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Sidestepping IR regularization through local cancellations in momentum space

1. Variant Factorization for Hadronic Cross Sections
2. NNLO process-dependence in complex EW annihilation amplitudes

3. Cancellation of Final-State Collinear and Soft for EW Inclusive



1. Variant Factorization for Hadronic Cross Sections

e Familiar factorized cross section:

CABag = / drdws dya(21) b/ (2) Fagro (@101, T2, Q)

e (Q: for us, some collection of momenta of observed EW bosons, {g;}, which we assume

to be massive:
n d3cj; n 2 )

e Can be V = W, Z (Drell-Yan). VV, VH, HH, VVV ....

e “wishlist” sorts of final states ... recoiling jets are also possible
(Huss, Huston, Jones, Pellen, J. Phys. G (2023) 043001)

e The individual g; may be fixed, or partly integrated over. We can also fix the rapidity,
yo = (1/2) In Q" /Q~ on both sides of this relation.



e Here’s our variant factorization (“Higgs scheme”):
OAB—Q — /dwldaz2 Fqeg,c(T1, T2) Teg—q;c(T1P1, T2p2, Q)

e After final-state cancellations, the cross section look like

o ' z.c(x1, x2) matches singularities to everything outside the short-distance (middle) part.

o Fyz.c(x1,x2) can be defined by the inclusive cross section for ¢qg — scalar, either a
singlet (C = 1) or adjoint (C = 8), of invariant mass squared Q?, and at fixed Q and
rapidity. (Analog to the old “DIS scheme” for parton distributions.)

e We normalize the F at lowest order to the singlet case,

FO (@, 22) = (1 —21) 8(1 — @2)dc1 -

e Collinear factorization implies that our “long-distance” function [ is related by convolu-
tion to the normal pdfs:

1 T2

Fegc(T1, T2) = /dyldyz bq(y1)dq(y2) Fogo (—,—)
Y1 Yo



e Why are we doing all this?

e It helps us organize the computation of 7, and hence &, up to two loops, directly in four
dimensions and at fixed values of the full set of g;.

e Perturbatively, we use F z.c(x1,2) to determine 7,5 c. Assuming @ represents a color-
singlet final state, the relevant terms are

~(0) . (0)

Tea—Q,C = Oq3—q,19C1

- (1) _ (1) (1) 2(0)

Tgg—Q,c — OTg¢3—qQ,Cc — qu,1® qGd—Q, 15 C1

~(2 2 2 A (0 (1) £
T(q)—mzc = "r(zq)—mz,c - F«(zq),l(g’ (q)—>Q 19c1 — Foge ® Tesbho0

e All of these relations are in four dimensions, and both soft and collinear infrared singu-
lar terms cancel algebraically, LOCALLY IN MOMENTUM SPACE, between the terms
shown. We’ll have to add some terms to make it work, but these all integrate to zero.

e All mass-dependence and dependence on {g;} can be computed numerically, at least in
principle.

e We can illustrate the method with NNLO corrections to EW annihilation for quarks and
gluons.



2. NNLO process-dependence in complex EW annihilation amplitudes

e We've looked in detail at two loops for processes like:

a(p1)@(p2) = WH(@) W(g2) -..,[2212.12162]
gg — H(q)) H(q2) H(qg3) . ..[2403.13712]

e These are important, but complicated analytically,

e and it might be nice to be able to compute them numerically efficiently,

e which would require momentum space integrals that are infrared finite locally.
(And UV convergent.)

e We work in Feynman gauge to avoid non-causal singularities.



e These are treated as above, relying on the IR factorization of these amplitudes:

Mac‘t—>Q(P1 +p2—>q1+qg2+ ..., E) — a&(p17p27 6) Ha&—>Q(p17p2; qi1,42 . . . )

Here, M,s_,¢ is a virtual contribution to 0,59, and F,; is a virtual amplitude in ;.

e All dependence of the final state is in

Muzsn(pr+pP2—>q1+q2+...,€)
Foa(p1, D2y €)

Hac‘z—>Q(plap2; q1,q2 . - - ) —

e All true infrared singularities are absorbed into F;.

e The “hard” function H is complex and complicated, and includes dynamics of inter-
mediate states at momentum configurations that are not “soft” or “collinear”’. These
“threshold” momentum configurations are amenable to numerical analysis on deformed
momentum contours or by other means

e See talk by Matilde Vicini at 2024 Loops and Legs for implementation at NNLO ng, in
work with Dario Kemanschah.



e The essential point is that the singlet QCD form factor enjoys the same factorization

with the same jet subdiagrams:

Faa—>1(p1 + p2 — 1) = Faa(plapza 6) Ha&—)l(plv D2, Q)

e As above, we can use this knowledge to simplify a procedure for IR subtraction

MuasoP1+P2—>q1+q2+...5€)
Fois1(p1,p2,Q)

Huyao(P1,025G1,92--.) =

e Just expand, each L = (a,/7)"L™), and then solve for H™

Foas1(p1 +p2 = 1) Hoa0(P15P2391,q2--) = Mpagsi(pr+p2 —q1+q2+ ...

® Or
HY — pO _— p@ g0
H? = p® — p@O gt _ p@ g0

, €)



e This construction for the hard-scattering is surely true for the full functions, but we want
a result for the integrands, L = M, F, H.:

d°k  dPl
(2m)? (2m)P

dPk
Li(k) + LAk, 1) +...
)P

Laa—>Q(plap23q1’q2"°) - £(0)+/(2

e To be able to “give ‘H to a computer”, what we want is to show is:

HO — MO — F1) 440
HZ = MO - FO Q) _ F(2) 9400



o Let’s first loop look at what happens at one loop: H® = MO — FO 0O,

e IR singularities arise when £ — 0 and in the k o p; > collinear limits:

1 AVAVAVAV, %’\/\/\/\/ )
k%; AN AN,
p—— VN —— Y AN
% AN
e (VAVAVAVIRREESS S VAVAVAY —Z«—NNANN
AN AN
e When k gets collinear to p;, singular behavior comes from

u(p1)y (P — F)

—n“” (p1—k)-p2 1 y
—u(p — k
ps - k k2 + ie

e Then in the collinear limit the gluon k is scalar-polarized and the “Feynman identity”
applies, resulting in lots of pairwise cancellations,

7 —igf] 1 g g
—igf] - = -~ —
y+4 ¥ y f+4
'P% l ) 03—? ) %4"4'-?,



e And all k-dependence separates from the EW bosons ... and in the sum,

1 AYAVAVAV, AYAVAVAV, AYAYAYAY,
k% AYAYAVAV, %W % AAYAYAY,
_(_

P, —<—"\N\/\V/\, s e AVAVAVAV)

s %]

k—>xp, e VAVAVAV

e This is an algebraic relation, which is automatic when we add the integrands of the
original amplitude. (The double line is ~ ps,/ps - k)

e The only k-dependent factor on the right equals the one-loop form factor in the k
collinear to p; region, and HY = M@ — FO) 3O js confirmed locally. The same
is true for the “soft” k& — 0 and collinear-p, limits.

e The single term F() (%) serves as a local IR subtraction for the full set of (5 for a VVV
final state) diagrams of the original amplitude.

e The same holds for any EW final state of heavy bosons with this initial state, like
qg — WTW-WTW ™, or more.
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e Could something like this work for two loops? Yes.

e To get these local relations at two loops, however, it is sometimes necessary to modify
the integrand by adding some IR “counterterms”.

e Actually, when both gluons are collinear to either of the incoming quarks, or when one or
both are soft, everything works just as at one loop. For example, in the double-collinear

limit:
134_ Pﬂ.@
k C’_q_ qi

is algebraic and hence completely local.

e Through the Ward, Taylor-Slavnov (BRST) identities, the hard scattering “expels” un-
physical polarizations without subtractions.
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e Things get a little complicated when we try to see how a “single-collinear” gluon sepa-
rates from the hard subdiagram at the integrand level,

e Compared to one loop, we encounter two qualitative complications, associated with an
extra loop, either in the jet or hard part:

1. “loop polarizations” when J*" is a one-loop vertex or self energy.
2. “shift mismatches”, when H,, has the extra loop, and the Ward identity requires a
shift in loop momentum.

e These complications are addressed by counterterms that integrate to zero, but reorganize

the integrand. [I'll give basic examples that illustrate the detailed approach for our
treatment of this region.
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1. Collinear-singular loop polarizations. Add counterterm that integrates to zero. [ is
the loop momentum:

21— [k 20ap ]
(p1—|—k—|—l)2 [2 (l—l—p1)2 2p1 - m

6T"(k,1) =

where we can take 17; = p;. We just add this to the integrand before integrating.

2. Shift mismatches require another counterterm that integrates to zero, but cancels
the singularities of the unwanted “shift” terms locally — in both the k collinear to p, and

p2 regions:

N N

'Fi Pﬂ_

scs KT - 2 4T
A )

139, 1352,

e The same “exotic-color planar” counterterms apply to arbitrary EW state.
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Summary for “initial states in EW production”:

e There are more counterterms (including UV), but the ones we’ve seen illustrate the
method.

e With a limited number of counterterms (roughly one per diagram) we can derive a hard
function H? that is free of IR divergences at NNLO, and can be computed numerically
(the latter in progress).

e Applications with color in the final state remain to be investigated in detail, but follow
the extension to final states sketched above and are made possible by the cancellation
of final state interactions.

e as well as the possibilities of N3LO extensions. These may require further insight.

e For “practical” implementation, it is natural to do one integral per loop (Loop-tree
duality, Cross-Free Family & Time-ordered perturbation theory, for example.)
( Capatti, Hirschi, Kermanshah, Pelloni, Ruijl [1912.0929],) Kermanshah [2110.06869])
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3. Cancellation of Final-State Collinear and Soft for EW Inclusive

A simple but quite general example from TOPT

e Let’s look at one gluon, g, recoiling at high-pr from our EW boson(s) @ — IR singularities
at NNLO inclusive from £k — 0 and k x gq.

e After sum over the two time orders,

d*k
/dwldw2 (271_)3 I(wlaw%kaq, Q) F(whw??k’ q, Q)

e “initial-state factors” for k CO to p; or soft:

1 1
prl —k (Zwm — Q)2 Zwk qu —k 2wq sz
e o
X
T1/8/2 — Wpy—k — Wk T24/8/2 — Wp, —Q — wWQ

I = IF(a:l,azz)
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e Final-state factors for £k CO to p; or soft, when 3-particle £, and 2-particle Ep are
degenerate with initial state:

1
(r1 4+ T2)V/8/2 —wg — wg—k — Wi + t€

6 (1 + 22)V's/2 —wg — wy)

1
(x1 + x2)V/8/2 —wg — wy — i€

F = 5((331—|—:132)\/§/2 —wqg — wq_k—wk)

e Singularities happen when
Wg—k T+ W — Wy

where E4 = Ep. i.e. at kK = 0 (soft) or k x q.
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e After change of variables: Ey = (x; + ©2)+/s/2, AE = (1 — x3)+/S, the integral takes
the form

1 1
/dEo F(E,, AE) {5(E0 — Ep) oyl we §(Ey — EA)}

F(Ep, AFE) F(E,, AFE)
Ep — E4 + 1€ Es— Ep — 1€
F(Ep,AFE) — F(E4,AFE)

Ep — F4 + 1€

e And the integral is finite. All we have to do is add the terms. This is all we need for
NNLO EW inclusive. It can also serve for EW plus jet at NLO.

e So the cancellation of final states is also local, as has been exploited recently in LTD
formats in

Capetti, Hirschi, Pelloni, Ruijl, [2010.01068]
Uribe, Dhani, Sborini, Rodrigo [2404.05491]
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Summary and for the Future

e General “Higgs scheme” factorization for multi-EW boson cross sections

e Locality at NLO and NNLO for virtual corrections

e Cancellation of induced final-state IR divergences in TOPT

e Pending and for the future:

— Full expressions for cross sections
— Complete NNLO numerical integrations
— Extensions beyond NNLO
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