



## Two-loop integrals for the production of two heavy bosons and a jet at the LHC

Samuel Abreu CERN & The University of Edinburgh together with Dima Chicherin, Vasily Sotnikov and Simone Zoia

IAS, Amplitudes 2024

#### Content

**Main goal:** compute Feynman integrals to make their analytic structure transparent, and so that we can evaluate them in a stable and efficient way

**Focus:** Planar Feynman integrals for processes with five external particles, two of them massive, and with massless propagators

This should be easy and boring!



- Describing processes with 3 particles in the final state at 2nd order in perturbation theory
- Functions that appear are the ones we've been saying we understand well for a long time!
- ✓ Five-point 1-mass @ 2 loops was not that easy...
- ... but we have better tools and it actually was simple for five-point two-mass @ 2 loops!
- First explorations in [2401.07632, Jiang, Liu, Xu, Yang, 24]

+ **Bonus:** Double Lagrangian insertions in Wilson loop in  $\mathcal{N} = 4$  sYM

#### **Motivation: Precision!**

Percent-level precision

$$\sigma = \sigma_{LO} \left( 1 + \alpha_s \sigma_{NLO} + \alpha_s^2 \sigma_{NNLO} \right) + \mathcal{O}(\alpha_s^3) \\ \sim \mathcal{O}(10\%) \qquad \sim \mathcal{O}(1\%)$$

Amplitudes for NNLO corrections (five-point processes)



Factorisation of work: amplitudes and phase-space integration

$$\sigma \sim \int \mathrm{d}\Phi \, \left| \mathscr{A} \right|^2$$

NB: Divergences appear, work in Dimensional Regularisation,  $D = 4 \rightarrow D = 4 - 2\epsilon$ 

[See Chiara's talk for more details]

## **Amplitudes and Feynman Integrals**



1. Feynman integrals as vector spaces

Integration-by-parts (IBP) relations and master integrals

2. How to compute (multi-scale) Feynman integrals?

Differential equations and pure basis

**3**. How to (efficiently) evaluate Feynman integrals?

Numerical methods and pentagon functions





## **COMPUTING FEYNMAN INTEGRALS**

#### **Feynman Integrals as Vector Spaces: IBP relations**

$$I(p_1, \dots, p_E; m_1^2, \dots, m_p^2; \nu; D) = \int \left(\prod_{j=1}^L e^{\gamma_E \epsilon} \frac{d^D k_j}{i\pi^{D/2}}\right) \frac{\mathcal{N}(\{k_j \cdot k_l, k_j \cdot p_l\}; D)}{\prod_{j=1}^p (m_j^2 - q_j^2 - i\epsilon)^{\nu_j}}$$

[Tkachov; Chetyrkin, Tkachov, 81]

$$\int d^D k_i \frac{\partial}{\partial k_i^{\mu}} \left[ v^{\mu} \frac{\mathcal{N}(\{k_j \cdot k_l, k_j \cdot p_l\}; D)}{\prod_{j=1}^p (m_j^2 - q_j^2 - i\varepsilon)^{\nu_j}} \right] = 0$$

• Linear relations of integrals with different  $\nu_i$ 

- Integrals in a family related by IBP relations, rational in scales and D
  - Reduce integrals to a set of master integrals
- The number of master integrals is always finite
  - Finite number of integrals needed to solve a family
- Each family defines a (finite dimensional) vector space
  - Like for any vector space, some bases are better than others
- Solved in several public codes
  - Kira, FIRE, NeatIBP, FiniteFlow, Reduze, LiteRed ...
- Bottleneck in many applications
  - Only use (partial) analytics when it cannot be avoided
  - Bypass large analytic expressions with numerical evaluations (in finite fields)

#### **Feynman Integrals as Vector Spaces**

**Example 1:** five-point one-mass scattering at two loops ; Planar VS Non-Planar

- Depend on 6 variables  $\checkmark$
- Penta-boxes:  $\checkmark$ [2005.04195]









Hexa-boxes:  $\checkmark$ [2107.14180]







135

Double pentagons:  $\checkmark$ [2306.15431]







7

#### **Feynman Integrals as Vector Spaces**

#### **Example 2:** five-point two-mass scattering ; one VS two loops

Depend on 7 variables

 $p_{3} \xrightarrow{p_{4}} p_{5}$   $p_{2} \xrightarrow{p_{4}} p_{5}$   $p_{2} \xrightarrow{p_{1}} p_{1}$   $p_{2} \xrightarrow{p_{1}} p_{2}$ 



[Abreu, Chicherin, Sotnikov, Zoia, to appear]





87









104



**127** [2401.07632, Jiang, Liu, Xu, Yang]

#### **Computing Feynman Integrals: Differential Equations**

• Goal: evaluate integrals around D = 4 dimensions (as expansion in  $\epsilon$ )

#### Many ways to compute Feynman integrals

- Analytic/numerical integration of parametric representation
- Transform into differential equation problem

[Kotikov, 91; Bern et al, 94; Remiddi, 97; Gehrmann, Remiddi 00]

#### + Let $\overrightarrow{\mathscr{I}}$ be a set of master integrals ; it is closed under differentiation

$$\partial_{x_i} \vec{\mathcal{I}}(x,\epsilon) = A_{x_i}(x,\epsilon) \vec{\mathcal{I}}(x,\epsilon)$$

- ✓ Derivatives change powers of propagators ⇒ reduce to masters with IBPs
- ✓ IBPs are rational in x and  $D = 4 2\epsilon \Rightarrow A_{x_i}(x, \epsilon)$  has rational entries
- ✓ For generic  $\vec{\mathscr{I}}$ , not clear we gain a lot... but some bases are better than others!

#### **Computing Feynman Integrals: Pure Bases**

$$d\vec{\mathcal{J}}(x,\epsilon) = \epsilon \left(\sum_{i} A_{i} d \log W_{i}(x)\right) \vec{\mathcal{J}}(x,\epsilon)$$

[Henn, 13]

10

- +  $A_i$  are matrices of rational numbers, all x dependence in  $W_i$
- $W_i$  give logarithmic singularities/branch cuts: symbol alphabet
- No general algorithm to find a pure basis (automated codes exist, with limitations)
- Leading singularities: this is where square roots appear! +



- $\underbrace{1}{\sqrt{\Delta_3}} \mathcal{T} \qquad \qquad \checkmark \quad \text{Determine } \Delta_3 \text{ without computing the integral} \\ \checkmark \quad \text{Compute as residue of integrand}$
- 44 square roots for 2-loop 5-pt 2mass (10 for 2-loop 5-pt 1m)!
  - ✓ 3-point Gram  $\Delta_3$ , degree 2: 7 permutations
  - ✓ 5-point Gram  $\Delta_5$ , degree 4: 1 permutation
  - ✓ 4-point 3-mass root, degree 4: 18 permutations
  - New degree 4 root: 6 permutations
  - New degree 4 root: 12 permutations





#### **Computing Feynman Integrals: The New Roots**









Side comment: one of the integrals comes with two roots!



11

#### **Computing Feynman Integrals: Alphabets and Letters**

$$d\vec{\mathcal{J}}(x,\epsilon) = \epsilon \left(\sum_{i} A_{i} d \log W_{i}(x)\right) \vec{\mathcal{J}}(x,\epsilon)$$

- Getting diff. eq. relies on IBPs: difficult to do analytically...
- + If the  $W_i$  are known, determine the  $A_i$  from numerical IBPs!
  - removes the IBP bottleneck, allows to attack multi-scale problems
- + The  $W_i$  give singularities of Feynman integrals  $\Rightarrow$  Landau conditions
  - ✓ Factorisation of work: determine  $W_i$  without computing the differential equation!
  - Active area of research in Amplitudes area: coactions, solving Landau conditions, principal A-determinants, Gram determinants, Schubert problem, ...
  - Two highlights: [2311.14669, Fevola, Mizera, Telen], [2401.07632, Jiang, Liu, Xu, Yang, 24]
- Baikovletter [2401.07632] misses one of the new five-point roots
  - Not really an issue, we know it's there



#### **Computing Feynman Integrals: Symbol Alphabet**

$$d\vec{\mathcal{J}}(x,\epsilon) = \epsilon \left(\sum_{i} A_{i} d \log W_{i}(x)\right) \vec{\mathcal{J}}(x,\epsilon) \qquad [Abreu, Chicherin, Sotnikov, Zoia, to appear]$$

| family | dim(fam) | family | $\dim(fam)$ | family | $\dim(\mathcal{A}_{\mathrm{fam}})$ | family | $\dim(\mathcal{A}_{\mathrm{fam}})$ |
|--------|----------|--------|-------------|--------|------------------------------------|--------|------------------------------------|
| Pa     | 16       | PBmzz  | 105         | Pa     | 43                                 | PBmzz  | 80                                 |
| Pb     | 15       | PBzmz  | 104         | Pb     | 39                                 | PBzmz  | 96                                 |
| PBmmz  | 94       | PBzzm  | 104         | PBmmz  | 85                                 | PBzzm  | 82                                 |
| PBmzm  | 87       | PBzzz  | 127         | PBmzm  | 52                                 | PBzzz  | 104                                |

 Table 1: Number of master integrals in each family

| Table 2: | Dimension | of the | alphabet | for each | family |
|----------|-----------|--------|----------|----------|--------|
|----------|-----------|--------|----------|----------|--------|

- Overall, 570 independent letters for planar two-loop five-point two-mass kinematics
- Even letters (215): polynomials/rational functions in the kinematic variables
- ✓ Odd letters in one square root (236):  $W = \frac{P(\vec{s}) + Q(\vec{s})\sqrt{\Lambda(\vec{s})}}{P(\vec{s}) Q(\vec{s})\sqrt{\Lambda(\vec{s})}}$ 
  - in this case, there are 44 different  $\Lambda(\vec{s})$
- Odd letters in two square roots (119):

$$W = \frac{P(\vec{s}) + Q(\vec{s})\sqrt{\Lambda_1(s)}\sqrt{\Lambda_2(s)}}{P(\vec{s}) - Q(\vec{s})\sqrt{\Lambda_1(s)}\sqrt{\Lambda_2(s)}}$$

Most letters from Baikovletter, others (mostly odd) we determine ourselves

## **EVALUATING FEYNMAN INTEGRALS**

#### **Evaluating Feynman Integrals: Initial Condition**

$$d\vec{\mathcal{J}}(x,\epsilon) = \epsilon \left(\sum_{i} A_{i} d \log W_{i}(x)\right) \vec{\mathcal{J}}(x,\epsilon)$$

- + General solution singular at all  $W_i = 0$  but Feynman integrals are not
  - Imposing this condition allows to determine the initial condition!

Used for 5pt 1m @ 2loops, [Abreu, Ita, Moriello, Page, Tschernow, Zeng, 20, 21]

#### AMFlow approach:

- Go to (non-physical) limit where all integrals become tadpoles, known to 5 loops
- Evolve back to physical points
   Used for 5pt 1m @ 2loops, [Abreu et al, 23]
- ✓ Obtain high-precision (O(100) digits) numerical evaluation at random point

+ In our case: Euclidean/physical-region initial conditions  $\{s_{12}, s_{23}, s_{34}, s_{45}, s_{15}, s_4, s_5\}$ 

$$X_{\rm eu} = \left(-\frac{3}{2}, -3, -\frac{57}{8}, -\frac{23}{4}, -\frac{5}{8}, -11, -1\right) \qquad \qquad X_0 = \left(7, -1, 2, 5, -2, 1, 1\right)$$

✓ 80 digits evaluations (took ~ 1 week). Sufficient for pentagon functions

[Liu, Ma, 22]

## **Evaluating Feynman Integrals: Solving the DEs**

+ Trivial solution in terms of Chen iterated integrals, order by order in  $\epsilon$ 

$$[W_{i_1}, ..., W_{i_w}]_{\vec{s}_0}(\vec{s}) = \int_{\gamma} [W_{i_1}, ..., W_{i_{w-1}}]_{\vec{s}_0} d\log W_{i_w} \qquad \flat \ \gamma \text{ connects } \vec{s}_0 \text{ and } \vec{s} \text{ ; } []_{\vec{s}_0} \equiv 1$$

- Formal solution, not trivial to evaluate...
- Numerical solution

[Moriello, 19; Hidding, 20; Armadillo et al, 22; Liu, Ma, 22]

- Start from known initial condition, and evolve along path
- Generalised power-series solution with finite convergence radius

$$\sum_{i_1=0}^{\infty} \sum_{j_2=0}^{N_{i,k}} \mathbf{c}_k^{(i,j_1,j_2)} (t-t_k)^{\frac{j_1}{2}} \log (t-t_k)^{j_2}$$

- High-precision, but slow...
- Write solution in terms of special functions (multiple polylogarithms, ...) ...

For planar 5pt 1m @ 2loops, [Canko, Kardos, Papadopoulos, Smirnov, Syrrakos, Wever 20-22]

- Roots make it hard/impossible, and not the most convenient representation
  - Introduces spurious singularities
  - complicated branch cut structure means expression only valid in small region

#### **Evaluating Feynman Integrals: Pentagon Functions**

+ Master integrals are linearly independent before expansion in  $\epsilon$ 

[Gehrmann, Henn, Lo Presti, 18] [Chicherin, Sotnikov, 20]

17

+ After expansion in  $\epsilon$ , there are new relations:

$$\Rightarrow \bigcirc \Leftarrow \sim \Rightarrow \bigcirc \Leftarrow \sim \Rightarrow \bigcirc \Leftarrow \sim r_0 + r_1 \epsilon \ln(s) + r_2 \epsilon^2 \ln^2(s) + \dots$$

- + Make relations explicit: build basis of special functions at each order in  $\epsilon$
- Improved algorithm for two-loop five-point one-mass processes

[Abreu, Chicherin, Ita, Page, Sotnikov, Tschernow, Zoia 23]

1. Solve in terms of Chen iterated integrals, order by order in  $\epsilon$ 

$$[W_{i_1}, \dots, W_{i_w}]_{\vec{s}_0}(\vec{s}) = \int_{\gamma} [W_{i_1}, \dots, W_{i_{w-1}}]_{\vec{s}_0} d\log W_{i_w}$$

Simple algebra for Chen iterated integrals (with dlog kernels)!

- 2. Choose components of Feynman integrals as pentagon functions
- 3. Use `symbol technology' to write all integrals in terms of basis
- 4. Implement in C++ code

## **Evaluating Feynman Integrals: Pentagon Functions**

#### Five-point one-mass scattering at two loops

[Abreu, Chicherin, Ita, Page, Sotnikov, Tschernow, Zoia 23]



Ready for phenomenological applications!

# DOUBLE LAGRANGIAN INSERTIONS IN WILSON LOOP IN $\mathcal{N} = 4$ SYM

#### Lagrangian insertions in Wilson loop

$$F_l(x_1, \dots, x_4; y_1, \dots, y_l) = \frac{\pi^{2l}}{\langle W_{\rm F} \rangle} \langle W_{\rm F} \mathcal{L}(y_1) \dots \mathcal{L}(y_l) \rangle$$

 $y_2$ 

 $q_1$  $x_1$  $x_2$  $y_1$  $q_2$  $q_4$ (+)000  $y_1$  $x_4$  $x_3$  $q_3$ 

#### + l = 1: massless four-point kinematics

$$F_{l=1}(x_1, \dots, x_4; x_0) = \frac{x_{13}^2 x_{24}^2}{x_{10}^2 x_{20}^2 x_{30}^2 x_{40}^2} \sum_{L \ge 0} (g^2)^{1+L} \tilde{F}_{l=1}^{(L)} \left( z = \frac{x_{24}^2 x_{10}^2 x_{30}^2}{x_{13}^2 x_{20}^2 x_{40}^2} \right)$$

[Alday, Buchbinder, Tseytlin, 11] [Alday, Heslop, Sikorowski, 12] [Alday, Henn, Sikorowski, 13]



**Positivity conjecture:** tested to L = 3 $\checkmark$ 

$$(-1)^{L+1} \tilde{F}_{l=1}^{(L)}(z) > 0$$

[Arkani-Hamed, Henn, Trnka, 21]

e.g., [Eden, Schubert, Sokatchev, 00]

## Lagrangian insertions in Wilson loop

#### [Abreu, Chicherin, Sotnikov, Zoia, to appear] $Q + q_1$ $q_1$ + l = 2: (degenerate) five-point two-mass kinematics $x_1$ $x_0$ $F_{l=2}(x_1, \dots, x_4; x_0, x_{0'}) = \frac{x_{13}^2 x_{24}^2}{x_{10}^2 x_{20}^2 x_{30}^2 x_{40}^2} \frac{x_{13}^2 x_{24}^2}{x_{10'}^2 x_{20'}^2 x_{30'}^2 x_{40'}^2} \sum_{l>0} (g^2)^{2+L} \tilde{F}_{l=2}^{(L)}(\mathbf{z})$ $q_4$ $Q - q_4$ $\tilde{F}_{l=2}^{(0)} = \frac{1}{x_{12}^2 x_{24}^2} \left[ x_{13}^2 (x_{20}^2 + x_{40}^2) + x_{24}^2 (x_{10}^2 + x_{30}^2) \right]$ $q_3 = p_3$

 $\tilde{F}_{l=2}^{(1)}(\mathbf{z}) = \sum_{i=1}^{l} r_i(\mathbf{z}) f_i^{(1)}(\mathbf{z})$ ✓ L = 1: weight 2 function

✓ L = 0: rational function

✓ L = 2: weight 4 function 
$$\tilde{F}_{l=2}^{(2)}(\mathbf{z}) = \sum_{i=1}^{64} r_i(\mathbf{z}) f_i^{(2)}(\mathbf{z})$$

- Finite and pure results: tests our integrals +
- New conjecture (in kinematic region defined by amplituhedron):  $(-1)^L \tilde{F}_{l-2}^{(L)}(\mathbf{z}) > 0$ +
  - ✓ Holds very non-trivially for L = 1, working on L = 2 check



 $x_2$ 

 $x_3$ 

## **SUMMARY AND OUTLOOK**

#### **Summary and Outlook**

- We have mature tools that allow us to push the state of the art
  - Pheno-ready integrals available for 5pt massless and 5pt one-mass processes
  - Progress in two-loop five-point two-mass processes was much faster
- New results obtained with pheno in mind leading to new formal studies
  - Lagrangian insertions in Wilson loop
- Are pentagon functions actually a good basis?
  - We know that they are not at one loop
  - Include rational factors to make them have better behaved limits
- New challenges ahead: what if singularities are not all dlogs?
  - Elliptic integrals and beyond!
  - A lot of developments, but still missing heavy machinery

# **THANK YOU!**