Beyond the Helicity Lamppost Continuous Spin Particles and their Interactions

Natalia Toro

based mainly on <u>2303.04816</u> (JHEP) with P. Schuster, **K. Zhou**, <u>2308.16218</u> with Schuster (see also <u>1302.1198</u>, <u>1302.1577</u>, <u>1404.0675</u> with Schuster)

Simple Question

Why do massless particles have Lorentz-invariant helicities?

Why do massless particles have Lorentz-invariant helicities? Because we said so!

Simple Questions

Why do massless particles have Lorentz-invariant helicities? Helicity operator $H = \mathbf{J} \cdot \hat{\mathbf{p}}$ is *not* Lorentz-invariant

Simple Questions

Why do massless particles have Lorentz-invariant helicities? Helicity operator $H = \mathbf{J} \cdot \hat{\mathbf{p}}$ is *not* Lorentz-invariant

ISO(2) group structure.

 $W^2 = -W_1^2 - W_2^2 \le 0$ is an invariant, but independent of helicity!

 $W^2 = -\rho^2$ determines a particle's spin-scale ρ , with units of momentum.

It is part of a *covariant* 4-vector $W^{\mu} = -\frac{1}{2}\epsilon^{\mu\nu\rho\sigma}J_{\nu\rho}p_{\sigma}$ whose 3 independent components generate the little group and whose square is invariant (massive: p = (m, 0), W = (0, mJ))

The other two independent components combine transverse boost and rotation, e.g. for $\mathbf{p} \propto \hat{\mathbf{z}}$: $W_1 \propto J_x + K_y$ and $W_2 \propto -J_y + K_x$. They commute \Rightarrow "translations" of

Representations

It's convenient to work in a helicity eigenstate basis: $\mathbf{J} \cdot \hat{\mathbf{p}} | p, \sigma \rangle = \sigma | p, \sigma \rangle$, Eigenvalues σ must be (half-)integer so that 4π rotation returns state to itself, since Lorentz group is doubly connected.

Can group "translations" into raising/lowering operators $W_{+} = W_{1} \pm iW_{2}$, which act as $W_{\pm}|p,\sigma\rangle = \rho |p,\sigma \pm 1\rangle$ (Coefficient fixed by $W^2 = -\rho^2$).

 σ -independent coefficient \Rightarrow generic massless irrep has *infinite* ladder of helicity states that mix under Lorentz

Called "continuous spin" particles or "CSPs"

Exception: if $\rho = 0$ the states decouple. Each $|\sigma\rangle$ is a singlet representation, related only to $|-\sigma\rangle$ by CPT.

This *choice* is the way to get Lorentzinvariant helicity.

Simple Questions

Why do massless particles have Lorentz-invariant helicities? Because we have *always* assumed $\rho = 0$ – it's all we know how to do

Is there a deep reason why this assumption was required? Or have we confused local custom with physical law?

Why can we write massless amplitudes in spinor helicity variables? cannot encode general little group transformations.

Spinor helicity enforces the $\rho = 0$ orthodoxy.

Spinor helicity's job is encoding Little Group covariance of amplitudes λ , $\tilde{\lambda}$ rephase under rotations generated by *H*. But they are *annihilated* by W_{\pm} , so

Why has this possibility been ignored? Many counter-arguments sound serious, but don't survive scrutiny.

Massless high spin is sick \rightarrow continuous spin is sick too? (Note: massive high spin can be consistent -e.g. nuclei and string theory) Incompatible with field theory? Early analyses didn't allow for gauge redundancy – would have excluded QED! Gauge theory exists! (Schuster+NT 1404.0675) Interactions at energies $\gg \rho$ can be "scalar-like", "vector-like", or "tensor-like" Other helicities' interactions suppressed by powers of ρ/E

- Robust constraints(e.g. Weinberg soft theorems, Weinberg-Witten) rely deeply on boost-invariance of helicity states, don't transfer to $\rho \neq 0$. (CSP soft factors a la Weinberg: Schuster+NT 1302.1198+1577)
- Infinitely many states at fixed energy \Rightarrow divergent cross-sections & thermodynamics? Lorentz symmetry heavily constrains interactions — yields calculable and well-behaved results:

Why has this possibility been ignored? Many counter-arguments sound serious, but don't survive scrutiny.

Massless high spin is sick \rightarrow continuous spin is sick too? (Note: massive high spin can be consistent -e.g. nuclei and string theory) Incompatible with field theory? Early analyses didn't allow for gauge redundancy – would have excluded QED! Gauge theory exists! (Schuster+NT 1404.0675) Interactions at energies $\gg \rho$ can be "scalar-like", "vector-like", or "tensor-like" Other helicities' interactions suppressed by powers of ρ/E

This basic structure intrigued us a decade ago. New (2023) current-coupling framework enables more general calculations that support this picture.

- Robust constraints(e.g. Weinberg soft theorems, Weinberg-Witten) rely deeply on boost-invariance of helicity states, don't transfer to $\rho \neq 0$. (CSP soft factors a la Weinberg: Schuster+NT 1302.1198+1577)
- Infinitely many states at fixed energy \Rightarrow divergent cross-sections & thermodynamics? Lorentz symmetry heavily constrains interactions — yields calculable and well-behaved results:

Simple Questions

Why do massless particles have Lorentz-invariant helicities?

Why can we write massless amplitudes in spinor helicity variables?

Because we said so! deviations are controlled by a small parameter, $\rho/E!$

Why explore $\rho \neq 0$?

- Theorist: "Because it's there" Falls out simply from postulates of relativity and quantum mechanics \Rightarrow worth understanding!
- Phenomenologist: "Because it might really be there" Can think about experimental measurements/constraints on the spin-scale of photons and gravitons

All SM fields are either fundamentally massless (before EWSB) or unnaturally light.

approaches to many SM problems.

- Thinking about models with non-zero spin scales may illuminate new

- controlled by spin scale p
- deformation of familiar theories
 - Gauge theory of CSPs [1404.0675]
 - 2303.04816] and for scattering amplitudes [Schuster, NT 2308.16218]
- An invitation to CSP scattering amplitudes

()utline

• Invariant helicity is a special case – in general, helicities mix under Lorentz –

• Coupling to matter particles: a predictive and (so far) well-behaved IR

• Coupling matter particles to CSP fields, classically [Schuster, NT, Zhou

A Field Theory for All Helicities

- Intuition: As $\rho \rightarrow 0$, CSP contains all integer helicity modes
 - helicities $\pm h$ usually described by rank-h symmetric gauge field
 - CSP field $\Psi(\eta, x) \equiv \phi^{(0)}(x) + \eta^{\mu} \phi^{(1)}_{\mu}(x) + \eta^{\mu} \eta^{\nu} \phi^{(2)}_{\mu\nu}(x) + \dots$ Lorentz acts as $x \to \Lambda x, \eta \to \Lambda \eta$
- Action:

$$\mathscr{L} = \frac{1}{2} \int_{\eta} \delta'(\eta^2 + 1) (\partial_x \Psi)^2 + \frac{1}{2} \delta(\eta^2 +$$

• Naively divergent integral – but fully fixed (up to "volume" factor) by symmetry & can be regulated by analytically continuing η^0 .

+ 1) $(\Delta \Psi)^2$ with $\Delta \Psi \equiv \partial_n \cdot \partial_x + \rho$

introduced in 1404.0675 – complementary pedagogical discussion in 2303.04816

Intuition for $\mathscr{L} = \frac{1}{2} \int_{n} \delta'(\eta^2 + 1)(\eta^2 + 1)(\eta^2$

Decompose Ψ into tensor fields

EOM: $\delta'(\eta)$

 $\rho = 0$: Decomposes as sum of familiar and Fronsdal actions for integer helicities

 $\rho \neq 0$: Adds $\mathcal{O}(\rho)$ and $\mathcal{O}(\rho^2)$ rankmixing terms

- function.

the Free Action

$$(\partial_x \Psi)^2 + \frac{1}{2} \delta(\eta^2 + 1)(\Delta \Psi)^2 \qquad \Delta \Psi \equiv \partial_\eta \cdot \partial_x + \frac{1}{2} \nabla \Psi = 0$$

Fix gauge: $\Delta \Psi = 0$
 $\eta^2 + 1) \Box \Psi = 0$

Solutions are functions of η with arbitrary dependence on "transverse" components, i.e. $\eta \cdot k$ and $\eta \cdot \epsilon_+$.

1) Only the function at unit-norm η is dynamical

2) $\eta \cdot k$ -dependence is pure gauge

So **physical** content is a function on unit η -circle transverse to k This circle has a nice relationship to the little group "translation" eigenstate" basis, and helicity modes are Fourier components of this

Another Basis

Field Theory...what about interactions?

look for appropriately conserved matter current

familiar machinery to compute physical quantities [2303.04816, 2308.16218]

than matter fields.

- Free theory doesn't guarantee consistent interactions but gives us a framework to
 - (This is where helicity ≥ 3 fail BBVD type currents not conserved at non-zero coupling)
 - Current must have $\delta(\eta^2 + 1)(\partial_{\eta} \cdot \partial_x + \rho)J(\eta, x) = 0$ for gauge invariance
- Once found, sourced EOM in suitable gauge is simply $\Box \Psi(\eta, x) = J(\eta, x)$ & can use
- For technical reasons, easier to build such a current out of matter particle worldline

General Solutions

Assume current is local function on worldline $\int d\tau f(x - z(\tau), \dot{z}(\tau), \eta)$ Most general conserved solution can be written in momentum-space as

$$f(k, \dot{z}, \eta) = e^{-i\rho \frac{\eta \cdot \dot{z}}{k \cdot \dot{z}}} \hat{g}(k \cdot \dot{z}) + \mathcal{O}X(k,$$

 \hat{g} fully determines worldline interactions with on-shell CSP radiation. Expanding \hat{g} in Taylor series gives "universality classes" of currents:

$$\hat{g} = \begin{cases} g & \text{scalar-lik} \\ \frac{e}{\rho} k \cdot \dot{z} & \text{vector-lik} \\ (k \cdot \dot{z})^n / \Lambda^n & \text{non-minim} \end{cases}$$

- ke current Classical results in these cases are main focus of 2303.04816
- nal currents* graviton-like if all worldlines couple equally

Look at small- ρ behavior of current:

$$f(k, \eta, \dot{z}) = -\frac{e}{\rho}k \cdot \dot{z}(\tau) e^{-i\rho\frac{\eta \cdot \dot{z}}{k \cdot \dot{z}}}$$

$$= -\frac{e}{\rho}k \cdot \dot{z}(\tau) + ie \eta \cdot \dot{z}(t) + \mathcal{O}(\rho)$$

$$\eta \text{-space form of u vector current}$$

$$(\alpha \text{ total } \tau \text{-derivative})$$

$$J(\eta, x) = \int d\tau \, d^4k \, e^{ik \cdot (z(\tau) - x)} f(k, \dot{z}, \eta)$$

Limiting Behavior: $k^0 \gg \rho$

isual $t \Rightarrow$ Leading physical effects should be QED-like!

Radiation from a Moving Particle

For example, for vector-like coupling to oscillating charge:

For small $\rho v/\omega$, power matches Larmor and dominated by h=±1 modes

At large $\rho v/\omega$, power spread among many modes, harmonics **but total power emitted has finite limit.**

Compton-Like Amplitudes

Worldline path-integral calculated as for QED, but with η -dependent vertex operator yields "angle-basis" amplitudes:

$$M(p_0, p_3, \{k_1, \eta_1\}, \{k_2, \eta_2\}) = 2 \int_{-1}^{1} dx \left(\eta_1 - \frac{\eta_1 \cdot P_1(x)}{k_1 \cdot P_1(x)} k_1\right) \cdot \left(\eta_2 - \frac{\eta_2 \cdot P_2(x)}{k_2 \cdot P_2(x)} k_2\right) e^{-i\rho \frac{\eta_1 \cdot P_1(x)}{k_1 \cdot P_1(x)} - i\rho \frac{\eta_2 \cdot P_2(x)}{k_2 \cdot P_2(x)}}$$

$$P_{1,2}(x) = p_3 - p_0 \pm x$$

Helicity-basis amplitudes via Fourier transform

(1) no unphysical singularities,

- (2) sensible at physical singularities,
- (3) finite kinematics-differential cross-section at all energies,
- (4) $\rho \rightarrow 0$ limit is Feynman-parametrization of standard scalar-QED result.

 $k_{2,1}$ \rightarrow at endpoints $x = \pm 1$, these are momenta appearing in *s*(*u*)-channel photon vertex

Compton-Like Cross-Section: UV to IR

Modes with $|h| \leq \rho/\omega$ are relevant

Spinor Helicity for CSPs

- State labeling depends on reference null ϵ_+ orthogonal to $k \Leftrightarrow$ choice of $|\mu\rangle = \epsilon_+ = \frac{1}{[\tilde{\lambda}\tilde{\mu}]} |\mu\rangle |\tilde{\lambda}]$. $\langle \lambda | \lambda' \rangle = (2\pi)^4 \delta^{2|2} (\lambda - \lambda')^4 \delta^{2|2} (\lambda$ Label angle-basis states as $|\lambda\rangle_{\mu}$ (phase encodes angle)
- Generators act as $T_+ |\lambda\rangle_{\mu} = \rho \frac{\langle \lambda \mu \rangle}{[\lambda \tilde{\mu}]} |\lambda\rangle_{\mu}$ and $R |\lambda\rangle$
- Amplitudes are Lorentz-invariant functions of λ , $\tilde{\lambda}$, μ , $\tilde{\mu}$ satisfying
- (1) $\langle \mu \partial_{\mu} \rangle A = [\tilde{\mu} \partial_{\tilde{\mu}}]A = 0$ (projective in μ)
- (2) Inhomogeneous $(i\langle\lambda\mu\rangle\langle\lambda\partial_{\mu}\rangle+\rho)A = (i[$

Helicity amplitudes are obtained by Fourier transform $d\phi e^{ih\phi} |\lambda e^{i\phi/2}\rangle_{\mu}$.

$$\langle \lambda \rangle_{\mu} = -\frac{1}{2} \langle \lambda \partial_{\lambda} \rangle | \lambda \rangle_{\mu}.$$

$$i[\tilde{\lambda}\tilde{\mu}][\tilde{\lambda}\partial_{\tilde{\mu}}] + \rho \Big) A = 0$$

For
$$\rho = 0$$
, simplify to
 $\partial_{\mu}A = \partial_{\tilde{\mu}}A = 0$
i.e. amplitude
depends only on λ 's

Complex-Momentum 3-particle Amplitudes?

One CSP, two scalar matter legs:

 $T_{+} \text{ covariance requirement } \left(i[\tilde{\lambda}\tilde{\mu}][\tilde{\lambda}\partial_{\tilde{\mu}}] + \rho\right)A = 0$ implies "phase" structure e.g. $A = e^{i\rho \frac{[\tilde{\mu}\tilde{\lambda}_{2}]}{[\tilde{\lambda}\tilde{\lambda}_{2}][\tilde{\mu}\tilde{\lambda}]}}f(\lambda_{i},\tilde{\lambda}_{i}).$

But *T*_covariance $(i\langle\lambda\mu\rangle\langle\lambda\partial_{\mu}\rangle + \rho)A = 0$ cannot be satisfied in this kinematics – all Lorentz-scalars built from this kinematic data are annihilated by $\langle \lambda \partial_{\mu} \rangle$.

This seems more like a limitation to the method rather than a problem with CSPs...

Complex-Momentum 3-particle Amplitudes?

 $k \cdot P \rightarrow 0$ (faster than $\eta \cdot P$).

Real-momentum collinear limit \Rightarrow diverging real phase \Rightarrow rapid oscillation "damps" the amplitude

exponentially.

Another perspective: 4-particle amplitudes contain phase factors like $e^{-i\rho \frac{\eta \cdot P}{k \cdot P}}$! In approach to 3-particle factorization kinematics, the phase oscillates rapidly because

But in complex $k \cdot P$ -plane, phase is an essential singularity overlapping the 3particle factorization pole. On some approaches to this kinematics, it diverges

<u>This is what obstructs defining 3-point amplitudes involving CSPs.</u>

Complex-Momentum 3-particle Amplitudes?

Complex momentum → complexify LG

 W_+ and W_- are no longer conjugate, but independent \rightarrow new "right-CSP" representations with

$$W_{+}|\lambda\rangle_{\mu} = \rho \frac{\langle \lambda \mu \rangle}{[\tilde{\lambda}\tilde{\mu}]} |\lambda\rangle_{\mu} \text{ but } T_{-}|\lambda\rangle_{\mu} = 0.$$

These **do** admit 3-point amplitudes A =

Can construct higher-point amplitudes (e.g. 3 matter legs + one right-CSP) that factorize appropriately at 3-point. For a = 1 (photon-like), consistency requires charge conservation just as it does for $\rho = 0$.

$$= e^{i\rho\left(\frac{[\tilde{\mu}2]}{[\tilde{\lambda}2][\tilde{\mu}\tilde{\lambda}]} + \frac{[\tilde{\mu}3]}{[\tilde{\lambda}3][\tilde{\mu}\tilde{\lambda}]}\right)} \left(\frac{[2\tilde{\lambda}][3\tilde{\lambda}]}{[23]}\right)^{a}$$

Key Questions

- Physics of on-shell CSPs avoids "shape" ambiguity in worldline current. But shape – or another means of inferring from on-shell CSP results.
- Raises many more theoretical questions
 - CSP self-interactions (e.g. Yang-Mills-like)
 - Coupling to (extension of) GR?
 - CSP Massive phase? What happens to partners?
 - Is there a symmetry protecting the mass of scalar-like CSPs?

predictions for processes involving intermediate CSPs require finding the right

• All known particles are either massless or unnaturally light – could they all be CSPs?

These questions beg for an Amplitudes approach!

Conclusions

- Lorentz invariance \rightarrow massless particles have a spin-scale. Is it zero or non-zero?
- The non-zero option makes more sense than previously thought, and has testable consequences
- If inconsistent, deserves a proper burial • If viable, we should think of the Standard Model as an effective theory with both UV and IR completions — and many questions remain to understand the IR.

New physics at $r \gtrsim 1/\rho$ associated with spin-partners of known massless particles

Gauge theory+GR work well

New physics at $> r \leq 1/M_{UV}$ associated with particles of mass M_{UV}

