The Gravitational Waveform
From Scattering Amplitudes to General Relativity

 Brandhuber, Brown, Chen, SDA, Gowdy, Travaglini

e SDA, Gonzo, Novichkov

e Bini, Damouir, SDA, Geralico, Herdershee, Roiban, Teng
e Brunello, SDA

Stefano De Angelis - Amplitudes 2024, Institute for Advanced Study - June 13th, 2024



Kovacs, Thorne] 78 2
Jakobsen, Mogull, Plefka, Steinhoff] K‘2M K2M n K2M n
'Mougiakakos, Riva, Vernizzi] h =n h(l) + (2) +
Jakobsen, Mogull, Plefka, Steinhoff] HY x| — 00 Y R | x | /_b2 HY /_bz

SDA, Gonzo, Novichkov]

Brandhuber, Brown, Chen, Gowdy, Travaglini]

Aoude, Haddad, Heissenberg, Helset]

1 .
_ 1 _ 1

& 2 (h“ h22> u , = ——(5,0,0, £ 1)
A T \/24

Plot authors: Aidan Herdershee, Radu Roiban, Fei Teng



Why Gravitational Waveforms?
Why Scattering?

e GW templates for matched-filtering analyses

¢ Analytic continuation from unbound to bound  Talk by zvi Bern

e Scattering setups are interesting on their own

e Analytic properties of scattering amplitudes



How do we compute waveform?

KMOC as on-shell in-in formalism

¢ Compute expectation values from scattering amplitudes
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® The initial state of the two-body problem
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e Pick the wavefunctions e Pick the operator

o 1/m; Compton wavelengths
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The Waveform from Scattering Amplitudes

[Caron-Huot, Giroux, Hannesdottir, Mizera]

The waveform is an in-in observable, while

Fourier transform to impact parameter space
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Brandhuber, Brown, Chen, SDA, Gowdy, Travaglini]

The five-point result @ NLO <o iy

Bohnenblust, Ita, Kraus, Schlenk]

® Heavy—mass EFT [Damgaard, Haddad, Helset], [Brandhuber, Chen, Travaglini, Wen]

Amplitudecraft: ® Generalised Unitarity
® Integrations of loops
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« 71 power-couting parameter [Damour] IR divergences exponentiate!

e Singular terms in 1/7 cancel between the amplitude and the cut « Shapiro time-delay of the observed radiation [Weinberg]
» The result must be symmetrised m; < m, * The logarithmic drift of the worldlines [Caron-Huot, Giroux, Hannesdottir, Mizera]

® The result is infrared divergent!
e Each rational coefficient has ~ 10° — 10° terms, with spurious poles [Tl by Abreu and Tancredi

e Many terms are polynomials in gi and g;, the Fourier transform will kill them



The problem of spurious poles

Impact parameter space and the small-velocity limit

3049 terms 1 Fake divergences! We need to expand
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Partial fractioning and/or finite-field
to disentangle divergences.

» [Abreu, Dormans, Febres Cordero, lta, Page, Sotnikov]
 MultivariateApart.wl [Heller, von Manteuffel]
« [Brandhuber, Brown, Chen, SDA, Gowdy, Travaglini]

The problem is not just analytical: the spurious poles sit in the physical region.
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Y= > > 1 Y2 = D202 > 1 Wi = > 0 » [Herdershee, Roiban, Teng]
wWiw, qi4rWiw> 2, /_q12  [Bohnenblust, Ita, Kraus, Schlenk]

Introducing a new set of functions which are smooth on the physical sheet.
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 [Bini, Damour, Geralico]
* Review: [Blanchet]

The waveform in General Relativity

The Multipolar-Post-Minkowskian formalism

¢ The MPM formalism computes the time-domain waveform as a sum over irreducible multipolar contributions,
keyed by their multipole order and their spatial parity:
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¢ [t computes each radiative multipole moment in terms of the stress-energy tensor of the material source. Each

radiative multipole is given by a sum of contributions involving both source variables at a time and hereditary
integrals over the past behaviour of the source:
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A Tale of Two Formalisms
Matching KMOC and MPM AL e A o A

® The two computations are set up in “different frames”
[Bini, Damour, Geralico] " #
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e The rotation ¢p — ¢ + A)(IPM/ 2 is equivalent to the KMOC cut terms [Georgoudis, Heissenberg, Russo}

e In conventional (or 't Hooft) dimreg scheme, we need to take into account ¢/¢ contributions

(IlOt n FDH) [Bini, Damour, SDA, Geralico, Herdershee, Roiban, Teng]



A Tale of Two Formalisms

Backreaction on the Static Background

e In MPM, there is a constant-in-time leading contribution. We match it by
introducing one-particle graviton emission at zero energy:
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® We can divide the momentum-space matrix element into three categories:
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¢ The waveform's constant part depends on the choice of the BMS frame.



A Tale of Two Formalisms

Backreaction on the Static Background

e [f zero-energy gravitons are kept in the spectrum, the three-point amplitude
generates time-dependent terms through the cut term.

¢ Since the zero energy graviton is supported only at the origin of phase space, we
must regularize it so that this point, | £ | = 0, remains in the integration domain.

e We find that the cut gives a finite contribution:
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e The second term can be removed by a finite time shift. The first term 1 loop disc
coincides with a BMS supertranslation, [Veneziano, Vilkovisky], [Georgoudis, Heissenberg, Russo]
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An Improved Framework for Waveforms -«

® From the analytic properties of scattering amplitudes, we isolate long-range interactions.
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Generalised unitarity for
Fourier + loop integrand,
followed by a suitable

change of i¢ prescription

At tree level, the qiz-integration Is trivialised

(factorisation in the complex ql.z channels):
* [SDA, Gonzo, Novichkov]
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e We avoid spurious poles in the g7 integrals by performing tensor-to-scalar decomposition at the
level of Fourier + lOOp integr als. [Anastasiou, Karler, Vicini]

e We introduce IBP relations for Fourier + loop integrals. The final waveform is a sum of Master
Integrals — the Fourier transforms of loop MIs and their derivatives w.r.t. the impact parameter.
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We can use packages developed for loops:
e LiteRed [Le€]
» LitelBP [Peraro]
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The Fourier integrals -...
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® Can we write this Fourier transform as iterated integrals?

e Can we compute these integrals using differential equations? [Henn]



Summary and future directions

® The scattering waveform at NLO in momentum space

“The fact that the road leading to the present
successful EFT/MPM comparison had some

e Comparison to MPM results and interesting connections to BMS  bumps, which taught us interesting lessons, is
another example of the useful synergy between

amplitude-based, and classical perturbation-
theory-based, approaches to gravitational physics.”

® The analytic waveform in impact parameter space

- What is the interesting physics we are going to learn?

¢* NNLO waveform
- Challenge for the QCD community
o¢* Peeling? The 1/r expansion of the waveform

¢* Resummation in G and comparisons with Numerical Relativity

* Continuous-spin particles from the on-shell approach  [srando Bellazzini, SDA, Marcello Romarol



