

Two-loop integrals for the production of two heavy bosons and a jet at the LHC

Samuel Abreu
CERN \& The University of Edinburgh
together with Dima Chicherin, Vasily Sotnikov and Simone Zoia

IAS, Amplitudes 2024

Main goal: compute Feynman integrals to make their analytic structure transparent, and so that we can evaluate them in a stable and efficient way

Focus: Planar Feynman integrals for processes with five external particles, two of them massive, and with massless propagators

* This should be easy and boring!

\checkmark Describing processes with 3 particles in the final state at 2 nd order in perturbation theory
\checkmark Functions that appear are the ones we've been saying we understand well for a long time!
\checkmark Five-point 1-mass @ 2 loops was not that easy...
\checkmark... but we have better tools and it actually was simple for five-point two-mass @ 2 loops!
\checkmark First explorations in [2401.07632, Jiang, Liu, Xu, Yang, 24]
* Bonus: Double Lagrangian insertions in Wilson loop in $\mathcal{N}=4$ sYM

Motivation: Precision!

* Percent-level precision

$$
\begin{gathered}
\sigma=\sigma_{L O}\left(1+\alpha_{s} \sigma_{N L O}+\alpha_{s}^{2} \sigma_{N N L O}\right)+\mathcal{O}\left(\alpha_{s}^{3}\right) \\
\sim \mathcal{O}(10 \%) \quad \sim \mathcal{O}(1 \%)
\end{gathered}
$$

* Amplitudes for NNLO corrections (five-point processes)

SOLVED

$$
\sigma_{N N L O}=\quad \sigma_{R R}
$$

$+\quad \sigma_{R V}$

$\sigma_{V V}$

* Factorisation of work: amplitudes and phase-space integration

$$
\sigma \sim \int \mathrm{d} \Phi|\mathscr{A}|^{2}
$$

NB: Divergences appear, work in Dimensional Regularisation,

$$
D=4 \rightarrow D=4-2 \epsilon
$$

Amplitudes and Feynman Integrals

- Natural factorisation

$$
\mathscr{A}=\sum c_{i}(\vec{p} ; \epsilon) m_{i}(\vec{p} ; \epsilon)
$$

```
Master coefficients
- process/theory specific
- rational functions
```

Master integrals

- kinematic dependent
- `special' functions

1. Feynman integrals as vector spaces
\checkmark Integration-by-parts (IBP) relations and master integrals
2. How to compute (multi-scale) Feynman integrals?
\checkmark Differential equations and pure basis
3. How to (efficiently) evaluate Feynman integrals?
\checkmark Numerical methods and pentagon functions

COMPUTING FEYNMAN INTEGRALS

Feynman Integrals as Vector Spaces: IBP relations

$I\left(p_{1}, \ldots, p_{E} ; m_{1}^{2}, \ldots, m_{p}^{2} ; \nu ; D\right)=\int\left(\prod_{j=1}^{L} e^{\gamma_{E} \epsilon} \frac{d^{D} k_{j}}{i \pi^{D / 2}}\right) \frac{\mathcal{N}\left(\left\{k_{j} \cdot k_{l}, k_{j} \cdot p_{l}\right\} ; D\right)}{\prod_{j=1}^{p}\left(m_{j}^{2}-q_{j}^{2}-i \varepsilon\right)^{\nu_{j}}}$

$$
\int d^{D} k_{i} \frac{\partial}{\partial k_{i}^{\mu}}\left[v^{\mu} \frac{\mathcal{N}\left(\left\{k_{j} \cdot k_{l}, k_{j} \cdot p_{l}\right\} ; D\right)}{\prod_{j=1}^{p}\left(m_{j}^{2}-q_{j}^{2}-i \varepsilon\right)^{\nu_{j}}}\right]=0
$$

- Linear relations of integrals with different ν_{j}
* Integrals in a family related by IBP relations, rational in scales and D
\checkmark Reduce integrals to a set of master integrals
* The number of master integrals is always finite
\checkmark Finite number of integrals needed to solve a family
+ Each family defines a (finite dimensional) vector space
\checkmark Like for any vector space, some bases are better than others
+ Solved in several public codes
\checkmark Kira, FIRE, NeatIBP, FiniteFlow, Reduze, LiteRed ...
* Bottleneck in many applications
\checkmark Only use (partial) analytics when it cannot be avoided
\checkmark Bypass large analytic expressions with numerical evaluations (in finite fields)

Feynman Integrals as Vector Spaces

Example 1: five-point one-mass scattering at two loops ; Planar VS Non-Planar
\checkmark Depend on 6 variables
\checkmark Penta-boxes:
[2005.04195]

74

86

75

86

86

135
\checkmark Double pentagons:
[2306.15431]

179

Feynman Integrals as Vector Spaces

Example 2: five-point two-mass scattering ; one VS two loops
\checkmark Depend on 7 variables
[Abreu, Chicherin, Sotnikov, Zoia, to appear]

16

15

94

104

87

104

105

127

Computing Feynman Integrals: Differential Equations

+ Goal: evaluate integrals around $D=4$ dimensions (as expansion in ϵ)
* Many ways to compute Feynman integrals
\checkmark Analytic/numerical integration of parametric representation
\checkmark Transform into differential equation problem
- Let $\overrightarrow{\mathscr{F}}$ be a set of master integrals ; it is closed under differentiation

$$
\partial_{x_{i}} \overrightarrow{\mathscr{J}}(x, \epsilon)=A_{x_{i}}(x, \epsilon) \overrightarrow{\mathscr{I}}(x, \epsilon)
$$

\checkmark Derivatives change powers of propagators \Rightarrow reduce to masters with IBPs
\checkmark IBPs are rational in x and $D=4-2 \epsilon \Rightarrow A_{x_{i}}(x, \epsilon)$ has rational entries
\checkmark For generic $\overrightarrow{\mathscr{F}}$, not clear we gain a lot... but some bases are better than others!

Computing Feynman Integrals: Pure Bases

$$
d \overrightarrow{\mathcal{F}}(x, \epsilon)=\epsilon\left(\sum_{i} A_{i} d \log W_{i}(x)\right) \overrightarrow{\mathcal{J}}(x, \epsilon)
$$

+ A_{i} are matrices of rational numbers, all x dependence in W_{i}
* W_{i} give logarithmic singularities/branch cuts: symbol alphabet
* No general algorithm to find a pure basis (automated codes exist, with limitations)
* Leading singularities: this is where square roots appear!

\checkmark Determine Δ_{3} without computing the integral
\checkmark Compute as residue of integrand
+ 44 square roots for 2-loop 5 -pt 2 mass (10 for 2-loop 5-pt 1 m)!
\checkmark 3-point Gram Δ_{3}, degree 2: 7 permutations

\checkmark 5-point Gram Δ_{5}, degree 4: 1 permutation
\checkmark 4-point 3-mass root, degree 4: 18 permutations
\checkmark New degree 4 root: 6 permutations
\checkmark New degree 4 root: 12 permutations

Computing Feynman Integrals: The New Roots

\checkmark Need to work a bit harder to compute root...

* Side comment: one of the integrals comes with two roots!

Computing Feynman Integrals: Alphabets and Letters

$$
d \overrightarrow{\mathcal{J}}(x, \epsilon)=\epsilon\left(\sum_{i} A_{i} d \log W_{i}(x)\right) \overrightarrow{\mathcal{J}}(x, \epsilon)
$$

+ Getting diff. eq. relies on IBPs: difficult to do analytically...
* If the W_{i} are known, determine the A_{i} from numerical IBPs!
\checkmark removes the IBP bottleneck, allows to attack multi-scale problems
* The W_{i} give singularities of Feynman integrals \Rightarrow Landau conditions
\checkmark Factorisation of work: determine W_{i} without computing the differential equation!
\checkmark Active area of research in Amplitudes area: coactions, solving Landau conditions, principal A-determinants, Gram determinants, Schubert problem, ...
\checkmark Two highlights: [2311.14669, Fevola, Mizera, Telen], [2401.07632, Jiang, Liu, Xu, Yang, 24]
* Baikovletter [2401.07632] misses one of the new five-point roots
\checkmark Not really an issue, we know it's there

Computing Feynman Integrals: Symbol Alphabet

$$
d \overrightarrow{\mathscr{J}}(x, \epsilon)=\epsilon\left(\sum_{i} A_{i} d \log W_{i}(x)\right) \overrightarrow{\mathscr{J}}(x, \epsilon) \quad \text { [Abreu, Chicherin, Sotnikov, Zoia, to appear] }
$$

family	$\operatorname{dim}(f a m)$	family	$\operatorname{dim}(f a m)$
Pa	16	PBmzz	105
Pb	15	PBzmz	104
PBmmz	94	PBzzm	104
PBmzm	87	PBzzz	127

Table 1: Number of master integrals in each family

family	$\operatorname{dim}\left(\mathcal{A}_{\text {fam }}\right)$	family	$\operatorname{dim}\left(\mathcal{A}_{\text {fam }}\right)$
Pa	43	PBmzz	80
Pb	39	PBzmz	96
PBmmz	85	PBzzm	82
PBmzm	52	PBzzz	104

Table 2: Dimension of the alphabet for each family
\checkmark Overall, 570 independent letters for planar two-loop five-point two-mass kinematics
\checkmark Even letters (215): polynomials/rational functions in the kinematic variables
\checkmark Odd letters in one square root (236): $\quad W=\frac{P(\vec{s})+Q(\vec{s}) \sqrt{\Lambda(\vec{s})}}{P(\vec{s})-Q(\vec{s}) \sqrt{\Lambda(\vec{s})}}$

- in this case, there are 44 different $\Lambda(\vec{s})$
\checkmark Odd letters in two square roots (119): $\quad W=\frac{P(\vec{s})+Q(\vec{s}) \sqrt{\Lambda_{1}(s)} \sqrt{\Lambda_{2}(s)}}{P(\vec{s})-Q(\vec{s}) \sqrt{\Lambda_{1}(s)} \sqrt{\Lambda_{2}(s)}}$
\checkmark Most letters from Baikovletter, others (mostly odd) we determine ourselves

EVALUATING FEYNMAN INTEGRALS

Evaluating Feynman Integrals: Initial Condition

$$
d \overrightarrow{\mathcal{J}}(x, \epsilon)=\epsilon\left(\sum_{i} A_{i} d \log W_{i}(x)\right) \overrightarrow{\mathcal{J}}(x, \epsilon)
$$

* General solution singular at all $W_{i}=0$ but Feynman integrals are not
\checkmark Imposing this condition allows to determine the initial condition!
Used for 5pt 1m @ 2loops, [Abreu, Ita, Moriello, Page, Tschernow, Zeng, 20, 21]
+ AMFlow approach:
[Liu, Ma, 22]
\checkmark Go to (non-physical) limit where all integrals become tadpoles, known to 5 loops
\checkmark Evolve back to physical points
\checkmark Obtain high-precision ($\mathcal{O}(100)$ digits) numerical evaluation at random point
+ In our case: Euclidean/physical-region initial conditions $\left\{s_{12}, s_{23}, s_{34}, s_{45}, s_{15}, s_{4}, s_{5}\right\}$

$$
X_{\mathrm{eu}}=\left(-\frac{3}{2},-3,-\frac{57}{8},-\frac{23}{4},-\frac{5}{8},-11,-1\right) \quad X_{0}=(7,-1,2,5,-2,1,1)
$$

$\checkmark 80$ digits evaluations (took ~ 1 week). Sufficient for pentagon functions

Evaluating Feynman Integrals: Solving the DEs

*Trivial solution in terms of Chen iterated integrals, order by order in ϵ

$$
\left[W_{i_{1}}, \ldots, W_{i_{w}}\right]_{\vec{s}_{0}}(\vec{s})=\int_{\gamma}\left[W_{i_{1}}, \ldots, W_{i_{w-1}}\right]_{\vec{s}_{0}} \operatorname{dlog} W_{i_{w}} \quad \forall \gamma \text { connects } \vec{s}_{0} \text { and } \vec{s} ;[]_{\vec{s}_{0}} \equiv 1
$$

\checkmark Formal solution, not trivial to evaluate...

- Numerical solution
\checkmark Start from known initial condition, and evolve along path
\checkmark Generalised power-series solution with finite convergence radius

$$
\sum_{j_{1}=0}^{\infty} \sum_{j_{2}=0}^{N_{i, k}} \mathbf{c}_{k}^{\left(i, j_{1}, j_{2}\right)}\left(t-t_{k}\right)^{\frac{j_{1}}{2}} \log \left(t-t_{k}\right)^{j_{2}}
$$

, High-precision, but slow...

* Write solution in terms of special functions (multiple polylogarithms, ...) ...

For planar 5pt 1 m @ 2loops, [Canko, Kardos, Papadopoulos, Smirnov, Syrrakos, Wever 20-22]

* Roots make it hard/impossible, and not the most convenient representation
\checkmark Introduces spurious singularities
\checkmark complicated branch cut structure means expression only valid in small region

Evaluating Feynman Integrals: Pentagon Functions

* Master integrals are linearly independent before expansion in ϵ
[Gehrmann, Henn, Lo Presti, 18]
[Chicherin, Sotnikov, 20]
* After expansion in ϵ, there are new relations:

* Make relations explicit: build basis of special functions at each order in ϵ
* Improved algorithm for two-loop five-point one-mass processes
[Abreu, Chicherin, Ita, Page, Sotnikov, Tschernow, Zoia 23]

1. Solve in terms of Chen iterated integrals, order by order in ϵ

$$
\left[W_{i_{1}}, \ldots, W_{i_{w}}\right]_{s_{0}}(\vec{s})=\int_{\gamma}\left[W_{i_{1}}, \ldots, W_{i_{w-1}}\right]_{\vec{s}_{0}} \mathrm{~d} \log W_{i_{w}}
$$

\checkmark Simple algebra for Chen iterated integrals (with dlog kernels)!
2. Choose components of Feynman integrals as pentagon functions
3. Use `symbol technology' to write all integrals in terms of basis
4. Implement in C++ code

Evaluating Feynman Integrals: Pentagon Functions

Five-point one-mass scattering at two loops

\checkmark Standard precision, no rescue system
\checkmark Precision loss because of square root
\checkmark With rescue system
\checkmark Easy to implement if good control of analytic structure

\checkmark Ready for phenomenological applications!

DOUBLE LAGRANGIAN INSERTIONS IN WILSON LOOP IN $\mathcal{N}=4$ SYM

Lagrangian insertions in Wilson loop

$$
F_{l}\left(x_{1}, \ldots, x_{4} ; y_{1}, \ldots, y_{l}\right)=\frac{\pi^{2 l}}{<W_{\mathrm{F}}>}<W_{\mathrm{F}} \mathscr{L}\left(y_{1}\right) \ldots \mathscr{L}\left(y_{l}\right)>
$$

$+l=1$: massless four-point kinematics

$$
F_{l=1}\left(x_{1}, \ldots, x_{4} ; x_{0}\right)=\frac{x_{13}^{2} x_{24}^{2}}{x_{10}^{2} x_{20}^{2} x_{30}^{2} x_{40}^{2}} \sum_{L \geq 0}\left(g^{2}\right)^{1+L} \tilde{F}_{l=1}^{(L)}\left(z=\frac{x_{24}^{2} x_{10}^{2} x_{30}^{2}}{x_{13}^{2} x_{20}^{2} x_{40}^{2}}\right)
$$

[Alday, Buchbinder, Tseytlin, 11] [Alday, Heslop,Sikorowski, 12] [Alday, Henn,Sikorowski, 13]

$$
(-1)^{L+1} \tilde{F}_{l=1}^{(L)}(z)>0
$$

Lagrangian insertions in Wilson loop

[Abreu, Chicherin, Sotnikov, Zoia, to appear]
$+l=2$: (degenerate) five-point two-mass kinematics

$$
F_{l=2}\left(x_{1}, \ldots, x_{4} ; x_{0}, x_{0}\right)=\frac{x_{13}^{2} x_{24}^{2}}{x_{10}^{2} x_{20} x_{30}^{2} x_{40}^{2}} \frac{x_{13}^{2} x_{24}^{2}}{x_{10}^{2}, x_{20}^{2} x_{30}^{\prime} x_{30}^{\prime} x_{40}^{2}} \sum_{L \geq 0}\left(g^{2}\right)^{2+L} \tilde{F}_{l=2}^{(L)}(\mathbf{z})
$$

v $L=0$: rational function

$$
\tilde{F}_{l=2}^{(0)}=\frac{1}{x_{13}^{2} x_{24}^{2}}\left[x_{13}^{2}\left(x_{20}^{2}+x_{40}^{2}\right)+x_{24}^{2}\left(x_{10}^{2}+x_{30}^{2}\right)\right]
$$

$\checkmark L=1$: weight 2 function

$$
\tilde{F}_{l=2}^{(1)}(\mathbf{z})=\sum_{i=1}^{7} r_{i}(\mathbf{z}) f_{i}^{(1)}(\mathbf{z})
$$

$\checkmark L=2$: weight 4 function

$$
\tilde{F}_{l=2}^{(2)}(\mathbf{z})=\sum_{i=1}^{64} r_{i}(\mathbf{z}) f_{i}^{(2)}(\mathbf{z})
$$

Finite and pure results: tests our integrals

\downarrow New conjecture (in kinematic region defined by amplituhedron): $(-1)^{L} \tilde{F}_{l=2}^{(L)}(\mathbf{z})>0$
\checkmark Holds very non-trivially for $L=1$, working on $L=2$ check

SUMMARY AND OUTLOOK

* We have mature tools that allow us to push the state of the art
\checkmark Pheno-ready integrals available for 5pt massless and 5pt one-mass processes
\checkmark Progress in two-loop five-point two-mass processes was much faster
* New results obtained with pheno in mind leading to new formal studies
\checkmark Lagrangian insertions in Wilson loop
- Are pentagon functions actually a good basis?
\checkmark We know that they are not at one loop
\checkmark Include rational factors to make them have better behaved limits
* New challenges ahead: what if singularities are not all dlogs?
\checkmark Elliptic integrals and beyond!
\checkmark A lot of developments, but still missing heavy machinery

THANK YOU!

