations that support this picture. 



Simple Questions
Why do massless particles have Lorentz-invariant helicities?

Why can we write massless amplitudes in spinor helicity variables?

Because we said so!
deviations are controlled by a small parameter, !  ρ/E



Why explore ?ρ ≠ 0
• Theorist: “Because it’s there” 

Falls out simply from postulates of relativity and quantum mechanics ⇒  
worth understanding! 

• Phenomenologist: “Because it might really be there” 
Can think about experimental measurements/constraints on the spin-scale 
of photons and gravitons  

All SM fields are either fundamentally massless (before EWSB) or 
unnaturally light. 

Thinking about models with non-zero spin scales may illuminate new 
approaches to many SM problems.

S-



Outline
• Invariant helicity is a special case – in general, helicities mix under Lorentz –

 controlled by spin scale ρ 

• Coupling to matter particles: a predictive and (so far) well-behaved IR 
deformation of familiar theories 

• Gauge theory of CSPs [1404.0675] 

• Coupling matter particles to CSP fields, classically [Schuster, NT, Zhou 
2303.04816] and for scattering amplitudes [Schuster, NT 2308.16218] 

• An invitation to CSP scattering amplitudes

https://arxiv.org/abs/2303.04816
https://arxiv.org/abs/2308.16218


A Field Theory for All Helicities
• Intuition: As , CSP contains all integer helicity modes 

• helicities  usually described by rank-h symmetric gauge field 

• CSP field  

• Action:   

   with  

• Naively divergent integral – but fully fixed (up to “volume” factor) by symmetry & 
can be regulated by analytically continuing . 

ρ → 0

±h

ℒ =
1
2 ∫η

δ′ (η2 + 1)(∂xΨ)2 +
1
2

δ(η2 + 1)(ΔΨ)2 ΔΨ ≡ ∂η ⋅ ∂x + ρ

η0

Lorentz acts as x → Λx, η → Λη

introduced in 1404.0675 – complementary pedagogical discussion in 2303.04816
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https://arxiv.org/abs/2303.04816


Intuition for the Free Action
ℒ =

1
2 ∫η

δ′ (η2 + 1)(∂xΨ)2 +
1
2

δ(η2 + 1)(ΔΨ)2

Decompose  into 
tensor fields

Ψ

: Decomposes as sum of 
familiar and Fronsdal actions for 
integer helicities 

: Adds  rank-
mixing terms

ρ = 0

ρ ≠ 0 𝒪(ρ) and 𝒪(ρ2)

ΔΨ ≡ ∂η ⋅ ∂x + ρ

Fix gauge: ΔΨ = 0

EOM:  
 
Solutions are functions of  with arbitrary dependence on 
“transverse”  components, i.e.   and .  

1) Only the function at unit-norm  is dynamical 
2) -dependence is pure gauge 

So physical content is a function on unit -circle transverse to  
This circle has a nice relationship to the little group “translation 
eigenstate” basis, and helicity modes are Fourier components of this 
function. 

δ′ (η2 + 1) □ Ψ = 0

η
η ⋅ k η ⋅ ϵ±

η
η ⋅ k

η k



Another Basis
Instead of diagonalizing helicity  ,  can instead diagonalize both “translation” 
generators  – the “momentum” operators if we think of ISO(2) as 0+2D Poincare

J ⋅ p̂
W1,2

w1

w2

w2
1 + w2

2 = ρ2

ϕ

 
 

 

Wx |ϕ⟩ = ρ cos ϕ |ϕ⟩
Wy |ϕ⟩ = ρ sin ϕ |ϕ⟩

R |ϕ⟩ = − i∂ϕ |ϕ⟩

|Ψ⟩ = ∫
dϕ
2π

ψ(ϕ) |ϕ⟩

 |h⟩ = ∫
dϕ
2π

eihϕ |ϕ⟩

|ϕ⟩ = ∑
h

e−ihϕ |h⟩

Fourier-conjugate to helicity basis

Note that labeling of states and their transformation 
properties in any basis depends on chosen reference 
directions ,  – or equivalently the real and imaginary 
parts of a null, transverse reference vector 

x̂ ŷ
ϵμ

+

Little group circle

“momentum space”

–– simpler physics

–– simpler math



Field Theory…what about interactions?
Free theory doesn’t guarantee consistent interactions — but gives us a framework to 
look for appropriately conserved matter current 

(This is where helicity  fail – BBVD type currents not conserved at non-zero coupling) 

Current must have  for gauge invariance 

Once found, sourced EOM in suitable gauge is simply  & can use 
familiar machinery to compute physical quantities [2303.04816, 2308.16218] 

For technical reasons, easier to build such a current out of matter particle worldline 
than matter fields.  

≥ 3

δ(η2 + 1)(∂η ⋅ ∂x + ρ)J(η, x) = 0

□ Ψ(η, x) = J(η, x)

https://arxiv.org/abs/2303.04816
https://arxiv.org/abs/2308.16218


General Solutions
Assume current is local function on worldline  

Most general conserved solution can be written in momentum-space as 

 

 fully determines worldline interactions with on-shell CSP radiation. 
Expanding  in Taylor series gives “universality classes” of currents: 

∫ dτ f(x − z(τ), ·z(τ), η)

f(k, ·z, η) = e−iρ η ⋅ ·z
k ⋅ ·z ̂g(k ⋅ ·z) + 𝒪X(k, ·z, η)

̂g
̂g

̂g =

g
e
ρ k ⋅ ·z

(k ⋅ ·z)n/Λn

scalar-like current

vector-like current

non-minimal currents* graviton-like if all worldlines couple 
equally

} Classical results in these cases 
are main focus of 2303.04816

“Shape” term proportional to EOM operator  
⇒ doesn’t source radiation (like e.g. charge-radius) 
Can affect CSP-exchange forces and space-time  
support of current

𝒪

https://arxiv.org/abs/2303.04816


Limiting Behavior:  k0 ≫ ρ
Look at small-  behavior of current:  ρ

   

  

f(k, η, ·z) = −
e
ρ

k ⋅ ·z(τ) e−iρ η ⋅ ·z
k ⋅ ·z

f(k, η, ·z) = −
e
ρ

k ⋅ ·z(τ) + ie η ⋅ ·z(t) + 𝒪(ρ)

η-space form of usual 
vector currentPhysically irrelevant  

(  total τ-derivative)∝

J(η, x) = ∫ dτ d4k eik⋅(z(τ)−x) f(k, ·z, η)

⇒ Leading physical effects should 
be QED-like!



Radiation from a Moving Particle

P
/P

La
rm

or

ρv/ω

For example, for vector-like coupling to 
oscillating charge:  

P =
e2ω2v2

0

12π (1 −
9

80
ρ2v2

0

ω2
+ …)

Standard Larmor power

For small , power matches Larmor 
and dominated by h=±1 modes

ρv/ω

At large , power spread among many 
modes, harmonics but total power 

emitted has finite limit.

ρv/ω

UV IR



Compton-Like Amplitudes
Worldline path-integral calculated as for QED, but with η-dependent vertex operator 
yields “angle-basis” amplitudes:

18

and applying the above replacement to (3.36), we obtain the M-function for scalar matter

Compton scattering in integral form:

MLSZ = 2

Z 1

�1

dx

✓
d

dx

1

k2 · P2(x) + i✏x
�

d

dP1(x)
·

d

dP2(x)

◆
k2 · P2(x)k1 · P1(x)

⇢2
e�i⇢

⌘1·P1(x)
k1·P1(x)

�i⇢
⌘2·P2(x)
k2·P2(x) .

(3.39)

Each term above is separately of O(1/⇢2), but a remarkable cancellation between the two

terms yields a result of O(⇢0). This is most easily exhibited after dropping i✏’s, which we

will do for the remainder of this discussion of tree amplitudes except for the discussion of

unitarity in Sec. IV. One way to see this is by noting the operator relation (valid only when

all external legs are on-shell)


@P1 · @P2 ,

k2 · P2k1 · P1

⇢2

�
=

d

dx

k1 · P1(x)

⇢2
, (3.40)

which is actually related to the QED Ward identity. We can then rewrite (3.39) as

MLSZ = �2

Z 1

�1

dx
k2 · P2(x) k1 · P1(x)

⇢2
d

dP1(x)
·

d

dP2(x)
e�i⇢

⌘1·P1(x)
k1·P1(x)

�i⇢
⌘2·P2(x)
k2·P2(x) (3.41)

= 2

Z 1

�1

dx

✓
⌘1 �

⌘1 · P1(x)

k1 · P1(x)
k1

◆
·

✓
⌘2 �

⌘2 · P2(x)

k2 · P2(x)
k2

◆
e�i⇢

⌘1·P1(x)
k1·P1(x)

�i⇢
⌘2·P2(x)
k2·P2(x). (3.42)

This completes our computation of the M -function for Compton scattering, and illustrates

how to perform path integral calculations with CSP photon vertex operators more generally.

Next, we compute the resulting Compton amplitude, and study the behavior for ⇢ ! 0 and

more generally.

B. Standard Compton Amplitude in the Limit ⇢ ! 0

The ⇢ ! 0 limit of (3.42) is

2

Z 1

�1

dx

✓
⌘1 �

⌘1 · P1(x)k1
k1 · P1(x)

◆
·

✓
⌘2 �

⌘2 · P2(x)k2
k2 · P2(x)

◆
. (3.43)

This is homogeneous of degree 1 in each ⌘i. Considering that each ⌘i(�i) in (2.18) introduces

one power of e±i�i , and helicity amplitudes are Fourier modes in �i, this homogeneity implies

that the amplitude is supported entirely in the helicity ±1 sector. Following (2.15), we

find that helicity hj = ±1 amplitudes are equivalent to replacing ⌘j in the M -function by

"±/
p
2, where "± = (⌥i)✏±(kj)/

p
2 is a polarization vector satisfying the unit-norm condition

M(p0, p3, {k1, η1}, {k2, η2}) =

P1,2(x) = p3 − p0 ± x k2,1 ➝ at endpoints , these are momenta 
appearing in s(u)-channel photon vertex

x = ± 1

Helicity-basis amplitudes via Fourier transform

(1) no unphysical singularities,  
(2) sensible at physical singularities,  
(3) finite kinematics-differential cross-section at all energies,  
(4)  limit is Feynman-parametrization of standard scalar-QED result.  ρ → 0



Compton-Like Cross-Section: UV to IR
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Spinor Helicity for CSPs
State labeling depends on reference null  orthogonal to k ⟺ choice of       .  

Label angle-basis states as  (phase encodes angle)                                                        

Generators act as  and . 

Amplitudes are Lorentz-invariant functions of  satisfying  

(1)   (projective in μ) 

(2) Inhomogeneous  

ϵ+ |μ⟩ ϵ+ = 1
[λ̃μ̃]

|μ⟩ | λ̃]

|λ⟩μ ⟨λ |λ′ ⟩ = (2π)4δ2|2(λ − λ′ )

T+ |λ⟩μ = ρ
⟨λμ⟩
[λ̃μ̃]

|λ⟩μ R |λ⟩μ = −
1
2

⟨λ∂λ⟩ |λ⟩μ

λ, λ̃, μ, μ̃

⟨μ∂μ⟩A = [μ̃∂μ̃]A = 0

(i⟨λμ⟩⟨λ∂μ⟩ + ρ) A = (i[λ̃μ̃][λ̃∂μ̃] + ρ) A = 0
Wα ·α ∼ (λαλ̄ ·α)(λβ∂β

λ − λ̄ ·β∂
·β
λ̄

− μβ∂β
μ + μ̄ ·β∂

·β
μ̄) + (λαμ̄ ·α)(λ̄∂μ̄) + (μαλ̄ ·α)(λ . ∂μ)

Helicity amplitudes are obtained by Fourier transform .∫ dϕ eihϕ |λeiϕ/2⟩μ

For , simplify to  
 

i.e. amplitude  
depends only on ’s

ρ = 0
∂μA = ∂μ̃A = 0

λ
}



Complex-Momentum 3-particle Amplitudes? 
One CSP, two scalar matter legs: 

 covariance requirement   

implies “phase" structure e.g. .  

But  covariance  cannot be satisfied in this kinematics – 

all Lorentz-scalars built from this kinematic data are annihilated by . 

This seems more like a limitation to the method rather than a problem with CSPs… 

T+ (i[λ̃μ̃][λ̃∂μ̃] + ρ) A = 0

A = eiρ [μ̃ λ̃2]
[λ̃ λ̃2][μ̃ λ̃] f(λi, λ̃i)

T− (i⟨λμ⟩⟨λ∂μ⟩ + ρ) A = 0

⟨λ∂μ⟩

λ, λ̃, μ, μ̃

λ3, λ̃3λ2, λ̃2

⟨λiλj⟩ = 0



Complex-Momentum 3-particle Amplitudes? 
 Another perspective: 4-particle amplitudes contain phase factors like !  In 
approach to 3-particle factorization kinematics, the phase oscillates rapidly because  

 (faster than ). 

Real-momentum collinear limit ⇒ diverging real phase  
⇒ rapid oscillation “damps” the amplitude 

But in complex -plane, phase is an essential singularity overlapping the 3-
particle factorization pole.  On some approaches to this kinematics, it diverges 
exponentially.  
 This is what obstructs defining 3-point amplitudes involving CSPs. 

e−iρ η ⋅ P
k ⋅ P

k ⋅ P → 0 η ⋅ P

k ⋅ P



Complex-Momentum 3-particle Amplitudes? 
Complex momentum ➝ complexify LG 

 and  are no longer conjugate, but independent 
➝ new “right-CSP” representations with 
 

  but . 

These do admit 3-point amplitudes .  

Can construct higher-point amplitudes (e.g. 3 matter legs + one right-CSP) that 
factorize appropriately at 3-point.  For  (photon-like), consistency requires 
charge conservation just as it does for . 

W+ W−

W+ |λ⟩μ = ρ
⟨λμ⟩
[λ̃μ̃]

|λ⟩μ T− |λ⟩μ = 0

A = eiρ( [μ̃2]
[λ̃2][μ̃λ̃] + [μ̃ 3]

[λ̃3][μ̃λ̃] ) ( [2λ̃][3λ̃]
[23] )

a

a = 1
ρ = 0

λ, λ̃, μ, μ̃

λ3, λ̃3λ2, λ̃2

⟨λiλj⟩ = 0



Key Questions
• Physics of on-shell CSPs avoids “shape” ambiguity in worldline current.  But 

predictions for processes involving intermediate CSPs require finding the right 
shape – or another means of inferring from on-shell CSP results.  

• All known particles are either massless or unnaturally light – could they all be CSPs? 
Raises many more theoretical questions 

• CSP self-interactions (e.g. Yang-Mills-like) 

• Coupling to (extension of) GR?  

• CSP Massive phase? What happens to partners? 

• Is there a symmetry protecting the mass of scalar-like CSPs? 

These questions beg for an 
Amplitudes approach!



Conclusions
• Lorentz invariance ➝ massless particles 

have a spin-scale.  Is it zero or non-zero? 

• The non-zero option makes more sense 
than previously thought, and has testable 
consequences 

• If inconsistent, deserves a proper burial 

• If viable, we should think of the Standard 
Model as an effective theory with both UV 
and IR completions –– and many questions 
remain to understand the IR. 

Gauge theory+GR 
work well

New physics at  
associated with spin-partners of 

known massless particles

r ≳ 1/ρ

New physics at 
 

associated with  
particles of mass 

r ≲ 1/MUV

MUV


