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Sidestepping IR regularization through local cancellations in momentum space

1. Variant Factorization for Hadronic Cross Sections

2. NNLO process-dependence in complex EW annihilation amplitudes

3. Cancellation of Final-State Collinear and Soft for EW Inclusive
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1. Variant Factorization for Hadronic Cross Sections

• Familiar factorized cross section:

σAB→Q =

∫
dx1dx2 φq/A(x1)φq̄/B(x2) σ̂qq̄→Q(x1p1, x2p2, Q)

• Q: for us, some collection of momenta of observed EW bosons, {qi}, which we assume
to be massive:∫ n∏

i=1

d3~qi

2ωi
2πδ

( n∑
i=1

qi

)2

−Q2

 =

∫
d3 ~Q

(2π)32ωQ

∫ n∏
i=1

d3~qi

2ωi
(2π)4δ4

(
~Q−

n∑
i=1

~qi

)

• Can be V = W,Z (Drell-Yan). V V , V H, HH, V V V . . . .

• “wishlist” sorts of final states . . . recoiling jets are also possible
(Huss, Huston, Jones, Pellen, J. Phys. G (2023) 043001)

• The individual qi may be fixed, or partly integrated over. We can also fix the rapidity,
yQ = (1/2) lnQ+/Q− on both sides of this relation.
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• Here’s our variant factorization (“Higgs scheme”):

σAB→Q =

∫
dx1dx2 Fqq̄;C(x1, x2) τ̂qq̄→Q;C(x1p1, x2p2, Q)

• After final-state cancellations, the cross section look like

+ . . . 

• Fqq̄;C(x1, x2) matches singularities to everything outside the short-distance (middle) part.

• Fqq̄;C(x1, x2) can be defined by the inclusive cross section for qq̄ → scalar, either a
singlet (C = 1) or adjoint (C = 8), of invariant mass squared Q2, and at fixed Q and
rapidity. (Analog to the old “DIS scheme” for parton distributions.)

• We normalize the F at lowest order to the singlet case,

F(0)
qq̄;C(x1, x2) = δ(1− x1) δ(1− x2)δC1 .

• Collinear factorization implies that our “long-distance” function F is related by convolu-
tion to the normal pdfs:

Fqq̄;C(x1, x2) =

∫
dy1dy2 φq(y1)φq̄(y2) F̂qq̄,C

(
x1

y1

,
x2

y2

)
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• Why are we doing all this?

• It helps us organize the computation of τ̂ , and hence σ̂, up to two loops, directly in four
dimensions and at fixed values of the full set of qi.

• Perturbatively, we use Fqq̄;C(x1, x2) to determine τ̂qq̄,C. Assuming Q represents a color-
singlet final state, the relevant terms are

τ̂
(0)
qq̄→Q,C = σ

(0)
qq̄→Q,1δC1

τ̂
(1)
qq̄→Q,C = σ

(1)
qq̄→Q,C − F(1)

qq̄;1 ⊗ τ̂
(0)
qq̄→Q,1δC1

τ̂
(2)
qq̄→Q,C = σ

(2)
qq̄→Q,C − F(2)

qq̄;1 ⊗ τ̂
(0)
qq̄→Q,1δC1 − F(1)

qq̄;C ⊗ τ̂
(1)
qq̄→Q,C

• All of these relations are in four dimensions, and both soft and collinear infrared singu-
lar terms cancel algebraically, LOCALLY IN MOMENTUM SPACE, between the terms
shown. We’ll have to add some terms to make it work, but these all integrate to zero.

• All mass-dependence and dependence on {qi} can be computed numerically, at least in
principle.

• We can illustrate the method with NNLO corrections to EW annihilation for quarks and
gluons.
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2. NNLO process-dependence in complex EW annihilation amplitudes

• We’ve looked in detail at two loops for processes like:

q(p1)q̄(p2)→W+(q1)W
−(q2) . . . , [2212.12162]

gg → H(q1)H(q2)H(q3) . . . [2403.13712]

• These are important, but complicated analytically,

• and it might be nice to be able to compute them numerically efficiently,

• which would require momentum space integrals that are infrared finite locally.
(And UV convergent.)

• We work in Feynman gauge to avoid non-causal singularities.
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• These are treated as above, relying on the IR factorization of these amplitudes:

Maā→Q(p1 + p2 → q1 + q2 + . . . , ε) = Faā(p1, p2, ε) Haā→Q(p1, p2; q1, q2 . . . )

Here, Maā→Q is a virtual contribution to σaā→Q, and Faā is a virtual amplitude in Faā.

• All dependence of the final state is in

Haā→Q(p1, p2; q1, q2 . . . ) =
Maā→n(p1 + p2 → q1 + q2 + . . . , ε)

Faā(p1, p2, ε)

• All true infrared singularities are absorbed into Faā.

• The “hard” function H is complex and complicated, and includes dynamics of inter-
mediate states at momentum configurations that are not “soft” or “collinear”. These
“threshold” momentum configurations are amenable to numerical analysis on deformed
momentum contours or by other means

• See talk by Matilde Vicini at 2024 Loops and Legs for implementation at NNLO nF , in
work with Dario Kemanschah.
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• The essential point is that the singlet QCD form factor enjoys the same factorization
with the same jet subdiagrams:

Faā→1(p1 + p2 → 1) = Faā(p1, p2, ε) Haā→1(p1, p2, Q)

• As above, we can use this knowledge to simplify a procedure for IR subtraction

Haā→Q(p1, p2; q1, q2 . . . ) ≡
Maā→Q(p1 + p2 → q1 + q2 + . . . , ε)

Faā→1(p1, p2, Q)

• Just expand, each L = (αs/π)nL(n), and then solve for H(n)

Faā→1(p1 + p2 → 1)Haā→Q(p1, p2; q1, q2 . . . ) = Maā→1(p1 + p2 → q1 + q2 + . . . , ε)

• or

H(1) = M (1) − F (1)H(0)

H(2) = M (2) − F (1)H(1) − F (2)H(0)
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• This construction for the hard-scattering is surely true for the full functions, but we want
a result for the integrands, L =M, F , H:

Laā→Q(p1, p2; q1, q2 . . . ) = L(0) +

∫
dDk

(2π)D
L1(k) +

∫
dDk

(2π)D
dDl

(2π)D
L(2)(k, l) + . . .

• To be able to “give H to a computer”, what we want is to show is:

H(1) = M(1) − F (1)H(0)

H(2) = M(2) − F (1)H(1) − F (2)H(0)
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• Let’s first loop look at what happens at one loop: H(1) = M(1) − F (1)H(0).

• IR singularities arise when k→ 0 and in the k ∝ p1,2 collinear limits:

p

k

p

1

2

• When k gets collinear to p1, singular behavior comes from

u(p1)γν (/p− /k)
−ηµν

k2 + iε
⇒k→xp1 −u(p1)

(p1 − k) · p2

p2 · k
1

k2 + iε
kν

• Then in the collinear limit the gluon k is scalar-polarized and the “Feynman identity”
applies, resulting in lots of pairwise cancellations,

i

/r + /̀
[−ig/̀]

i

/r
=

ig

/r
−

ig

/r + /̀

J
H
E
P
0
5
(
2
0
2
3
)
2
4
2

identity of eq. (5.2), which we represent pictorially as
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With the application of eq. (5.2), the expression of eq. (5.14) simplifies to

lim
k‖p2

M2|ghost ∼

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

More
9

R
i

k
92 Pa R

p1 91
mmmhm

i

k
92

p1 91

e E e
q2

Pa R

+

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

More
9

R
i

k
92 Pa R

p1 91
mmmhm

i

k
92

p1 91

e E e
q2

Pa R

+

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

More
9

R
i

k
92 Pa R

p1 91
mmmhm

i

k
92

p1 91

e E e
q2

Pa R

+

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ps 91

k

92Pa R

eI IE
RR

e

M

R

−

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ps 91
sewing

k b

qP R 2

Ps 91

I
k

92Pa R

+

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ps 91
This

k

92Pa R

P a 91

DR

92Pa R

Ps 91

R mmmm
e

92Pa R

−

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ps 91
sewing

k b

qP R 2

Ps 91

I
k

92Pa R

. (5.18)

The first and second diagrams in the right-hand side are not singular in the k ‖ p2 limit, as
the 1/(/p2 − /k) denominator is cancelled. The third diagram contributes to the singularity,
but it is factorized. The remaining diagrams include differences of self-energy subgraphs,
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M

R
R

= g3
s

(
if bacT (q)

a T
(q)
b

) /l

l2(l − k)2 − g3
s

(
ifabcT (q)

a T
(q)
b

) (
/k − /l

)

l2(l − k)2

= g3
s

CA

2 T (q)
c

/k

l2(l − k)2 (5.19)

which, at the integrand level, each equals a ghost self-energy correction multiplied by a
momentum vector. Indeed, a direct computation gives

Pak

n
De e

e e

i D
b v

b p
a e a

= g3
sCAT

(q)
c

k · l
l2 (l − k)2 k2

/k . (5.20)

Symmetrizing eq. (5.20) over loop momentum flows, l↔ k − l, we observe that it matches

– 33 –
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• And all k-dependence separates from the EW bosons . . . and in the sum,

p

k

p

1

2

k      x p
1

• This is an algebraic relation, which is automatic when we add the integrands of the
original amplitude. (The double line is ∼ p2ν/p2 · k)

• The only k-dependent factor on the right equals the one-loop form factor in the k

collinear to p1 region, and H(1) = M(1) − F (1)H(0) is confirmed locally. The same
is true for the “soft” k→ 0 and collinear-p2 limits.

• The single term F (1)H(0) serves as a local IR subtraction for the full set of (5 for a VVV
final state) diagrams of the original amplitude.

• The same holds for any EW final state of heavy bosons with this initial state, like
qq̄ →W+W−W+W−, or more.
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• Could something like this work for two loops? Yes.

• To get these local relations at two loops, however, it is sometimes necessary to modify
the integrand by adding some IR “counterterms”.

• Actually, when both gluons are collinear to either of the incoming quarks, or when one or
both are soft, everything works just as at one loop. For example, in the double-collinear
limit:
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Figure 2. Identity for the double collinear region (1k, 1l). When the short-distance function is at
tree level, this identity is realized for the full singularity locally, with no shifts of loop momentum.

Figure 2 illustrates this result. In the limit that k and l are both collinear to p1, the virtual
gluon polarizations both become longitudinal, and the sum over all connections of these two
gluons to subdiagram Hew, with an arbitrary electroweak final state, gives a universal term,
independent of the final state. In this figure, the double line represents a Wilson (eikonal)
line in the direction opposite to p1. At the order to which we work, this identity requires
only the tree-level Ward identities of the theory, and holds locally in momenta k and l.
Other configurations, where both k and l are lightlike or soft behave in just the same way.

The situation becomes more complicated when one of the two gluon lines is collinear to
either p1 or p2, while the other line is hard. At two loops, these difficulties arise in such
“single-collinear” regions in two ways, illustrated for a gluon of momentum k which is parallel
to p1, in figure 3. In this figure, we consider the regions (1k,Hl) when one of subdiagrams
J µ or Hµ is evaluated at one loop, while the other remains at tree level. Note that we
denote these subdiagrams in script, because we are working at the level of integrands. We
define J µ to be one-particle irreducible, so that it does not include the propagators of the
quark with momentum p1 − k or of the gluon of momentum k, which are common to all
diagrams in the jet.

The first of these obstacles occurs when the jet subdiagram J µ has one loop, and
we encounter the problem of “loop polarizations” [146]. Here, loop polarizations refer to
collinear-singular terms where the collinear gluon carries a polarization that is explicitly
proportional to the loop momentum in the jet function itself. As a vector, the jet function
is simply a linear combination of all vectors that appear in its integrand, and in particular,

J µ(p1, k, l) = Jl(p1, k, l) lµ + Jk(p1, k, l) kµ + Jp1(p1, k, l) pµ1 , (3.4)

where the coefficients Jk,J µ
l ,J µ

p1 depend on the scalar products of k, l, p1. When any
component of lµ is finite, straightforward power counting shows that the corresponding
term is collinear singular, even if lµ not proportional to p1. For components of lµ that are
not in the p1 directions, we cannot use the Ward identity of figure 3 to factor their singular
contributions. For components of lµ not in the direction of p1, the gluon k will then not
factor from the hard scattering in the manner illustrated by figure 3. In integrated form,

– 8 –

is algebraic and hence completely local.

• Through the Ward, Taylor-Slavnov (BRST) identities, the hard scattering “expels” un-
physical polarizations without subtractions.
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• Things get a little complicated when we try to see how a “single-collinear” gluon sepa-
rates from the hard subdiagram at the integrand level,

• Compared to one loop, we encounter two qualitative complications, associated with an
extra loop, either in the jet or hard part:

1. “loop polarizations” when J µ is a one-loop vertex or self energy.

2. “shift mismatches”, when Hµ has the extra loop, and the Ward identity requires a
shift in loop momentum.

• These complications are addressed by counterterms that integrate to zero, but reorganize
the integrand. I’ll give basic examples that illustrate the detailed approach for our
treatment of this region.
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1. Collinear-singular loop polarizations. Add counterterm that integrates to zero. l is
the loop momentum:

J
H
E
P
0
5
(
2
0
2
3
)
2
4
2

as well to the matrix γµ, we have

[−V µ
k (k, l)+ γµNS−q(k, l)

]
u(p1)= 2(1−ε) 1

(k+l+p1)2

×
[
2(lµ+pµ1 )

({ 1
l2
− 1
(l+p1)2

}
/η1

2p1 ·η1
+

l/⊥(p1,η1)
l2 (l+p1)2

)

− pµ1
l2

/η1
2p1 ·η1

−
γµ⊥(p1,η1)

2l2

]
u(p1) . (4.29)

Terms proportional to p/1 have vanished when acting on Dirac spinor u(p1), leaving only
terms proportional to /η1 and transverse γ⊥ functions. In the overall integral, the factors
γ⊥ anticommute with the factor p/1 + k/ from the quark propagator adjacent to J µ, which
eliminates the (1k,Hl) single-collinear divergence. In diagrams with a divergence in the
region (2k,Hl) (figure 5), we can set the reference vector η1 = p2. Then, for k ‖ p2, the
explicit l/⊥ term is odd in l⊥. With this assignment of η1, this term is finite in both regions.

Examining the η1 dependence of eq. (4.29), we realize that we can cancel it by a
counterterm with the same lµ and pµ1 dependence, adding only kµ terms,

δJ µ(k, l) = 2(1− ε)
(p1 + k + l)2

[
2lµ + pµ1 + kµ

l2
− 2(l + p1)µ + kµ

(l + p1)2

]
/η1

2p1 · η1
, (4.30)

where the integrals of both terms indeed vanish by eq. (4.9), so that
∫

dDl δJ µ(k, l) = 0 . (4.31)

We next show that a subtraction of the same functional form will remove loop polarizations
for the CA terms in the jet function, J µ

kA, defined in eq. (4.25), to which we now turn.
Combining the CA parts of the jet function as defined in (4.25) we find

J µ
k,A(k, l) =

−2(1− ε)
(k − l)2l2(p1 + l)2

(
(4l − k)µ l/− l2γµ

)
. (4.32)

The same procedure as for the CF terms results in a counterterm that is identical to (4.30),
but evaluated with a change of variables, l to −l − p1,

2δJ µ (k,−l − p1) =
−4(1− ε)
(k − l)2

/η1
2p1 · η1

(
2lµ − kµ

l2
− 2lµ − kµ + pµ1

(p1 + l)2

)
. (4.33)

Combining the jet integrand with these two counterterms, we achieve an integrand that is
locally free of loop polarizations and also of singular behavior in region (2k,Hl) by choosing
η1 = p2 for the diagrams of figure 5. We represent the subtracted jet by

g3
sT

(q)
c J µ (k, l)→ J µ

c (k, l) . (4.34)

– 18 –

where we can take η1 = p2. We just add this to the integrand before integrating.

2. Shift mismatches require another counterterm that integrates to zero, but cancels
the singularities of the unwanted “shift” terms locally – in both the k collinear to p1 and
p2 regions:
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Figure 10. Infrared counterterm for both figure 6 and 7, given explicitly in eq. (5.4). When
integrated over loop momentum l, the combination vanishes, and is UV convergent.

In either case, the approximations of eq. (5.1) apply in these regions. The application of
the identity, eq. (5.2) to line k in the integrand of the counterterm, eq. (5.4) after the
application of (5.1) leads to an expression that is the negative of the unwanted terms in
figure 8 and 9, which differ by the same shift of loop l. For example, In region (1k,Hl),
we have

∆Γ
∣∣
(1k,Hl)

= g4
s

1
2CACF

1
k2 v̄(p2)

(−k/)
p2 · (−k)

1
−p/2 + k/γ

α

×
[( 1

l2

) 1
−p/2 + k/+ l/ Γ 1

p/1 + k/+ l/

−
( 1
(l − k)2

) 1
−p/2 + l/ Γ 1

p/1 + l/

]
γα

1
p/1 + k/ (p/2) u(p1)

= g4
s

1
2CACF

1
k2 v̄(p2)

1
p2 · kγ

α

×
[( 1

l2

) 1
−p/2 + k/+ l/ Γ 1

p/1 + k/+ l/

−
( 1
(l − k)2

) 1
−p/2 + l/ Γ 1

p/1 + l/

]
γα

1
p/1 + k/ (p/2) u(p1) , (5.5)

which cancels the two unfactorized terms of figure 8.
We note that the shift counterterms themselves are also singular in the double collinear

limits (1k, 1l) and (2k, 2l), but it is easy to check that these contributions factor independently.
To show this, we observe that in (1k, 1l) and (2k, 2l) the approximation of eq. (5.1) holds
for the “inner” gluon, carrying momentum l, and for the “outer” gluon, of momentum k in
figure 6. The result then follows by applying the identity of eq. (5.2), first to the vertex
at which outer gluon (k) attaches, which cancels the propagator between the two vertices.

– 26 –

• The same “exotic-color planar” counterterms apply to arbitrary EW state.
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Summary for “initial states in EW production”:

• There are more counterterms (including UV), but the ones we’ve seen illustrate the
method.

• With a limited number of counterterms (roughly one per diagram) we can derive a hard
function H(2) that is free of IR divergences at NNLO, and can be computed numerically
(the latter in progress).

• Applications with color in the final state remain to be investigated in detail, but follow
the extension to final states sketched above and are made possible by the cancellation
of final state interactions.

• as well as the possibilities of N3LO extensions. These may require further insight.

• For “practical” implementation, it is natural to do one integral per loop (Loop-tree
duality, Cross-Free Family & Time-ordered perturbation theory, for example.)
( Capatti, Hirschi, Kermanshah, Pelloni, Ruijl [1912.0929],) Kermanshah [2110.06869])
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3. Cancellation of Final-State Collinear and Soft for EW Inclusive

A simple but quite general example from TOPT

A B

q

Q

q − k

k
px

1 1

px
2 2

• Let’s look at one gluon, q, recoiling at high-pT from our EW boson(s) Q – IR singularities
at NNLO inclusive from k→ 0 and k ∝ q.

• After sum over the two time orders,∫
dx1dx2

∫
d3~k

(2π)3
I(x1, x2, k, q, Q) F (x1, x2, k, q, Q)

• “initial-state factors” for k CO to p1 or soft:

I = F(x1, x2)
1

2ωp1− k (2ωp2−Q)2

1

2ωk 2ωq− k 2ωq 2ωQ

×
1

x1
√
s/2 − ωp1− k − ωk

(
1

x2
√
s/2 − ωp2−Q − ωQ

)2
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• Final-state factors for k CO to p1 or soft, when 3-particle EA and 2-particle EB are
degenerate with initial state:

1

(x1 + x2)
√
s/2 − ωQ − ωq− k − ωk + iε

δ
(
(x1 + x2)

√
s/2 − ωQ − ωq

) ]

F =

[
δ
(
(x1 + x2)

√
s/2 − ωQ − ωq− k − ωk

) 1

(x1 + x2)
√
s/2 − ωQ − ωq − iε

• Singularities happen when

ωq− k + ωk → ωq

where EA = EB. i.e. at k = 0 (soft) or k ∝ q.
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• After change of variables: E0 = (x1 + x2)
√
s/2,∆E = (x1− x2)

√
s, the integral takes

the form

∫
dE0 F (E0,∆E)

{
δ(E0 − EB)

1

E0 − EA + iε
+

1

E0 − EB − iε
δ(E0 − EA)

}

=
F (EB,∆E)

EB − EA + iε
+

F (EA,∆E)

EA − EB − iε

=
F (EB,∆E) − F (EA,∆E)

EB − EA + iε

• And the integral is finite. All we have to do is add the terms. This is all we need for
NNLO EW inclusive. It can also serve for EW plus jet at NLO.

• So the cancellation of final states is also local, as has been exploited recently in LTD
formats in

Capetti, Hirschi, Pelloni, Ruijl, [2010.01068]
Uribe, Dhani, Sborini, Rodrigo [2404.05491]
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Summary and for the Future

• General “Higgs scheme” factorization for multi-EW boson cross sections

• Locality at NLO and NNLO for virtual corrections

• Cancellation of induced final-state IR divergences in TOPT

• Pending and for the future:

– Full expressions for cross sections

– Complete NNLO numerical integrations

– Extensions beyond NNLO
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