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path integral as a function of  
carry?

ϕ0

Difference: In AdS  couples to a boundary operator of dimension  and 
the corresponding  path integral has independent description in dual theory.
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• For most of the calculations, we consider the boundary cut-off surface 
to be a union of two spacelike slices, one in the far past (at time -T) and 
another in the far future (at time +T). 
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• However, most of our results can be generalised to arbitrary boundary 
surface (We consider null boundary as another example and make some 
comments about relation to CCFT).
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• For massless particles,  exhibits features like bulk point singularity 
(and it’s generalisations)whose coefficient encode the flat space S-matrix.

Gbdry



S-matrix as boundary observable



S-matrix as boundary observable
S({pi}, {qj}) =

n

∏
i=1

∫M
dd+1xi g(xi) fpi

(xi)(∇2
i − m2)

m

∏
j=1

∫M
dd+1yj g(yj) f̄qj

(yj)(∇2
j − m2)G({xi, yi})



S-matrix as boundary observable
S({pi}, {qj}) =

n

∏
i=1

∫M
dd+1xi g(xi) fpi

(xi)(∇2
i − m2)

m

∏
j=1

∫M
dd+1yj g(yj) f̄qj

(yj)(∇2
j − m2)G({xi, yi})

Satisfies free EOM i.e. (∇2 − m2)fp(x) = 0



S-matrix as boundary observable
S({pi}, {qj}) =

n

∏
i=1

∫M
dd+1xi g(xi) fpi

(xi)(∇2
i − m2)

m

∏
j=1

∫M
dd+1yj g(yj) f̄qj

(yj)(∇2
j − m2)G({xi, yi})

Satisfies free EOM i.e. (∇2 − m2)fp(x) = 0

∫M
dd+1x g(x) fp(x)(∇2 − m2)ϕ(x) = ∫M

dd+1x ∂μ (fp(x) g(x)∂μϕ(x) − ϕ(x) g(x)∂μ fp(x)))



S-matrix as boundary observable
S({pi}, {qj}) =

n

∏
i=1

∫M
dd+1xi g(xi) fpi

(xi)(∇2
i − m2)

m

∏
j=1

∫M
dd+1yj g(yj) f̄qj

(yj)(∇2
j − m2)G({xi, yi})

Satisfies free EOM i.e. (∇2 − m2)fp(x) = 0

=
n

∏
i=1

∫B
ddxi h nμi( fpi

∂μi
− ∂μi

fpi
)

m

∏
j=1

∫B
ddyj h nμj( f̄qj

∂μj
− ∂μj

f̄qj
)G({xi, yj})



Path Integral



Path Integral
We can relate S-matrix (Euclidean version) to the bulk Euclidean path-
integral with specified boundary conditions on a boundary surface B.



Path Integral
We can relate S-matrix (Euclidean version) to the bulk Euclidean path-
integral with specified boundary conditions on a boundary surface B.

Z[β0] = ∫ϕ|B=β0

[Dϕ] e−S[ϕ]



Path Integral
We can relate S-matrix (Euclidean version) to the bulk Euclidean path-
integral with specified boundary conditions on a boundary surface B.

Z[β0] = ∫ϕ|B=β0

[Dϕ] e−S[ϕ]

Gbdry({xi}, {yi}) =
n

∏
i=1

δ
δβ0(xi)

m

∏
j=1

δ
δβ0(yj)

Z[β0]
β0=0





Gbdry = ∫ϕ|B=0
[Dϕ]

n

∏
i=1

nμi∂μi
ϕ(xi)

m

∏
j=1

nμj∂μj
ϕ(yj) e−S[ϕ]

Using Hamilton-Jacobi:



Gbdry = ∫ϕ|B=0
[Dϕ]

n

∏
i=1

nμi∂μi
ϕ(xi)

m

∏
j=1

nμj∂μj
ϕ(yj) e−S[ϕ]

Using Hamilton-Jacobi:



Gbdry = ∫ϕ|B=0
[Dϕ]

n

∏
i=1

nμi∂μi
ϕ(xi)

m

∏
j=1

nμj∂μj
ϕ(yj) e−S[ϕ]

Using Hamilton-Jacobi:

( fpi
nμi∂μi

ϕ(xi) − ϕ(xi)nμi∂μi
fpi

)



Gbdry = ∫ϕ|B=0
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n

∏
i=1

nμi∂μi
ϕ(xi)

m

∏
j=1

nμj∂μj
ϕ(yj) e−S[ϕ]

Using Hamilton-Jacobi:

SE({pi}, {qj}) = ∫
n

∏
i=1

ddxi fpi
(xi)

m

∏
j=1

ddyj f̄qj
(yj) Gbdry({xi}, {yj})
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Analytic Continuation

Euclidean Dirichlet problem 
Lorentzian Dirichlet 
problem but with a twist

• Take the large T limit first and then analytically continue to Lorentizian 
space. 

S({pi}, {qj}) = ∫
n

∏
i=1

ddxi fpi
(xi)

m

∏
j=1

ddyj f̄qj
(yj) GL

bdry({xi}, {yj})

• We conclude that the Dirichlet path integral serves as a generating 
functional for S-matrices.
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In-Out Problem
The fact that S-matrix can be obtained from a “Path integral as a 
functional of boundary values” is not a new statement.

AFS in 1974 made a similar statement.

But they considered Lorentzian path integral as a functional of 
“positive energy data in the past and negative energy data in 
future”— “In-Out Problem”. 

 [Arefeva, Faddeev & Slavnov ’74]
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Other Contributions
• The Path integral  carries much more information than just the S-matrix.Z[β]
• It contains information about the vacuum wave-functional.

• Such diagrams are different in Dirichlet and In-Out problem. In the 
Dirichlet case, we obtain vacuum wavefunction in x-basis and in the latter 
case, in coherent state basis.
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[P. Benincasa ’18,…]

• We found that at tree level, the wave function contains a pole in . ∑ ωi
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G(x, y) = ∫ dd+1y
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i=1

1

((xi − y)2 − iϵ)
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2

Pinch off: 
m

∑
i=1

ωi(xi − y) = 0 ∀ ωi > 0

We show that residue at this singularity carries information about S-matrix.

(xi − y)2 = 0 for i > 3

[J. Maldacena, D. Simmons-Duffin and A. Zhiboedov ’17]
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The equation for pinch-off for  can be phrased in terms of the 
distance matrix. 

Gbdry

Nij = (xi − xj)2 = ((xi − y) − (xj − y))
2

Pinch-off/ Momentum conservation:
m

∑
i=1

ωiNij = 0

Singularity appears when
 has a zero eigenvalue 

with a positive eigenvector.
Nij

Assuming there exists a bulk point  s.t.  y (xi − y)2 = 0

Nij = 2(xi − y) . (xj − y)
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Co-dimension of Singularity
Q1: Given a generic set of , how many “tunings” will one need to 
perform in order to obtain a singular ?

{xi}
Gbdry

c = 1 if m ≤ D + 1
c = m − D if m > D + 1

• Intersection of light cones. 
• Momentum conservation.
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insertions, does   receive contributions from one S-matrix or many?

{xi} Gbdry

Gbdry

Again depends on number of insertions and dimension of spacetime. 

• When , only one S-matrix.m ≤ D + 1
• When ,  receives contributions from ,  S-matrices.m > D + 1 Gbdry m − D

Same as co-dimension of singularity. 
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 : massless particlesGbdry
• We find that for massless particles,  (at tree level)is an analytic 

function in the space of boundary insertions with pole type singularities.
Gbdry(xi)

• These singularities exist on a co-dimension greater than or equal to one 
( ) in the space of boundary insertions.c ≥ 1

• The location of these singularities can be characterised in terms of zero 
eigenvalues of the boundary distance matrix: .Nij = (xi − xj)2

• The residue at these singularities contain the information about flat 
space S-matrix.





Two ways to extract S-matrix from : 
1. Multiply with mode functions and integrate (essentially Fourier transform). 
2. The coefficient of singularity of  is the S- matrix.

Gbdry

Gbdry
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• In the case of four point correlator, the location of the singularity in 
 is the same as the location of delta function in CCFT correlator.Gbdry

[S. Banerjee  ’24]
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We computed boundary correlates in position space at tree level for massive 
scalar fields using saddle point approximation (treating T as the large 
parameter).

T

-T
⃗x1 ⃗x2
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(t, ⃗y)

Gbdry = ∫ dd+1yλ
n

∏
i=1

G∂B(xi, y)

G∂B(xi, y) = (2n . ∇G(x, y))
x→xi

G(x, y) = C
e−im(x−y)2

((x − y)2)D − 1
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∑
i

mi
(xi − y)μ

di(xi, y)
= 0

This equation gives momentum conservation at the bulk point y.

Gbdry ≈
n

∏
i=1

( mi

2π )
D − 1

2 (−T − t)

din
i

D + 1
2

e−imidin
i

m

∏
i=1

(out) S ( mi( ⃗xin
i − ⃗y)
din

i
,

mi( ⃗xout
i − ⃗y)
dout

i )
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Two ways to extract S-matrix from :Gbdry

1. Multiply with mode functions and integrate (essentially Fourier transform)
2. Strip off extra factors from  and obtain the S-matrix.Gbdry

Holographic Renormalization is non-local!!
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Results/Outline
• S-matrix can be thought of as a boundary observable and can be 

computed using “Path integral as a functional of boundary values”.  
• S-matrix unitarity provides non-trivial constraint on this path integral. 
• We argue that the flat space wave functional and the S-matrix are 

related by analytic continuation. 
• We also analyse properties of  in position space both for massive 

and massless particles. 
• For massless particles,  exhibits features like bulk point 

singularity whose coefficient encode the flat space S-matrix.
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