The S-Matrix and boundary correlators in flat space

Amplítudes 2024
Diksha Jain
TIFR Mumbaí
2311.03443

In Collaboration with Suman Kundu, Shiraz Minwalla, Onkar Parrikar, Siddharth Prabhu, Pushkal Shrivastava.

Set up

Setup

- We consider asymptotically flat space with a boundary cutoff. We impose some boundary conditions for fields at this boundary cut-off surface.

Setup

- We consider asymptotically flat space with a boundary cutoff. We impose some boundary conditions for fields at this boundary cut-off surface.

Setup

- We consider asymptotically flat space with a boundary cutoff. We impose some boundary conditions for fields at this boundary cut-off surface.
- We compute the path integral as a function of these boundary values.

Setup

- We consider asymptotically flat space with a boundary cutoff. We impose some boundary conditions for fields at this boundary cut-off surface.
- We compute the path integral as a function of these boundary values.

Setup

- We consider asymptotically flat space with a boundary cutoff. We impose some boundary conditions for fields at this boundary cut-off surface.
- We compute the path integral as a function of these boundary values.

We ask what information does the path integral carry?

Motivation

Motivation

AdS/CFT

Motivation

$$
\begin{gathered}
\mathrm{AdS} / \mathrm{CFT} \\
\phi(z, x) \sim z^{d-\Delta} \phi_{0}(x)+z^{\Delta} \phi_{1}(x)
\end{gathered}
$$

Motivation

$$
\begin{gathered}
\text { AdS/CFT } \\
\phi(z, x) \sim z^{d-\Delta} \phi_{0}(x)+z^{\Delta} \phi_{1}(x)
\end{gathered}
$$

Fix the value of growing mode $\left(\phi_{0}\right)$ at boundary $z=\epsilon$.

Motivation

$$
\begin{gathered}
\text { AdS/CFT } \\
\phi(z, x) \sim z^{d-\Delta} \phi_{0}(x)+z^{\Delta} \phi_{1}(x)
\end{gathered}
$$

Fix the value of growing mode $\left(\phi_{0}\right)$ at boundary $z=\epsilon$.
Path integral as a function of $\left(\phi_{0}\right)$ carries information about the bulk dynamics.

Motivation

$$
\begin{gathered}
\text { AdS/CFT } \\
\phi(z, x) \sim z^{d-\Delta} \phi_{0}(x)+z^{\Delta} \phi_{1}(x)
\end{gathered}
$$

Fix the value of growing mode $\left(\phi_{0}\right)$ at boundary $z=\epsilon$.
Path integral as a function of $\left(\phi_{0}\right)$ carries information about the bulk dynamics.

Motivation

$$
\begin{gathered}
\text { AdS/CFT } \\
\phi(z, x) \sim z^{d-\Delta} \phi_{0}(x)+z^{\Delta} \phi_{1}(x)
\end{gathered}
$$

Fix the value of growing mode $\left(\phi_{0}\right)$ at boundary $z=\epsilon$.
Path integral as a function of $\left(\phi_{0}\right)$ carries information about the bulk dynamics.

Flat Space
Fix the value of field $\left(\phi_{0}\right)$ at boundary (which can be either timelike or spacelike).

Motivation

$$
\begin{gathered}
\text { AdS/CFT } \\
\phi(z, x) \sim z^{d-\Delta} \phi_{0}(x)+z^{\Delta} \phi_{1}(x)
\end{gathered}
$$

Fix the value of growing mode $\left(\phi_{0}\right)$ at boundary $z=\epsilon$.
Path integral as a function of $\left(\phi_{0}\right)$ carries information about the bulk dynamics.

Flat Space
Fix the value of field $\left(\phi_{0}\right)$ at boundary (which can be either timelike or spacelike).

Motivation

$$
\begin{gathered}
\mathrm{AdS} / \mathrm{CFT} \\
\phi(z, x) \sim z^{d-\Delta} \phi_{0}(x)+z^{\Delta} \phi_{1}(x)
\end{gathered}
$$

Fix the value of growing mode $\left(\phi_{0}\right)$ at boundary $z=\epsilon$.
Path integral as a function of $\left(\phi_{0}\right)$ carries information about the bulk dynamics.

Flat Space
Fix the value of field $\left(\phi_{0}\right)$ at boundary (which can be either timelike or spacelike).

We ask what information does the path integral as a function of ϕ_{0} carry?

Motivation

$$
\begin{gathered}
\mathrm{AdS} / \mathrm{CFT} \\
\phi(z, x) \sim z^{d-\Delta} \phi_{0}(x)+z^{\Delta} \phi_{1}(x)
\end{gathered}
$$

Fix the value of growing mode $\left(\phi_{0}\right)$ at boundary $z=\epsilon$.
Path integral as a function of $\left(\phi_{0}\right)$ carries information about the bulk dynamics.

Flat Space
Fix the value of field $\left(\phi_{0}\right)$ at boundary (which can be either timelike or spacelike).

We ask what information does the path integral as a function of ϕ_{0} carry?

Difference: In AdS ϕ_{0} couples to a boundary operator of dimension Δ and the corresponding path integral has independent description in dual theory.

- In this work, we focussed on scalar fields but our results can be generalised to other fields as well.
- In this work, we focussed on scalar fields but our results can be generalised to other fields as well.
- For most of the calculations, we consider the boundary cut-off surface to be a union of two spacelike slices, one in the far past (at time $-T$) and another in the far future (at time $+T$).
\qquad
- In this work, we focussed on scalar fields but our results can be generalised to other fields as well.
- For most of the calculations, we consider the boundary cut-off surface to be a union of two spacelike slices, one in the far past (at time $-T$) and another in the far future (at time $+T$).
\qquad

$$
\square-T
$$

- However, most of our results can be generalised to arbitrary boundary surface (We consider null boundary as another example and make some comments about relation to C(FT).

Results/Outline

Results/Outline

- We provide a precise relationship between the flat space S-matrix and the "Path integral as a functional of boundary values".

Results/Outline

- We provide a precise relationship between the flat space S-matrix and the "Path integral as a functional of boundary values".
- S-matrix unitarity provides non-trivial constraint on this path integral.

Results/Outline

- We provide a precise relationship between the flat space S-matrix and the "Path integral as a functional of boundary values".
- S-matrix unitarity provides non-trivial constraint on this path integral.
- We conjecture that the flat space wave functional and the S-matrix are related by analytic continuation.

Results/Outline

- We provide a precise relationship between the flat space S-matrix and the "Path integral as a functional of boundary values".
- S-matrix unitarity provides non-trivial constraint on this path integral.
- We conjecture that the flat space wave functional and the S-matrix are related by analytic continuation.
- We analysed the analytic structure of $G_{\text {brry }}$ in position space both for massive and massless particles.

Results/Outline

- We provide a precise relationship between the flat space S-matrix and the "Path integral as a functional of boundary values".
- S-matrix unitarity provides non-trivial constraint on this path integral.
- We conjecture that the flat space wave functional and the S-matrix are related by analytic continuation.
- We analysed the analytic structure of $G_{\text {brry }}$ in position space both for massive and massless particles.
- For massless particles, $G_{\text {bdry }}$ exhibits features like bulk point síngularity (and it's generalisations) whose coefficient encode the flat space S-matrix.

S-matrix as boundary observable

S-matrix as boundary observable

$$
S\left(\left\{p_{i}\right\},\left\{q_{j}\right\}\right)=\prod_{i=1}^{n} \int_{M} d^{d+1} x_{i} \sqrt{g\left(x_{i}\right)} f_{p_{i}}\left(x_{i}\right)\left(\nabla_{i}^{2}-m^{2}\right) \prod_{j=1}^{m} \int_{M} d^{d+1} y_{j} \sqrt{g\left(y_{j}\right)} \bar{f}_{q_{j}}\left(y_{j}\right)\left(\nabla_{j}^{2}-m^{2}\right) G\left(\left\{x_{i} y_{i}\right\}\right)
$$

S-matrix as boundary observable

$$
S\left(\left\{p_{i}\right\},\left\{q_{j}\right\}\right)=\prod_{i=1}^{n} \int_{M} d^{d+1} x_{i} \sqrt{g\left(x_{i}\right)} f_{p_{i}}\left(x_{i}\right)\left(\nabla_{i}^{2}-m^{2}\right) \prod_{j=1}^{m} \int_{M} d^{d+1} y_{j} \sqrt{g\left(y_{j}\right)} \bar{f}_{q_{j}}\left(y_{j}\right)\left(\nabla_{j}^{2}-m^{2}\right) G\left(\left\{x_{i}, y_{i}\right\}\right)
$$

$$
\text { Satisfies free EOM i.e. }\left(\nabla^{2}-m^{2}\right) f_{p}(x)=0
$$

S-matrix as boundary observable

$$
\begin{array}{r}
S\left(\left\{p_{i}\right\},\left\{q_{j}\right\}\right)=\prod_{i=1}^{n} \int_{M} d^{d+1} x_{i} \sqrt{g\left(x_{i}\right)} f_{p_{i}}\left(x_{i}\right)\left(\nabla_{i}^{2}-m^{2}\right) \prod_{j=1}^{m} \int_{M} d^{d+1} y_{j} \sqrt{g\left(y_{j}\right)} \bar{f}_{q_{j}}\left(y_{j}\right)\left(\nabla_{j}^{2}-m^{2}\right) G\left(\left\{x_{i}, y_{i}\right\}\right) \\
\text { (Satisfies free EOM i.e. }\left(\nabla^{2}-m^{2}\right) f_{p}(x)=0 \\
\left.\int_{M} d^{d+1} x \sqrt{g(x)} f_{p}(x)\left(\nabla^{2}-m^{2}\right) \phi(x)=\int_{M} d^{d+1} x \partial_{\mu}\left(f_{p}(x) \sqrt{g(x)} \partial_{\mu} \phi(x)-\phi(x) \sqrt{g(x)} \partial_{\mu} f_{p}(x)\right)\right)
\end{array}
$$

S-matrix as boundary observable

$$
S\left(\left\{p_{i}\right\},\left\{q_{j}\right\}\right)=\prod_{i=1}^{n} \int_{M} d^{d+1} x_{i} \sqrt{g\left(x_{i}\right)} f_{p_{i}}\left(x_{i}\right)\left(\nabla_{i}^{2}-m^{2}\right) \prod_{j=1}^{m} \int_{M} d^{d+1} y_{j} \sqrt{g\left(y_{j}\right)} \bar{f}_{q_{j}}\left(y_{j}\right)\left(\nabla_{j}^{2}-m^{2}\right) G\left(\left\{x_{i}, y_{i}\right\}\right)
$$

$$
\text { Satisfies free EOM i.e. }\left(\nabla^{2}-m^{2}\right) f_{p}(x)=0
$$

$$
=\prod_{i=1}^{n} \int_{B} d^{d} x_{i} \sqrt{h} n^{\mu_{i}}\left(f_{p_{i}} \partial_{\mu_{i}}-\partial_{\mu_{i}} f_{p_{i}}\right) \prod_{j=1}^{m} \int_{B} d^{d} y_{j} \sqrt{h} n^{\mu_{j}}\left(\bar{f}_{q_{j}} \partial_{\mu_{j}}-\partial_{\mu_{j}} \bar{f}_{q_{j}}\right) G\left(\left\{x_{i}, y_{j}\right\}\right)
$$

Path Integral

Path Integral

We can relate S-matrix (Euclidean version) to the bulk Euclidean pathintegral with specified boundary conditions on a boundary surface B.

Path Integral

We can relate S-matrix (Euclidean version) to the bulk Euclidean pathintegral with specified boundary conditions on a boundary surface B.

$$
Z\left[\beta_{0}\right]=\int_{\left.\phi\right|_{B}=\beta_{0}}[D \phi] e^{-S[\phi]}
$$

Path Integral

We can relate S-matrix (Euclidean version) to the bulk Euclidean pathintegral with specified boundary conditions on a boundary surface B.

$$
\begin{aligned}
Z\left[\beta_{0}\right] & =\int_{\left.\phi\right|_{B}=\beta_{0}}[D \phi] e^{-S[\phi]} \\
G_{\text {bdry }}\left(\left\{x_{i}\right\},\left\{y_{i}\right\}\right) & =\left.\prod_{i=1}^{n} \frac{\delta}{\delta \beta_{0}\left(x_{i}\right)} \prod_{j=1}^{m} \frac{\delta}{\delta \beta_{0}\left(y_{j}\right)} Z\left[\beta_{0}\right]\right|_{\beta_{0}=0}
\end{aligned}
$$

Using Hamilton-Jacobí:

$$
G_{\text {bdry }}=\int_{\left.\phi\right|_{B}=0}[D \phi] \prod_{i=1}^{n} n^{\mu_{i}} \partial_{\mu_{i}} \phi\left(x_{i}\right) \prod_{j=1}^{m} n^{\mu_{j}} \partial_{\mu_{j}} \phi\left(y_{j}\right) e^{-S[\phi]}
$$

Using Hamilton-Jacobí:

$$
G_{\text {bdry }}=\int_{\left.\phi\right|_{B}=0}[D \phi] \prod_{i=1}^{n} n^{\mu_{i}} \partial_{\mu_{i}} \phi\left(x_{i}\right) \prod_{j=1}^{m} n^{\mu_{j}} \partial_{\mu_{j}} \phi\left(y_{j}\right) e^{-S[\phi]}
$$

Using Hamilton-Jacobí:

$$
\begin{gathered}
G_{\text {bdry }}=\int_{\left.\phi\right|_{B}=0}[D \phi] \prod_{i=1}^{n} n^{\mu_{i}} \partial_{\mu_{i}} \phi\left(x_{i}\right) \prod_{j=1}^{m} n^{\mu_{j}} \partial_{\mu_{j}} \phi\left(y_{j}\right) e^{-S[\phi]} \\
\left(f_{p_{i}} n^{\mu_{i}} \partial_{\mu_{i}} \phi\left(x_{i}\right)-\phi\left(x_{i}\right) n^{\mu_{i}} \partial_{\mu_{i}} f_{p_{i}}\right)
\end{gathered}
$$

Using Hamilton-Jacobí:

$$
G_{\mathrm{bdry}}=\int_{\left.\phi\right|_{B}=0}[D \phi] \prod_{i=1}^{n} n^{\mu_{i}} \partial_{\mu_{i}} \phi\left(x_{i}\right) \prod_{j=1}^{m} n^{\mu_{j}} \partial_{\mu_{j}} \phi\left(y_{j}\right) e^{-S[\phi]}
$$

$$
S_{E}\left(\left\{p_{i}\right\},\left\{q_{j}\right\}\right)=\int \prod_{i=1}^{n} d^{d} x_{i} f_{p_{i}}\left(x_{i}\right) \prod_{j=1}^{m} d^{d} y_{j} \bar{f}_{q_{j}}\left(y_{j}\right) G_{\text {bdry }}\left(\left\{x_{i}\right\},\left\{y_{j}\right\}\right)
$$

Analytic Continuation

Analytic Continuation

Lorentzian Dírichlet
problem but with a twist

Analytic Continuation

Euclidean Dirichlet problem

Lorentzian Dírichlet problem but with a twist

- Take the large T limit first and then analytically continue to Lorentizian space.

Analytic Continuation

Euclidean Dirichlet problem Lorentzian Dirichlet
problem but with a twist

- Take the large T limit first and then analytically continue to Lorentizian space.

$$
S\left(\left\{p_{i}\right\},\left\{q_{j}\right\}\right)=\int \prod_{i=1}^{n} d^{d} x_{i} f_{p_{i}}\left(x_{i}\right) \prod_{j=1}^{m} d^{d} y_{j} \bar{q}_{q_{j}}\left(y_{j}\right) G_{\text {bdry }}^{L}\left(\left\{x_{i}\right\},\left\{y_{j}\right\}\right)
$$

Analytic Continuation

Euclidean Dírichlet problem Lorentzian Dirichlet
problem but with a twist

- Take the large T limit first and then analytically continue to Lorentizian space.

$$
S\left(\left\{p_{i}\right\},\left\{q_{j}\right\}\right)=\int \prod_{i=1}^{n} d^{d} x_{i} f_{p_{i}}\left(x_{i}\right) \prod_{j=1}^{m} d^{d} y_{j} \bar{f}_{q_{j}}\left(y_{j}\right) G_{\mathrm{bdry}}^{L}\left(\left\{x_{i}\right\},\left\{y_{j}\right\}\right)
$$

- We conclude that the Dirichlet path integral serves as a generating functional for S-matrices.

In-Out Problem

In-Out Problem

- The fact that S-matrix can be obtained from a "Path integral as a functional of boundary values" is not a new statement.

In-Out Problem

- The fact that S-matrix can be obtained from a "Path integral as a functional of boundary values" is not a new statement.
- AFS in 1974 made a similar statement.

> [Arefeva, Faddeev \& Slavnov '74]

In-Out Problem

- The fact that S-matrix can be obtained from a "Path integral as a functional of boundary values" is not a new statement.
- AFS in 1974 made a similar statement.
[Arefeva, Faddeev \& Slavnov '74]
- But they considered Lorentzian path integral as a functional of "positive energy data in the past and negative energy data in future"- "In-Out Problem".

Similarities/Differences

Similarities/Differences

- The quantities which receive contributions from deep inside the bulk give the same answer in both Dirichlet and In-Out problem.

Similarities/Differences

- The quantities which receive contributions from deep inside the bulk give the same answer in both Dirichlet and In-Out problem.
- S-matrix is such a quantity.

Símilarities/Differences

- The quantities which receive contributions from deep inside the bulk give the same answer in both Dirichlet and In-Out problem.
- S-matrix is such a quantíty.
- So, S-matrix can be computed using both In-out (as AFS found) and Dírichlet path integral.

Símilarities/Differences

- The quantities which receive contributions from deep inside the bulk give the same answer in both Dirichlet and In-Out problem.
- S-matrix is such a quantíty.
- So, S-matrix can be computed using both In-out (as AFS found) and Dirichlet path integral.
- But the full on-shell action for In -Out and Dírichlet path integral are different.

Símilarities/Differences

- The quantities which receive contributions from deep inside the bulk give the same answer in both Dirichlet and In-Out problem.
- S-matrix is such a quantíty.
- So, S-matrix can be computed using both In-out (as AFS found) and Dirichlet path integral.
- But the full on-shell action for In -Out and Dírichlet path integral are different.

Other Contributions

Other Contributions

- The Path integral $Z[\beta]$ carries much more information than just the S-matrix.

Other Contributions

- The Path integral $Z[\beta]$ carries much more information than just the S-matrix.
- It contains information about the vacuum wave-functional.

Other Contributions

- The Path integral $Z[\beta]$ carries much more information than just the S-matrix.
- It contains information about the vacuum wave-functional.

Other Contributions

- The Path integral $Z[\beta]$ carries much more information than just the S-matrix.
- It contains information about the vacuum wave-functional.

- Such diagrams are different in Dirichlet and In-Out problem. In the Dirichlet case, we obtain vacuum wavefunction in x-basis and in the latter case, in coherent state basis.

Wave-function \& S-matrix

Wave-function \& S-matrix

- We found that at tree level, the wave function contains a pole in $\sum \omega_{i}$.

Wave-function \& S-matrix

- We found that at tree level, the wave function contains a pole in $\sum \omega_{i}$.

$$
\psi\left(\left\{\bar{\beta}_{k}\right\}\right) \approx\left(-\int \prod_{i} d^{d} k_{i} \frac{i \lambda}{\sum_{i} \omega_{i}} \delta^{d}\left(\sum_{i} \vec{k}_{i}\right) \prod_{i} \bar{\beta}_{k_{i}}\right)
$$

Wave-function \& S-matrix

- We found that at tree level, the wave function contains a pole in $\sum \omega_{i}$.

Coefficient of singularity gives S-matrix.

Wave-function \& S-matrix

- We found that at tree level, the wave function contains a pole in $\sum \omega_{i}$.

Coefficient of singularity gives S-matrix.

Wavefunction \Longrightarrow S-matrix

Wave-function \& S-matrix

- We found that at tree level, the wave function contains a pole in $\sum \omega_{i}$.

Coefficient of singularity gives S-matrix.

$$
\text { Wavefunction } \Longrightarrow \text { S-matrix }
$$

Unitarity

Unitarity
 $$
S^{\dagger} S=0
$$

Unitarity

$S^{\dagger} S=\rrbracket$

$$
\bar{\beta}=T^{\top} \quad \bar{\beta}^{\prime}
$$

$\int \mathscr{D} \bar{\beta}^{\prime} \mathscr{D} \bar{\beta} \exp \left(-\int \frac{d^{d} k}{(2 \pi)^{d}} 2 \omega_{k} \bar{\beta}_{-\bar{k}}^{*} \bar{\beta}_{\bar{k}}^{\prime}\right) Z^{*}[\beta, \bar{\beta}] \mathrm{C}\left[\beta^{\prime}, \bar{\beta}\right]=\exp \left(\int \frac{d^{d} p}{(2 \pi)^{d}} 2 \omega_{\bar{p}} \bar{\beta}_{\bar{p}}^{*} \beta \beta_{-\bar{p}}\right)$

Coherent State Interpretation

Coherent State Interpretation

Coherent state $|z\rangle$ is an eigenstate of +ve energy modes $a(k)$.

Coherent State Interpretation

Coherent state $|z\rangle$ is an eigenstate of +ve energy modes $a(k)$. Specifying +ve energy data in past \equiv specifying eigenvalue of $|z\rangle$

Coherent State Interpretation

Coherent state $|z\rangle$ is an eigenstate of +ve energy modes $a(k)$. Specifying +ve energy data in past \equiv specifying eigenvalue of $|z\rangle$

$$
\begin{aligned}
\left\langle\overline{\bar{f}}_{f}\right| S^{\dagger} S\left|z_{i}\right\rangle & =\left\langle\bar{z}_{f} \mid z_{i}\right\rangle \\
\int \frac{d^{2} z}{\pi} e^{--\bar{z} \bar{z}}\left\langle\bar{z}_{f}\right| S^{\dagger}|z\rangle\langle z| S\left|z_{i}\right\rangle & =e^{\bar{z}^{\bar{z}} \bar{z}_{i}}
\end{aligned}
$$

Coherent State Interpretation

Coherent state $|z\rangle$ is an eigenstate of +ve energy modes $a(k)$. Specifying +ve energy data in past \equiv specifying eigenvalue of $|z\rangle$

$$
\begin{aligned}
\left\langle\bar{z}_{f}\right| S^{\dagger} S\left|z_{i}\right\rangle & =\left\langle\bar{z}_{f} \mid z_{i}\right\rangle \\
\int \frac{d^{2} z}{\pi} e^{-z \bar{z}}\left\langle\bar{z}_{f}\right| S^{\dagger}|z\rangle\langle z| S\left|z_{i}\right\rangle & =e^{\bar{z}_{f} z_{i}}
\end{aligned}
$$

$$
\int \mathscr{D} \bar{\beta}^{\prime} \mathscr{D} \bar{\beta} \exp \left(-\int \frac{d^{d} k}{(2 \pi)^{d}} 2 \omega_{k} \bar{\beta}_{-\bar{k}}^{*} \bar{\beta}_{\vec{k}}^{\prime}\right) Z^{*}[\beta, \bar{\beta}] Z\left[\beta^{\prime}, \bar{\beta}\right]=\exp \left(\int \frac{d^{d} p}{(2 \pi)^{d}} 2 \omega_{\bar{p}} \beta_{\bar{p}}^{*} \beta_{-\vec{p}}\right)
$$

$G_{\text {bdry }}$: massless particles

$G_{\text {bdry }}$: massless particles

$$
G_{\text {bdry }}=\lambda \int d^{d+1} y \prod_{i=1}^{n} G_{\partial B}\left(x_{i}, y\right)
$$

$G_{\text {bdry }}$: massless particles

$$
G_{\mathrm{bdry}}=\lambda \int d^{d+1} y \prod_{i=1}^{n} G_{\partial B}\left(x_{i}, y\right)
$$

Near Singularity

$G_{\text {bdry }}$: massless particles

$$
G_{\mathrm{bdry}}=\lambda \int d^{d+1} y \prod_{i=1}^{n} G_{\partial B}\left(x_{i}, y\right)
$$

Near Singularity

$$
G_{\partial B}\left(x_{i}, y\right)=\left.(2 n . \nabla G(x, y))\right|_{x \rightarrow x_{i}}
$$

$G_{\text {bdry }}:$ massless particles

$G_{\text {bdry }}:$ massless particles

$$
G(x, y)=\int d^{d+1} y \prod_{i=1}^{n}\left(\frac{1}{\left(\left(x_{i}-y\right)^{2}-i \epsilon\right)^{\frac{D-2}{2}}}\right)
$$

$G_{\text {bdry }}$: massless particles
 $$
G(x, y)=\int d^{d+1} y \prod_{i=1}^{n}\left(\frac{1}{\left.\left(x_{i}-y\right)^{2}-i \epsilon\right)^{\frac{\sigma_{2}-2}{2}}}\right)
$$

$G(x, y)$ has pole-type singularities whenever $\left(x_{i}-y\right)^{2}=0$.

$G_{\text {bdry }}$: massless particles
 $$
G(x, y)=\int d^{d+1} y \prod_{i=1}^{n}\left(\frac{1}{\left(\left(x_{i}-y\right)^{2}-i \epsilon\right)^{\frac{D-2}{2}}}\right)
$$

$G(x, y)$ has pole-type singularities whenever $\left(x_{i}-y\right)^{2}=0$.
Pínch off:

$$
\left(x_{i}-y\right)^{2}=0 \quad \text { for } \quad i>3
$$

$$
\sum_{i=1}^{m} \omega_{i}\left(x_{i}-y\right)=0 \quad \forall \quad \omega_{i}>0
$$

$G_{\text {bdry }}$: massless particles

$$
G(x, y)=\int d^{d+1} y \prod_{i=1}^{n}\left(\frac{1}{\left(\left(x_{i}-y\right)^{2}-i \epsilon\right)^{\frac{D-2}{2}}}\right)
$$

$G(x, y)$ has pole-type singularities whenever $\left(x_{i}-y\right)^{2}=0$.
Pínch off:

$$
\left(x_{i}-y\right)^{2}=0 \quad \text { for } \quad i>3
$$

$$
\sum_{i=1}^{m} \omega_{i}\left(x_{i}-y\right)=0 \quad \forall \quad \omega_{i}>0
$$

We show that residue at this singularity carries information about S-matrix.

$G_{\text {bdry }}:$ massless particles

$$
G(x, y)=\int d^{d+1} y \prod_{i=1}^{n}\left(\frac{1}{\left(\left(x_{i}-y\right)^{2}-i \epsilon\right)^{\frac{D-2}{2}}}\right)
$$

$G(x, y)$ has pole-type singularities whenever $\left(x_{i}-y\right)^{2}=0$.
Pinch off:

$$
\left(x_{i}-y\right)^{2}=0 \quad \text { for } \quad i>3
$$

$$
\sum_{i=1}^{m} \omega_{i}\left(x_{i}-y\right)=0 \quad \forall \quad \omega_{i}>0
$$

We show that residue at this singularity carries information about S-matrix.
[J. Maldacena, D. Simmons-Duffin and A. Zhiboedov '17]

Síngularity

Síngularity

The equation for pinch-off for $G_{\text {bdry }}$ can be phrased in terms of the distance matrix.

Singularity

The equation for pinch-off for $G_{\text {bdry }}$ can be phrased in terms of the distance matrix.

$$
N_{i j}=\left(x_{i}-x_{j}\right)^{2}=\left(\left(x_{i}-y\right)-\left(x_{j}-y\right)\right)^{2}
$$

Singularity

The equation for pinch-off for $G_{\text {bdry }}$ can be phrased in terms of the distance matrix.

$$
N_{i j}=\left(x_{i}-x_{j}\right)^{2}=\left(\left(x_{i}-y\right)-\left(x_{j}-y\right)\right)^{2}
$$

Assuming there exists a bulk point y s.t. $\left(x_{i}-y\right)^{2}=0$

Singularity

The equation for pinch-off for $G_{\text {bdry }}$ can be phrased in terms of the distance matrix.

$$
N_{i j}=\left(x_{i}-x_{j}\right)^{2}=\left(\left(x_{i}-y\right)-\left(x_{j}-y\right)\right)^{2}
$$

Assuming there exists a bulk point y s.t. $\left(x_{i}-y\right)^{2}=0$

$$
N_{i j}=2\left(x_{i}-y\right) \cdot\left(x_{j}-y\right)
$$

Singularity

The equation for pinch-off for $G_{\text {bdry }}$ can be phrased in terms of the distance matrix.

$$
N_{i j}=\left(x_{i}-x_{j}\right)^{2}=\left(\left(x_{i}-y\right)-\left(x_{j}-y\right)\right)^{2}
$$

Assuming there exists a bulk point y s.t. $\left(x_{i}-y\right)^{2}=0$

$$
N_{i j}=2\left(x_{i}-y\right) \cdot\left(x_{j}-y\right)
$$

Pínch-off/Momentum conservation:

$$
\sum_{i=1}^{m} \omega_{i} N_{i j}=0
$$

Singularity

The equation for pinch-off for $G_{\text {bury }}$ can be phrased in terms of the distance matrix.

$$
N_{i j}=\left(x_{i}-x_{j}\right)^{2}=\left(\left(x_{i}-y\right)-\left(x_{j}-y\right)\right)^{2}
$$

Assuming there exists a bulk point y s.t. $\left(x_{i}-y\right)^{2}=0$

$$
N_{i j}=2\left(x_{i}-y\right) \cdot\left(x_{j}-y\right)
$$

Pínch-off/Momentum conservation:

$$
\sum_{i=1}^{m} \omega_{i} N_{i j}=0
$$

Singularity appears when $N_{i j}$ has a zero eigenvalue with a positive eigenvector.

Co-dimension of Singularity

Co-dimension of Síngularity

Q1: Given a generic set of $\left\{x_{i}\right\}$, how many "tunings" will one need to perform in order to obtaín a síngular $G_{\text {bdry }}$?

Co-dimension of Síngularity

Q1: Given a generic set of $\left\{x_{i}\right\}$, how many "tunings" will one need to perform in order to obtaín a síngular $G_{\text {bdry }}$?

- Intersection of light cones.
- Momentum conservation.

Co-dimension of Singularity

Q1: Given a generic set of $\left\{x_{i}\right\}$, how many "tunings" will one need to perform in order to obtaín a singular $G_{\text {bdry }}$?

- Intersection of light cones.
- Momentum conservation.

$$
\begin{array}{cll}
c=1 & \text { if } & \mathrm{m} \leq \mathrm{D}+1 \\
c=m-D & \text { if } & \mathrm{m}>\mathrm{D}+1
\end{array}
$$

Q2: Given a set of boundary points $\left\{x_{i}\right\}$ such that $G_{\text {bdry }}$ is singular for those insertions, does $G_{\text {bdry }}$ receive contributions from one S-matrix or many?

Q2: Given a set of boundary points $\left\{x_{i}\right\}$ such that $G_{\text {bdry }}$ is singular for those insertions, does $G_{\text {bdry }}$ receive contributions from one S-matrix or many?

Again depends on number of insertions and dimension of spacetime.

Q2: Given a set of boundary points $\left\{x_{i}\right\}$ such that $G_{\text {bdry }}$ is singular for those insertions, does $G_{\text {bdry }}$ receive contributions from one S-matrix or many?

Again depends on number of insertions and dimension of spacetime.

- When $m \leq D+1$, only one S-matrix.

Q2: Given a set of boundary points $\left\{x_{i}\right\}$ such that $G_{\text {bdry }}$ is singular for those insertions, does $G_{\text {bdry }}$ receive contributions from one S-matrix or many?

Again depends on number of insertions and dimension of spacetime.

- When $m \leq D+1$, only one S-matrix.
- When $m>D+1, G_{\text {bdry }}$ receives contributions from $m-D$, S-matrices.

Q2: Given a set of boundary points $\left\{x_{i}\right\}$ such that $G_{\text {bdry }}$ is singular for those insertions, does $G_{\text {bdry }}$ receive contributions from one S-matrix or many?

Again depends on number of insertions and dimension of spacetime.

- When $m \leq D+1$, only one S-matríx.
- When $m>D+1, G_{\text {bdry }}$ receives contributions from $m-D$, S-matrices.

Same as co-dimension of singularity.

$G_{\text {bdry }}:$ massless particles

$G_{\text {bdry }}$: massless particles

- We find that for massless particles, $G_{\mathrm{bdry}}\left(x_{i}\right)$ (at tree level) is an analytic function in the space of boundary insertions with pole type singularities.

$G_{\text {dry }}$: massless particles

- We find that for massless particles, $G_{\text {dry }}\left(x_{i}\right)$ (at tree level) is an analytic function in the space of boundary insertions with pole type singularities.
- These singularities exist on a co-dimension greater than or equal to one ($c \geq 1$) in the space of boundary insertions.

$G_{\text {dry }}$: massless particles

- We find that for massless particles, $G_{\text {dry }}\left(x_{i}\right)$ (at tree level) is an analytic function in the space of boundary insertions with pole type singularities.
- These singularities exist on a co-dímension greater than or equal to one $(c \geq 1)$ in the space of boundary insertions.
- The location of these singularities can be characterised in terms of zero eigenvalues of the boundary distance matrix: $N_{i j}=\left(x_{i}-x_{j}\right)^{2}$.

$G_{\text {bdry }}$: massless particles

- We find that for massless particles, $G_{\text {dry }}\left(x_{i}\right)$ (at tree level) is an analytic function in the space of boundary insertions with pole type singularities.
- These singularities exist on a co-dimension greater than or equal to one $(c \geq 1)$ in the space of boundary insertions.
- The location of these singularities can be characterised in terms of zero eigenvalues of the boundary distance matrix: $N_{i j}=\left(x_{i}-x_{j}\right)^{2}$.
- The residue at these singularities contain the information about flat space S-matrix.

Two ways to extract S-matrix from $G_{\text {bdry }}$:

1. Multiply with mode functions and integrate (essentially Fourier transform).
2. The coefficient of singularity of $G_{\text {bdry }}$ is the S - matrix.

Relation to Celestial CFT

Relation to Celestial CFT

- As a special case, we can work with Minkowski spacetime with null cutoff (boundary) surface.

Relation to Celestial CFT

- As a special case, we can work with Minkowski spacetime with null cutoff (boundary) surface.
- We found that $G_{\text {bdry }}$ is an analytic function with some pole-type singularities and again the coefficient of these singularities give S matrix.

Relation to Celestial CFT

- As a special case, we can work with Minkowski spacetime with null cutoff (boundary) surface.
- We found that $G_{\text {bdry }}$ is an analytic function with some pole-type singularities and again the coefficient of these singularities give S matrix.
- In the case of four point correlator, the location of the singularity in $G_{\text {bdry }}$ is the same as the location of delta function in CCFT correlator.

Relation to Celestial CFT

- As a special case, we can work with Minkowski spacetime with null cutoff (boundary) surface.
- We found that $G_{\text {bdry }}$ is an analytic function with some pole-type singularities and again the coefficient of these singularities give S matrix.
- In the case of four point correlator, the location of the singularity in $G_{\text {bdry }}$ is the same as the location of delta function in CCFT correlator.

Relation to Celestial CFT

- As a special case, we can work with Minkowski spacetime with null cutoff (boundary) surface.
- We found that $G_{\text {bdry }}$ is an analytic function with some pole-type singularities and again the coefficient of these singularities give S matrix.
- In the case of four point correlator, the location of the singularity in $G_{\text {bdry }}$ is the same as the location of delta function in CCFT correlator.
[S. Banerjee '24]

$G_{\text {bdry }}$: massive particles

$G_{\text {bdry }}$: massive particles

We computed boundary correlates in position space at tree level for massive scalar fields using saddle point approximation (treating T as the large parameter).

$G_{\text {bdry }}$: massive particles

We computed boundary correlates in position space at tree level for massive scalar fields using saddle point approximation (treating T as the large parameter).

$G_{\text {bdry }}$: massive particles

We computed boundary correlates in position space at tree level for massive scalar fields using saddle point approximation (treating T as the large parameter).

$$
G_{\mathrm{bdry}}=\int d^{d+1} y \lambda \prod_{i=1}^{n} G_{\partial B}\left(x_{i}, y\right)
$$

$G_{\text {bdry }}$: massive particles

We computed boundary correlates in position space at tree level for massive scalar fields using saddle point approximation (treating T as the large parameter).

$$
\begin{aligned}
& G_{\mathrm{bdry}}=\int d^{d+1} y \lambda \prod_{i=1}^{n} G_{\partial B}\left(x_{i}, y\right) \\
& G_{\partial B}\left(x_{i}, y\right)=\left.(2 n . \nabla G(x, y))\right|_{x \rightarrow x_{i}}
\end{aligned}
$$

$G_{\text {bdry }}$: massive particles

We computed boundary correlates in position space at tree level for massive scalar fields using saddle point approximation (treating T as the large parameter).

$$
\begin{gathered}
G_{\mathrm{bdry}}=\int d^{d+1} y \lambda \prod_{i=1}^{n} G_{\partial B}\left(x_{i}, y\right) \\
G_{\partial B}\left(x_{i}, y\right)=\left.(2 n \cdot \nabla G(x, y))\right|_{x \rightarrow x_{i}} \\
G(x, y)=C \frac{e^{-i m(x-y)^{2}}}{\left((x-y)^{2}\right)^{\frac{D-1}{4}}}
\end{gathered}
$$

$G_{\text {bdry }}$: massive particles

$G_{\text {bdry }}$: massive particles

$$
\sum_{i} m_{i} \frac{\left(x_{i}-y\right)^{\mu}}{d_{i}\left(x_{i}, y\right)}=0
$$

This equation gives momentum conservation at the bulk point y.

$G_{\text {bdry }}$: massive particles

$$
\sum_{i} m_{i} \frac{\left(x_{i}-y\right)^{\mu}}{d_{i}\left(x_{i}, y\right)}=0
$$

This equation gives momentum conservation at the bulk point y.

$$
G_{\mathrm{bdry}} \approx \prod_{i=1}^{n}\left(\left(\frac{m_{i}}{2 \pi}\right)^{\frac{D-1}{2}} \frac{(-T-t)}{d_{i}^{i \frac{D+1}{2}}} e^{-i m_{i} d_{i}^{\text {in }}}\right) \prod_{i=1}^{m}(\text { out }) S\left(\frac{m_{i}\left(\vec{x}_{i}^{\text {in }}-\vec{y}\right)}{d_{i}^{\text {in }}}, \frac{m_{i}\left(\vec{x}_{i}^{\text {out }}-\vec{y}\right)}{d_{i}^{\text {out }}}\right)
$$

$G_{\text {bdry }}$: massive particles

$G_{\text {bdry }}$: massive particles

Two ways to extract S-matrix from $G_{b d r y}$:

$G_{\text {bdry }}$: massive particles

Two ways to extract S-matrix from $G_{\text {bdry }}$:

1. Multiply with mode functions and integrate (essentially Fourier transform)

$G_{\text {bdry }}$: massive particles

Two ways to extract S-matrix from $G_{\text {bdry }}$:

1. Multiply with mode functions and integrate (essentially Fourier transform)
2. Strip off extra factors from $G_{\text {bdry }}$ and obtain the S-matrix.

$G_{\text {bdry }}$: massive particles

Two ways to extract S-matrix from $G_{\text {bdry }}$:

1. Multiply with mode functions and integrate (essentially Fourier transform)
2. Strip off extra factors from $G_{\text {bdry }}$ and obtain the S-matrix.

Holographic Renormalization is non-local!!

Results/Outline

- S-matrix can be thought of as a boundary observable and can be computed using "Path integral as a functional of boundary values".
- S-matrix unitarity provides non-trivial constraint on this path integral.
- We argue that the flat space wave functional and the S-matrix are related by analytic continuation.
- We also analyse properties of $G_{\text {brry }}$ in position space both for massive and massless particles.
- For massless particles, $G_{\text {bdry }}$ exhibits features like bulk poínt singularity whose coefficient encode the flat space S-matrix.

Food for Thought!!

Food for Thought!!

- Can asymptotic symmetries be understood as symmetries of on-shell action?

Food for Thought!!

- Can asymptotic symmetries be understood as symmetries of on-shell action?
- Can the relationshíp between wave-function \& S-matrix be understood as crossing?

Food for Thought!!

- Can asymptotic symmetries be understood as symmetries of on-shell action?
- Can the relationshíp between wave-function \& S-matrix be understood as crossing?
- Extension to asymptotically de Sitter spacetíme.

Food for Thought!!

- Can asymptotic symmetries be understood as symmetries of on-shell action?
- Can the relationshíp between wave-function \& S-matrix be understood as crossing?
- Extension to asymptotically de Sitter spacetime.
- Can we use this approach to define \mathbb{R} finite S-matrix?

Food for Thought!!

- Can asymptotic symmetries be understood as symmetries of on-shell action?
- Can the relationshíp between wave-function \& S-matrix be understood as crossing?
- Extension to asymptotically de Sitter spacetime.
- Can we use this approach to define \mathbb{R} finite S-matrix?

ధస్లృలదదగగతు

நன்ली ड्रणाइा पंतहाव येదपषाथ நனறி றヘ円 ধনাবাদ Thank you फた గ్వantaxem धन्यवाद

