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Tricolored subdivisions and partial cyclic orders
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@ Tricolored subdivisions and partial cyclic orders

@ Applications to Parke-Taylor identities and Parke-Taylor polytopes
°

°
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Tricolored subdivisions and partial cyclic orders
Applications to Parke-Taylor identities and Parke-Taylor polytopes

°
°
@ What is the amplituhedron?
°
°
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Tricolored subdivisions and partial cyclic orders
Applications to Parke-Taylor identities and Parke-Taylor polytopes
What is the amplituhedron?

Magic number conjecture for the amplituhedron
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Tricolored subdivisions and partial cyclic orders
Applications to Parke-Taylor identities and Parke-Taylor polytopes
What is the amplituhedron?

Magic number conjecture for the amplituhedron

Proof of Magic number conjecture when m = 2
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Tricolored subdivisions and cyclic orders
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Tricolored subdivisions and cyclic orders

@ A tricolored subdivision T of an n-gon is a subdivision of the polygon
into smaller polygons (black, grey, or white) in which every edge
connects two vertices of the n-gon.
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Tricolored subdivisions and cyclic orders

@ A tricolored subdivision T of an n-gon is a subdivision of the polygon
into smaller polygons (black, grey, or white) in which every edge
connects two vertices of the n-gon.

e From each 7, can read off a cyclic order C; (is a cyclic analogue of
partial order).
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Tricolored subdivisions and cyclic orders

@ A tricolored subdivision T of an n-gon is a subdivision of the polygon
into smaller polygons (black, grey, or white) in which every edge
connects two vertices of the n-gon.

e From each 7, can read off a cyclic order C; (is a cyclic analogue of
partial order). To get C; from 7, read vertices of white (resp black)
polygons clockwise (resp counterclockwise), and ignore the grey.
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Tricolored subdivisions and cyclic orders

@ A tricolored subdivision T of an n-gon is a subdivision of the polygon
into smaller polygons (black, grey, or white) in which every edge
connects two vertices of the n-gon.

e From each 7, can read off a cyclic order C; (is a cyclic analogue of
partial order). To get C; from 7, read vertices of white (resp black)
polygons clockwise (resp counterclockwise), and ignore the grey.

e The C; from our example requires that (2,5,7), (5,7,6), and
(1,8,7,2) are circularly ordered.
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Tricolored subdivisions and cyclic orders

@ A tricolored subdivision T of an n-gon is a subdivision of the polygon
into smaller polygons (black, grey, or white) in which every edge
connects two vertices of the n-gon.

e From each 7, can read off a cyclic order C; (is a cyclic analogue of
partial order). To get C; from 7, read vertices of white (resp black)
polygons clockwise (resp counterclockwise), and ignore the grey.

e The C; from our example requires that (2,5,7), (5,7,6), and
(1,8,7,2) are circularly ordered.

@ A circular extension of C; is a total circular order compatible with C;.
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Tricolored subdivisions and cyclic orders

@ A tricolored subdivision T of an n-gon is a subdivision of the polygon
into smaller polygons (black, grey, or white) in which every edge
connects two vertices of the n-gon.

e From each 7, can read off a cyclic order C; (is a cyclic analogue of
partial order). To get C; from 7, read vertices of white (resp black)
polygons clockwise (resp counterclockwise), and ignore the grey.

e The C; from our example requires that (2,5,7), (5,7,6), and
(1,8,7,2) are circularly ordered.

@ A circular extension of C; is a total circular order compatible with C;.
E.g. one circular extension of our example is: (2,5,1,8,7,6,3,4).
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The Grassmannian and Plucker coordinates

The Grassmannian Gry ,(C) :=={V | V C C",dim V = k}
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The Grassmannian and Plucker coordinates

The Grassmannian Gry ,(C) :=={V | V C C",dim V = k}
Represent an element of Gry , by a full-rank k x n matrix C.
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The Grassmannian and Plucker coordinates

The Grassmannian Gry ,(C) :=={V | V C C",dim V = k}
Represent an element of Gry , by a full-rank k x n matrix C.

1 00 -3
012 1

Lauren K. Williams (Harvard) The magic number for A, , 2(Z)



The Grassmannian and Plucker coordinates

The Grassmannian Gry ,(C) :=={V | V C C",dim V = k}
Represent an element of Gry , by a full-rank k x n matrix C.

1 00 -3

012 1
Given / € (I), the Pliicker coordinate p;(C) is the minor of the k x k
submatrix of C in column set /.
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Grassmannian identities from tricolored subdivisions
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Grassmannian identities from tricolored subdivisions

@ Given a permutation w = wj ... w,, define the Parke-Taylor function

PT(w) := 1 ,

Puiwo Puows - - - Pwawy
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Grassmannian identities from tricolored subdivisions

@ Given a permutation w = wj ... w,, define the Parke-Taylor function

1

Puiwo Puows - - - Pwawy

PT(w) :=

Y

where the P;; are Pliicker coordinates on the Grassmannian Gr3 ,,.
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Grassmannian identities from tricolored subdivisions

@ Given a permutation w = wj ... w,, define the Parke-Taylor function

1

Puiwo Puows - - - Pwawy

PT(w) :=

Y

where the P;; are Pliicker coordinates on the Grassmannian Gr3 ,,.

We get the following identity.
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Grassmannian identities from tricolored subdivisions

@ Given a permutation w = wj ... w,, define the Parke-Taylor function

1

Puiwo Puows - - - Pwawy

PT(w) :=

Y

where the P;; are Pliicker coordinates on the Grassmannian Gr3 ,,.

We get the following identity.

Theorem (Parisi-ShermanBennett—Tessler-W)
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Grassmannian identities from tricolored subdivisions

@ Given a permutation w = wj ... w,, define the Parke-Taylor function

1

Puiwo Puows - - - Pwawy

PT(w) :=

Y

where the P;; are Pliicker coordinates on the Grassmannian Gr3 ,,.
We get the following identity.

Theorem (Parisi-ShermanBennett—Tessler-W)

Let 7 be a tricolored subdivision with at least one grey polygon, and let C.
be the cyclic partial order.
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Grassmannian identities from tricolored subdivisions

@ Given a permutation w = wj ... w,, define the Parke-Taylor function

1

Puiwo Puows - - - Pwawy

PT(w) :=

Y

where the P;; are Pliicker coordinates on the Grassmannian Gr3 ,,.
We get the following identity.

Theorem (Parisi-ShermanBennett—Tessler-W)

Let 7 be a tricolored subdivision with at least one grey polygon, and let C.
be the cyclic partial order. Then

> PT(w) =0,
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Grassmannian identities from tricolored subdivisions

@ Given a permutation w = wj ... w,, define the Parke-Taylor function

1

Puiwo Puows - - - Pwawy

PT(w) :=

Y

where the P;; are Pliicker coordinates on the Grassmannian Gr3 ,,.
We get the following identity.

Theorem (Parisi-ShermanBennett—Tessler-W)

Let 7 be a tricolored subdivision with at least one grey polygon, and let C.
be the cyclic partial order. Then

> PT(w) =0,

where the sum is over all circular extensions (w) of C.
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Grassmannian identities from tricolored subdivisions

The Parke-Taylor function is PT(wy ... wy) =

Pvy iy Puryug - Puupory *
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Grassmannian identities from tricolored subdivisions

The Parke-Taylor function is PT(wy ... wy) =

Pvy iy Puryug - Puupory *

Theorem (P-SB-T-W)

Let 7 be a tricolored subdivision with at least one grey polygon, and let C-
be the cyclic partial order. Then

> PT(w) =0,

where the sum is over all circular extensions (w) of C..
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Grassmannian identities from tricolored subdivisions

1
Prvy iy Puryu - Puupory *

The Parke-Taylor function is PT(wy ... wy) =

Theorem (P-SB-T-W)

Let 7 be a tricolored subdivision with at least one grey polygon, and let C-
be the cyclic partial order. Then

> PT(w) =0,

where the sum is over all circular extensions (w) of C..

z 3

Example:
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Grassmannian identities from tricolored subdivisions

1
PW1W2PW2W3-~~PW,-,W1 '

The Parke-Taylor function is PT(wy ... wy) =

Theorem (P-SB-T-W)

Let 7 be a tricolored subdivision with at least one grey polygon, and let C-
be the cyclic partial order. Then

> PT(w) =0,

where the sum is over all circular extensions (w) of C..

z 3

A
Example: ! A

The circular extensions of C; are (1234), (1243), (1423),
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Grassmannian identities from tricolored subdivisions

1
PW1W2PW2W3-~~PW,-,W1 '

The Parke-Taylor function is PT(wy ... wy) =

Theorem (P-SB-T-W)

Let 7 be a tricolored subdivision with at least one grey polygon, and let C-
be the cyclic partial order. Then

> PT(w) =0,

where the sum is over all circular extensions (w) of C..

z J
Example: ! A
The circular extensions of C; are (1234), (1243), (1423),

1 I 1 T 1 _
P12 P23 P34 Py P12 P24 Py3 P3y P14 P42 P23 P3;

so Thm says
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Grassmannian identities from tricolored subdivisions

1
PW1W2PW2W3-~~PW,-,W1 '

The Parke-Taylor function is PT(wy ... wy) =

Theorem (P-SB-T-W)

Let 7 be a tricolored subdivision with at least one grey polygon, and let C-
be the cyclic partial order. Then

> PT(w) =0,

where the sum is over all circular extensions (w) of C..

z J
Example: ! A
The circular extensions of C; are (1234), (1243), (1423),

1 1 1 _
so Thm says P12 P23 P34 Py + P12 P24 Py3 P3y + P14Py P33 P31
(Rk: 3-term Pliicker relation)
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Parke-Taylor identities from tricolored subdivisions
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Parke-Taylor identities from tricolored subdivisions

Theorem (P-SB-T-W)

Let 7 be a tricolored subdivision with at least one grey polygon, and let C.
be the cyclic partial order. Then

> PT(w) =0,

where the sum is over all circular extensions (w) of C..

y
o
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Parke-Taylor identities from tricolored subdivisions

Theorem (P-SB-T-W)

Let 7 be a tricolored subdivision with at least one grey polygon, and let C.
be the cyclic partial order. Then

> PT(w) =0,

where the sum is over all circular extensions (w) of C..

@ PT functions related to: cohomology of My , and scattering eqns
(Cachazo-He-Yuan); Lie polynomials (Frost-Mason); non-planar

plabic graphs (Arkani-Hamed-Bourjaily-Cachazo-Postnikov-Trnka).
o
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Parke-Taylor identities from tricolored subdivisions

Theorem (P-SB-T-W)

Let 7 be a tricolored subdivision with at least one grey polygon, and let C.
be the cyclic partial order. Then

> PT(w) =0,

where the sum is over all circular extensions (w) of C..

@ PT functions related to: cohomology of My , and scattering eqns
(Cachazo-He-Yuan); Lie polynomials (Frost-Mason); non-planar
plabic graphs (Arkani-Hamed-Bourjaily-Cachazo-Postnikov-Trnka).

e Thm above implies the U(1) decoupling identities and shuffle
identities for Parke-Taylor functions.
°
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Parke-Taylor identities from tricolored subdivisions

Theorem (P-SB-T-W)

Let 7 be a tricolored subdivision with at least one grey polygon, and let C.
be the cyclic partial order. Then

> PT(w) =0,

where the sum is over all circular extensions (w) of C..

@ PT functions related to: cohomology of My , and scattering eqns
(Cachazo-He-Yuan); Lie polynomials (Frost-Mason); non-planar
plabic graphs (Arkani-Hamed-Bourjaily-Cachazo-Postnikov-Trnka).

e Thm above implies the U(1) decoupling identities and shuffle
identities for Parke-Taylor functions.

@ There are some analogous results for linear extensions of posets due
to Curtis Greene, in connection to the Murnaghan-Nakayama formula
(rep theory of S,).
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Tricolored subdivisions and Parke-Taylor polytopes
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Tricolored subdivisions and Parke-Taylor polytopes

@ We can associate a Parke-Taylor polytope I, C R"~1 to each
tricolored subdivision on [n]:
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Tricolored subdivisions and Parke-Taylor polytopes

@ We can associate a Parke-Taylor polytope I, C R"~1 to each
tricolored subdivision on [n]: for any compatible arc i — j with i < j,
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Tricolored subdivisions and Parke-Taylor polytopes

@ We can associate a Parke-Taylor polytope I, C R"~1 to each
tricolored subdivision on [n]: for any compatible arc i — j with i < j,

area(i — j) < xi+xip1+---+xj—1 < area(i — j)+gr-area(i — j)+1.
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Tricolored subdivisions and Parke-Taylor polytopes

@ We can associate a Parke-Taylor polytope I, C R"~1 to each
tricolored subdivision on [n]: for any compatible arc i — j with i < j,

area(i — j) < xi+xip1+---+xj—1 < area(i — j)+gr-area(i — j)+1.

@ A compatible arc is an edge of a polygon or lies entirely inside a black
or white polygon.
o
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Tricolored subdivisions and Parke-Taylor polytopes

@ We can associate a Parke-Taylor polytope I, C R"~1 to each
tricolored subdivision on [n]: for any compatible arc i — j with i < j,

area(i — j) < xi+xip1+---+xj—1 < area(i — j)+gr-area(i — j)+1.

@ A compatible arc is an edge of a polygon or lies entirely inside a black
or white polygon.

e area(i — j) (resp gr-area(i — j)) is the “black area” (resp. “grey
area”) to the left of the arc.
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Tricolored subdivisions and Parke-Taylor polytopes

@ We can associate a Parke-Taylor polytope I, C R"~1 to each
tricolored subdivision on [n]: for any compatible arc i — j with i < j,

area(i — j) < xi+xip1+---+xj—1 < area(i — j)+gr-area(i — j)+1.

@ A compatible arc is an edge of a polygon or lies entirely inside a black
or white polygon.

e area(i — j) (resp gr-area(i — j)) is the “black area” (resp. “grey
area”) to the left of the arc.

@ Above, 2 — 7 is a compatible arc. Gives inequality:

1SX2—|-X3—|—X4—|-X5+X6§1—|—2+1.
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Decompositions of Parke-Taylor polytopes
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Decompositions of Parke-Taylor polytopes

We've seen how each tricolored subdivision 7 gives rise to:
a partial cyclic order C; and a Parke-Taylor polytope I';.
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Decompositions of Parke-Taylor polytopes

We've seen how each tricolored subdivision 7 gives rise to:
a partial cyclic order C; and a Parke-Taylor polytope I';.

Theorem (Parisi-Sherman-Bennett—Tessler-W.)
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Decompositions of Parke-Taylor polytopes

We've seen how each tricolored subdivision 7 gives rise to:
a partial cyclic order C; and a Parke-Taylor polytope I';.

Theorem (Parisi-Sherman-Bennett—Tessler-W.)

Let 7 be a tricolored subdivision.
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Decompositions of Parke-Taylor polytopes

We've seen how each tricolored subdivision 7 gives rise to:
a partial cyclic order C; and a Parke-Taylor polytope I';.

Theorem (Parisi-Sherman-Bennett—Tessler-W.)

Let 7 be a tricolored subdivision. Then the Parke-Taylor polytope I has

a triangulation
M =JAw

into unit simplices Ay,
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Decompositions of Parke-Taylor polytopes

We've seen how each tricolored subdivision 7 gives rise to:
a partial cyclic order C; and a Parke-Taylor polytope I';.

Theorem (Parisi-Sherman-Bennett—Tessler-W.)

Let 7 be a tricolored subdivision. Then the Parke-Taylor polytope I has

a triangulation
M =JAw

into unit simplices A(,,), where w ranges over all circular extensions of the
partial cyclic order C..
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Decompositions of Parke-Taylor polytopes

We've seen how each tricolored subdivision 7 gives rise to:
a partial cyclic order C; and a Parke-Taylor polytope I';.

Theorem (Parisi-Sherman-Bennett—Tessler-W.)
Let 7 be a tricolored subdivision. Then the Parke-Taylor polytope I has

a triangulation
M =JAw

into unit simplices A(,,), where w ranges over all circular extensions of the
partial cyclic order C.. In particular, the normalized volume of ' equals
the number of circular extensions of C..
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Decompositions of Parke-Taylor polytopes
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Decompositions of Parke-Taylor polytopes

Theorem (Parisi-Sherman-Bennett—Tessler-W.)

Let 7 be a tricolored subdivision. Then the Parke-Taylor polytope ' has a

triangulation
M =JAw

into unit simplices A(,,), where w ranges over circular extensions of C;.
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Decompositions of Parke-Taylor polytopes

Theorem (Parisi-Sherman-Bennett—Tessler-W.)

Let 7 be a tricolored subdivision. Then the Parke-Taylor polytope ' has a

triangulation
M =JAw

into unit simplices A(,,), where w ranges over circular extensions of C;.

@ Reminiscent of Stanley’s result that the volume of the order polytope
of a poset P equals the number of linear extensions of P.
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Decompositions of Parke-Taylor polytopes

Theorem (Parisi-Sherman-Bennett—Tessler-W.)
Let 7 be a tricolored subdivision. Then the Parke-Taylor polytope ' has a

triangulation
M =JAw

into unit simplices A(,,), where w ranges over circular extensions of C;.

@ Reminiscent of Stanley’s result that the volume of the order polytope
of a poset P equals the number of linear extensions of P.
Related to work of Ayyer—Josuat-Verges—Ramassamy, and
Gonzalez D'Leon—Hanusa—Morales—Yip.
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Decompositions of Parke-Taylor polytopes

Theorem (Parisi-Sherman-Bennett—Tessler-W.)

Let 7 be a tricolored subdivision. Then the Parke-Taylor polytope ' has a

triangulation
M =JAw

into unit simplices A(,,), where w ranges over circular extensions of C;.

@ Reminiscent of Stanley’s result that the volume of the order polytope
of a poset P equals the number of linear extensions of P.
Related to work of Ayyer—Josuat-Verges—Ramassamy, and
Gonzalez D'Leon—Hanusa—Morales—Yip.

@ Yuhan Jiang (in progress): gives formula for the h* vector of I';.
Lauren K. Williams (Harvard) The magic number for A, , 2(Z) 2024 10 /22



The Grassmannian and the matroid stratification

Recall: the Grassmannian Gry ,(C) :={V | V. C C",dim V = k}
Represent an element of Gry , by a full-rank k x n matrix C.

1 00 -3
012 1

Given I € (1)), the Pliicker coordinate p;(C) is the minor of the k x k
submatrix of C in column set /.
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The Grassmannian and the matroid stratification

Recall: the Grassmannian Gry ,(C) :={V | V. C C",dim V = k}
Represent an element of Gry , by a full-rank k x n matrix C.

1 00 -3
012 1

Given I € (1)), the Pliicker coordinate p;(C) is the minor of the k x k
submatrix of C in column set /.

The matroid associated to C € Gry , is M(C) := {I € () | pi(C) # 0.}
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The Grassmannian and the matroid stratification

Recall: the Grassmannian Gry ,(C) :={V | V. C C",dim V = k}
Represent an element of Gry , by a full-rank k x n matrix C.

1 0 0 -3

012 1
Given I € (1)), the Pliicker coordinate p;(C) is the minor of the k x k
submatrix of C in column set /.
The matroid associated to C € Gry , is M(C) := {I € () | pi(C) # 0.}

Gelfand-Goresky-MacPherson-Serganova '87 introduced the matroid
stratification of Gry p.
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The Grassmannian and the matroid stratification

Recall: the Grassmannian Gry ,(C) :={V | V. C C",dim V = k}
Represent an element of Gry , by a full-rank k x n matrix C.

1 0 0 -3

012 1
Given I € (1)), the Pliicker coordinate p;(C) is the minor of the k x k
submatrix of C in column set /.
The matroid associated to C € Gry , is M(C) := {I € () | pi(C) # 0.}

Gelfand-Goresky-MacPherson-Serganova '87 introduced the matroid
stratification of Gry p.

Given M C (IM), let Sp = {C € Gren | pi(C) # 0 iff 1 € M}.
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The Grassmannian and the matroid stratification

Recall: the Grassmannian Gry ,(C) :={V | V. C C",dim V = k}
Represent an element of Gry , by a full-rank k x n matrix C.

1 0 0 -3

012 1
Given I € (1)), the Pliicker coordinate p;(C) is the minor of the k x k
submatrix of C in column set /.
The matroid associated to C € Gry , is M(C) := {I € () | pi(C) # 0.}

Gelfand-Goresky-MacPherson-Serganova '87 introduced the matroid
stratification of Gry p.

Given M C (IM), let Sp = {C € Gren | pi(C) # 0 iff 1 € M}.

Matroid stratification: Gry , = LixSnm.
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The Grassmannian and the matroid stratification

Recall: the Grassmannian Gry ,(C) :={V | V. C C",dim V = k}
Represent an element of Gry , by a full-rank k x n matrix C.

1 00 -3
012 1

Given I € (1)), the Pliicker coordinate p;(C) is the minor of the k x k
submatrix of C in column set /.

The matroid associated to C € Gry , is M(C) := {I € () | pi(C) # 0.}

Gelfand-Goresky-MacPherson-Serganova '87 introduced the matroid
stratification of Gry p.

Given M C (IM), let Sp = {C € Gren | pi(C) # 0 iff 1 € M}.
Matroid stratification: Gry , = LixSnm.

However, the topology of matroid strata is terrible —
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The Grassmannian and the matroid stratification

Recall: the Grassmannian Gry ,(C) :={V | V. C C",dim V = k}
Represent an element of Gry , by a full-rank k x n matrix C.

1 00 -3
012 1

Given I € (1), the Pliicker coordinate p;(C) is the minor of the k x k
submatrix of C in column set /.
The matroid associated to C € Gry , is M(C) := {I € () | pi(C) # 0.}

Gelfand-Goresky-MacPherson-Serganova '87 introduced the matroid
stratification of Gry p.

Given M C (IM), let Sp = {C € Gren | pi(C) # 0 iff 1 € M}.
Matroid stratification: Gry , = LixSnm.

However, the topology of matroid strata is terrible —
Mnev's universality theorem (1987).
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Background: 1994 Lusztig total positivity for G/P, 1997 Rietsch, 2006 Postnikov
preprint on totally non-negative (TNN) or “positive” Grassmannian.
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preprint on totally non-negative (TNN) or “positive” Grassmannian.

Let Grkzg be subset of Gri ,(R) where Plucker coords p; > 0 for all /. J
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What is the positive Grassmannian?

Background: 1994 Lusztig total positivity for G/P, 1997 Rietsch, 2006 Postnikov
preprint on totally non-negative (TNN) or “positive” Grassmannian.

Let Grkzg be subset of Gri ,(R) where Plucker coords p; > 0 for all /. J

Inspired by matroid stratification, one can partition Grkzg into pieces based
on which Pliicker coordinates are positive and which are 0.
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What is the positive Grassmannian?

Background: 1994 Lusztig total positivity for G/P, 1997 Rietsch, 2006 Postnikov
preprint on totally non-negative (TNN) or “positive” Grassmannian.

Let Grkzg be subset of Gri ,(R) where Plucker coords p; > 0 for all /. J

Inspired by matroid stratification, one can partition Grkzg into pieces based
on which Pliicker coordinates are positive and which are 0.

Let M C (1), J
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Background: 1994 Lusztig total positivity for G/P, 1997 Rietsch, 2006 Postnikov
preprint on totally non-negative (TNN) or “positive” Grassmannian.

Let Grkzg be subset of Gri ,(R) where Plucker coords p; > 0 for all /. J

Inspired by matroid stratification, one can partition Grkzg into pieces based
on which Pliicker coordinates are positive and which are 0.

Let M C (). Let Sy == {C € G2 | py(C) > 0 iff I € M}. J

Lauren K. Williams (Harvard) The magic number for A, , 2(Z)



What is the positive Grassmannian?
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preprint on totally non-negative (TNN) or “positive” Grassmannian.

Let Grkzg be subset of Gri ,(R) where Plucker coords p; > 0 for all /. J

Inspired by matroid stratification, one can partition Grkzg into pieces based
on which Pliicker coordinates are positive and which are 0.

Let M C (). Let Sy == {C € G2 | py(C) > 0 iff I € M}. J

In contrast to terrible topology of matroid strata ...
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What is the positive Grassmannian?

Background: 1994 Lusztig total positivity for G/P, 1997 Rietsch, 2006 Postnikov
preprint on totally non-negative (TNN) or “positive” Grassmannian.

Let Grkzg be subset of Gry ,(IR) where Plucker coords p; > 0 for all /. J

Inspired by matroid stratification, one can partition Grkzg into pieces based
on which Pliicker coordinates are positive and which are 0.

Let M C (). Let Sy == {C € G2 | py(C) > 0 iff I € M}. |

In contrast to terrible topology of matroid strata ...

(Postnikov, see also Rietsch) If Sy is non-empty it is a (positroid) cell, i.e.
homeomorphic to an open ball.

Lauren K. Williams (Harvard) The magic number for A, , 2(Z)



What is the positive Grassmannian?

Background: 1994 Lusztig total positivity for G/P, 1997 Rietsch, 2006 Postnikov
preprint on totally non-negative (TNN) or “positive” Grassmannian.

Let Grkzg be subset of Gry ,(IR) where Plucker coords p; > 0 for all /. J

Inspired by matroid stratification, one can partition Grkzg into pieces based
on which Pliicker coordinates are positive and which are 0.

Let M C (). Let Sy == {C € G2 | py(C) > 0 iff I € M}. |

In contrast to terrible topology of matroid strata ...

(Postnikov, see also Rietsch) If Sy is non-empty it is a (positroid) cell, i.e.
homeomorphic to an open ball. So we have positroid cell decomposition

Griy = USp.
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What is the positive Grassmannian?

Background: 1994 Lusztig total positivity for G/P, 1997 Rietsch, 2006 Postnikov
preprint on totally non-negative (TNN) or “positive” Grassmannian.

Let Grkzg be subset of Gry ,(IR) where Plucker coords p; > 0 for all /. J

Inspired by matroid stratification, one can partition Grkzg into pieces based
on which Pliicker coordinates are positive and which are 0.

Let M C (). Let Sy == {C € G2 | py(C) > 0 iff I € M}. |

In contrast to terrible topology of matroid strata ...

(Postnikov, see also Rietsch) If Sy is non-empty it is a (positroid) cell, i.e.
homeomorphic to an open ball. So we have positroid cell decomposition

Griy = USp.

Can classify the (nonempty) cells . ..
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What is the amplituhedron?

The amplituhedron A, x m(Z), Arkani-Hamed-Trnka (2013).
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What is the amplituhedron?

The amplituhedron A, x m(Z), Arkani-Hamed-Trnka (2013).

Fix n, k, m with kK + m < n.
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The amplituhedron A, x m(Z), Arkani-Hamed-Trnka (2013).

Fix n, k, m with kK + m < n.

Let Z € Mati?drm be an n x (k + m) matrix with max’l minors positive.
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What is the amplituhedron?

The amplituhedron A, x m(Z), Arkani-Hamed-Trnka (2013).

Fix n, k, m with kK + m < n.
Let Z € Mati?(er be an n x (k + m) matrix with max’l minors positive.
Let Z be map Grkzg — Gri k+m sending a k x n matrix C to span(CZ).
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What is the amplituhedron?

The amplituhedron A, x m(Z), Arkani-Hamed-Trnka (2013).

Fix n, k, m with kK + m < n.
Let Z € Mati?(er be an n x (k + m) matrix with max’l minors positive.

Let Z be map GrkZﬁ — Gri k+m sending a k x n matrix C to span(CZ).
Set A, k.m(Z) = E(Grkzﬁ) C Gr k+m-

Lauren K. Williams (Harvard)

The magic number for A, , 2(Z)



What is the amplituhedron?

The amplituhedron A, x m(Z), Arkani-Hamed-Trnka (2013).

Fix n, k, m with kK + m < n.

Let Z € Mati?(er be an n x (k + m) matrix with max’l minors positive.
Let Z be map Grkzg — Gri k+m sending a k x n matrix C to span(CZ).
Set A, k.m(Z) = Z(Grkzﬁ) C Gr k+m-

Motivation for the amplituhedron (N = 4 SYM):
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What is the amplituhedron?

The amplituhedron A, x m(Z), Arkani-Hamed-Trnka (2013).

Fix n, k, m with kK + m < n.

Let Z € Mati?(er be an n x (k + m) matrix with max’l minors positive.
Let Z be map Grkzg — Gri k+m sending a k x n matrix C to span(CZ).
Set A, k.m(Z) = Z(Grkzﬁ) C Gr k+m-

Motivation for the amplituhedron (N = 4 SYM):
@ the recurrence of Britto—Cachazo—Feng-Witten (2005) expresses
scattering amplitudes as sums of rat’l functions of momenta.
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What is the amplituhedron?

The amplituhedron A, x m(Z), Arkani-Hamed-Trnka (2013).

Fix n, k, m with kK + m < n.

Let Z € Mati?(er be an n x (k + m) matrix with max’l minors positive.
Let Z be map Grkzg — Gri k+m sending a k x n matrix C to span(CZ).
Set A, k.m(Z) = Z(Grkzﬁ) C Gr k+m-

Motivation for the amplituhedron (N = 4 SYM):
@ the recurrence of Britto—Cachazo—Feng-Witten (2005) expresses
scattering amplitudes as sums of rat'l functions of momenta. Indiv

terms have “spurious poles” — singularities not present in amplitude.
°
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What is the amplituhedron?

The amplituhedron A, x m(Z), Arkani-Hamed-Trnka (2013).

Fix n, k, m with kK + m < n.

Let Z € Mati?(er be an n x (k + m) matrix with max’l minors positive.
Let Z be map Grkzg — Gri k+m sending a k x n matrix C to span(CZ).
Set A, k.m(Z) = Z(Grkzﬁ) C Gr k+m-

Motivation for the amplituhedron (N = 4 SYM):

@ the recurrence of Britto—Cachazo—Feng-Witten (2005) expresses
scattering amplitudes as sums of rat'l functions of momenta. Indiv
terms have “spurious poles” — singularities not present in amplitude.

@ Hodges (2009) observed that in some cases, the amplitude is the
volume of a polytope, with spurious poles arising from internal
boundaries of a triangulation of the polytope.
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What is the amplituhedron?

The amplituhedron A, x m(Z), Arkani-Hamed-Trnka (2013).

Fix n, k, m with kK + m < n.
Let Z € Mati?<+m be an n x (k + m) matrix with max’l minors positive.

Let Z be map Gr,ig — Gri k+m sending a k x n matrix C to span(CZ).
Set A, k.m(Z) = E(Grkzﬁ) C Gr k+m-

Motivation for the amplituhedron (N = 4 SYM):

@ the recurrence of Britto—Cachazo—Feng-Witten (2005) expresses
scattering amplitudes as sums of rat'l functions of momenta. Indiv
terms have “spurious poles” — singularities not present in amplitude.

@ Hodges (2009) observed that in some cases, the amplitude is the
volume of a polytope, with spurious poles arising from internal
boundaries of a triangulation of the polytope. Asked if in general each
amplitude is the volume of some geometric object.

°
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What is the amplituhedron?

The amplituhedron A, x m(Z), Arkani-Hamed-Trnka (2013).

Fix n, k, m with kK + m < n.
Let Z € Mati?<+m be an n x (k + m) matrix with max’l minors positive.

Let Z be map Gr,ig — Gri k+m sending a k x n matrix C to span(CZ).
Set A, k.m(Z) = E(Grkzﬁ) C Gr k+m-

Motivation for the amplituhedron (N = 4 SYM):

@ the recurrence of Britto—Cachazo—Feng-Witten (2005) expresses
scattering amplitudes as sums of rat'l functions of momenta. Indiv
terms have “spurious poles” — singularities not present in amplitude.

@ Hodges (2009) observed that in some cases, the amplitude is the
volume of a polytope, with spurious poles arising from internal
boundaries of a triangulation of the polytope. Asked if in general each
amplitude is the volume of some geometric object.

@ AH-T found the amplituhedron as the answer to this question;
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What is the amplituhedron?

The amplituhedron A, x m(Z), Arkani-Hamed-Trnka (2013).

Fix n, k, m with kK + m < n.

Let Z € Mati?<+m be an n x (k + m) matrix with max’l minors positive.
Let Z be map Grkzg — Gri k+m sending a k x n matrix C to span(CZ).
Set A, k.m(Z) = Z(Grkzﬁ) C Gr k+m-

Motivation for the amplituhedron (N = 4 SYM):

@ the recurrence of Britto—Cachazo—Feng-Witten (2005) expresses
scattering amplitudes as sums of rat'l functions of momenta. Indiv
terms have “spurious poles” — singularities not present in amplitude.

@ Hodges (2009) observed that in some cases, the amplitude is the
volume of a polytope, with spurious poles arising from internal
boundaries of a triangulation of the polytope. Asked if in general each
amplitude is the volume of some geometric object.

@ AH-T found the amplituhedron as the answer to this question;

BCFW recurrence is interpreted as “triangulation”-of A, x 4(Z).
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The amplituhedron A, 4 m(2)

Fix n, k, m with kK + m < n,
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What is the amplituhedron?

The amplituhedron A, 4 m(2)

Fix n, k,m with k +m < n, let Z € Mati?ﬂ_m (max minors > 0).
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Fix n, k,m with k +m < n, let Z € Mati?ﬂ_m (max minors > 0).

Let Z be map Grkzg — Gri k+m sending a k x n matrix C to CZ.
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What is the amplituhedron?

The amplituhedron A, 4 m(2)

Fix n, k,m with k +m < n, let Z € Mati?ﬂ_m (max minors > 0).

Let Z be map Grkz,g — Gri k+m sending a k x n matrix C to CZ.
Set Ansm(Z) = Z(Grp) C Ghiserm:
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What is the amplituhedron?

The amplituhedron A, 4 m(2)

Fix n, k,m with k +m < n, let Z € Mati?ﬂ_m (max minors > 0).

Let Z be map Grkz,g — Gri k+m sending a k x n matrix C to CZ.
Set Ansm(Z) = Z(Grp) C Ghiserm:

Special cases:
o
o
o
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The amplituhedron A, 4 m(2)

Fix n, k,m with k +m < n, let Z € Mati?ﬂ_m (max minors > 0).

Let Z be map Grkz,g — Gri k+m sending a k x n matrix C to CZ.
Set Ansm(Z) = Z(Grp) C Ghiserm:

Special cases:
o lfm=n—k, Asim(Z) = Grkzyg.
o
o
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What is the amplituhedron?

The amplituhedron A, 4 m(2)

Fix n, k,m with k +m < n, let Z € Mati?ﬂ_m (max minors > 0).

Let Z be map Grkz,g — Gri k+m sending a k x n matrix C to CZ.
Set Ansm(Z) = Z(Grp) C Ghiserm:

Special cases:
o lfm=n—k, Asim(Z) = Grkzg.
o If k=1and m=2, A,xm C Gr 3 is equivalent to an n-gon in RP2:
o
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What is the amplituhedron?

The amplituhedron A, 4 m(2)

Fix n, k,m with k +m < n, let Z € Mati?ﬂ_m (max minors > 0).

Let Z be map Grkz,g — Gri k+m sending a k x n matrix C to CZ.
Set Ansm(Z) = Z(Grp) C Ghiserm:

Special cases:
o lfm=n—k, Asim(Z) = Grkzy,?.
o If k=1and m=2, A,xm C Gr 3 is equivalent to an n-gon in RP2:
@ For k =1 and general m, get cyclic polytope in RP™.
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We'd like to “triangulate” or “tile” the amplituhedron
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We'd like to “triangulate” or “tile” the amplituhedron

Have GrES = S, cell complex, and Z : GrES — A, k,m(Z) a continuous
surjective map onto km-dim’l amplituhedron A, x m(Z).

V.
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We'd like to “triangulate” or “tile” the amplituhedron

Have GrES = S, cell complex, and Z : GrES — A, k,m(Z) a continuous
surjective map onto km-dim’l amplituhedron A, x m(Z).

o

A tiling of Ap k.m(Z) is a collection {Z( x) | ™ € C} of closures of images
of km-dimensional cells, such that:
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We'd like to “triangulate” or “tile” the amplituhedron

Have GrES = S, cell complex, and Z : Grkz’g — A, k,m(Z) a continuous
surjective map onto km-dim’l amplituhedron A, x m(Z).

o

A tiling of Ap k.m(Z) is a collection {Z( x) | ™ € C} of closures of images
of km-dimensional cells, such that:

o Z is injective on each S, for T € C (Z(Sx) a tile)
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We'd like to “triangulate” or “tile” the amplituhedron

Have GrES = S, cell complex, and Z : Grkz’g — A, k,m(Z) a continuous
surjective map onto km-dim’l amplituhedron A, x m(Z).

o

A tiling of Ap k.m(Z) is a collection {Z( x) | ™ € C} of closures of images
of km-dimensional cells, such that:

o Z is injective on each S, for T € C (Z(Sx) a tile)
o their union equals A, x m(Z)
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We'd like to “triangulate” or “tile” the amplituhedron

Have GrES = S, cell complex, and Z : Grkz’g — A, k,m(Z) a continuous
surjective map onto km-dim’l amplituhedron A, x m(Z).

o

A tiling of Ap k.m(Z) is a collection {Z( x) | ™ € C} of closures of images
of km-dimensional cells, such that:

o Z is injective on each S, for T € C (Z(Sx) a tile)
o their union equals A, x m(Z)

@ their interiors are pairwise disjoint
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We'd like to “triangulate” or “tile” the amplituhedron

Have GrES = S, cell complex, and Z : Grkz’g — A, k,m(Z) a continuous
surjective map onto km-dim’l amplituhedron A, x m(Z).

v

A tiling of Ap k.m(Z) is a collection {Z( x) | ™ € C} of closures of images
of km-dimensional cells, such that:

o Z is injective on each S, for T € C (Z(Sx) a tile)

o their union equals A, x m(Z)

@ their interiors are pairwise disjoint
We will work with all-Z tilings, coming from collections of cells that give tilings for all Z.
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We'd like to “triangulate” or “tile” the amplituhedron

Have GrES = S, cell complex, and Z : Grkz’g — A, k,m(Z) a continuous
surjective map onto km-dim’l amplituhedron A, x m(Z).

v

A tiling of Ap k.m(Z) is a collection {Z( ) | m € C} of closures of images
of km-dimensional cells, such that:

o Z is injective on each S, for T € C (Z(Sx) a tile)
o their union equals A, x m(Z)

@ their interiors are pairwise disjoint

We will work with all-Z tilings, coming from collections of cells that give tilings for all Z.

Motivation:
the “volume” of the amplituhedron computes scattering amplitudes;
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We'd like to “triangulate” or “tile” the amplituhedron

Have GrES = S, cell complex, and Z : Grkz’g — A, k,m(Z) a continuous
surjective map onto km-dim’l amplituhedron A, x m(Z).

v

A tiling of Ap k.m(Z) is a collection {Z( ) | m € C} of closures of images
of km-dimensional cells, such that:

o Z is injective on each S, for T € C (Z(Sx) a tile)
o their union equals A, x m(Z)

@ their interiors are pairwise disjoint
We will work with all-Z tilings, coming from collections of cells that give tilings for all Z.

Motivation:
the “volume” of the amplituhedron computes scattering amplitudes;
AH-T conjectured that certain “BCFW cells” give a tiling of A, x 4(Z);
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We'd like to “triangulate” or “tile” the amplituhedron

Have Grkzyg = S, cell complex, and Z : Grkz’g — A, k,m(Z) a continuous
surjective map onto km-dim’l amplituhedron A, x m(Z).

v

A tiling of Ap k.m(Z) is a collection {Z( ) | m € C} of closures of images
of km-dimensional cells, such that:

o Z is injective on each S, for T € C (Z(Sx) a tile)

o their union equals A, x m(Z)

@ their interiors are pairwise disjoint
We will work with all-Z tilings, coming from collections of cells that give tilings for all Z.

Motivation:

the “volume” of the amplituhedron computes scattering amplitudes;
AH-T conjectured that certain “BCFW cells” give a tiling of A, x 4(Z);
(proved for the “standard” BCFW tiling by EvenZohar—Lakrec—Tessler and
generalized to all BCFW tilings by EZ-L-P-SB-T-W.)
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Tilings of the amplituhedron

Tilings have been studied in special cases. Their cardinalities are interesting!
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Tilings of the amplituhedron

Tilings have been studied in special cases. Their cardinalities are interesting!

explanation

special case cardinality of tiling of A, «
m=0or k=0 1 A is a point
k+m=n 1 A= Grkz’?7
m=1 <n B 1) Karp-W.
k
n—2
m=2 ( B ) AH-T-T, Bao-He, P-SB-W
m=4 1 n—3)(n-3 AH-T, EZ-L-T, EZ-L-P-SB-T-W
n—3\k+1 k
n—1-12 .
k=1, meven ( . 2) A 2 cyclic polytope C(n, m)
2
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Tilings of the amplituhedron
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Tilings of the amplituhedron

Observation (Karp-Zhang-W)
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Tilings of the amplituhedron

Observation (Karp-Zhang-W)

i+j+ k-1
Let M(a, b, c) ,1—[111_[1,1_[1""14‘/‘ >
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Tilings of the amplituhedron

Observation (Karp-Zhang-W)
Let M(a, b, i+j+ k-1
et M(a, b, ) HHH,+J+k 3
i=1j=1k=1

All known tilings of A,  m for even m have cardinality M(k,n—k—m, 2
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Tilings of the amplituhedron

Observation (Karp-Zhang-W)
Let M(a, b, i+j+ k-1
et M(a, b, ) HHH,+J+k 3
i=1j=1k=1

All known tilings of A, x m for even m have cardinality M(k,n—k—m
Call this prediction the Mag/c Number Conjecture.

? 2
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Tilings of the amplituhedron

Observation (Karp-Zhang-W)
Let M(a, b, i+j+ k-1
et M(a, b, ) HHH,+J+k 3
i=1j=1k=1

All known tilings of A, x m for even m have cardinality M(k,n—k—m
Call this prediction the Mag/c Number Conjecture.

? 2

Remark: Consistent with results for m=2,m =4,k = 1.
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Tilings of the amplituhedron

Observation (Karp-Zhang-W)
Let M(a, b, i+j+ k-1
et M(a, b, ) HHH,+J+k 3
i=1j=1k=1

All known tilings of A, x m for even m have cardinality M(k,n—k—m
Call this prediction the Mag/c Number Conjecture.

? 2

Remark: Consistent with results for m =2, m = 4, k = 1. Symmetries!
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Tilings of the amplituhedron

Observation (Karp-Zhang-W)
Let M(a, b, i+j+ k-1
et M(a, b, ) HHH,+J+k 3
i=1j=1k=1

All known tilings of A, x m for even m have cardinality M(k,n—k—m
Call this prediction the Mag/c Number Conjecture.

? 2

Remark: Consistent with results for m =2, m = 4, k = 1. Symmetries!
The number M(a, b, ¢) counts:
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Tilings of the amplituhedron

Observation (Karp-Zhang-W)

i+j+ k-1
Let M(a, b, c) ,1—[111_[1,1_[1""14‘/‘ >

All known tilings of A, x m for even m have cardinality M(k,n—k—m
Call this prediction the Mag/c Number Conjecture.

? 2

Remark: Consistent with results for m =2, m = 4, k = 1. Symmetries!
The number M(a, b, ¢) counts:

noncrossing perfect

lattice paths plane partition rhombic tiling matching

3[3]2]2] < ()

—  5hh AW § S
5 RSeged
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Tilings of the amplituhedron

Observation (Karp-Zhang-W)
Let M(a, b, i+j+ k-1
et M(a, b, ) HHH,+J+k 3
i=1j=1k=1

All known tilings of A, x m for even m have cardinality M(k,n—k—m
Call this prediction the Mag/c Number Conjecture.

? 2

Remark: Consistent with results for m =2, m = 4, k = 1. Symmetries!
The number M(a, b, ¢) counts: (In figure, a, b,c = 2,4,3.)

noncrossing perfect

lattice paths plane partition rhombic tiling matching

3[3]2]2] < ()

—  5hh AW § S
SN JReeses
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The magic number theorem for the m = 2 amplituhedron
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The magic number theorem for the m = 2 amplituhedron

Magic Number Theorem (P-SB-T-W)
All tilings of ampl. A, x2(Z) have size M(k,n — k —2,1) = (" ).
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The magic number theorem for the m = 2 amplituhedron

Magic Number Theorem (P-SB-T-W)
All tilings of ampl. A, x2(Z) have size M(k,n — k —2,1) = (" ).

k = 1: Thm says that all triangulations of an n-gon have size n — 2.
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The magic number theorem for the m = 2 amplituhedron

Magic Number Theorem (P-SB-T-W)
All tilings of ampl. A, x2(Z) have size M(k,n — k —2,1) = (" ).

k = 1: Thm says that all triangulations of an n-gon have size n — 2.
Ideas of the proof:
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The magic number theorem for the m = 2 amplituhedron

Magic Number Theorem (P-SB-T-W)
All tilings of ampl. A, x2(Z) have size M(k,n — k —2,1) = (" ).

k = 1: Thm says that all triangulations of an n-gon have size n — 2.
Ideas of the proof:

@ There is a classification of tiles for the m = 2 amplituhedron using
bicolored subdivisions (P-SB-W).
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The magic number theorem for the m = 2 amplituhedron

Magic Number Theorem (P-SB-T-W)

All tilings of ampl. A, x2(Z) have size M(k,n — k —2,1) = (" ).

k = 1: Thm says that all triangulations of an n-gon have size n — 2.
Ideas of the proof:

@ There is a classification of tiles for the m = 2 amplituhedron using
bicolored subdivisions (P-SB-W).

@ Just as each Parke-Taylor polytope has a decomposition into
w-simplices where w ranges over certain circular extensions,
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The magic number theorem for the m = 2 amplituhedron

Magic Number Theorem (P-SB-T-W)
All tilings of ampl. A, x2(Z) have size M(k,n — k —2,1) = (" ).

k = 1: Thm says that all triangulations of an n-gon have size n — 2.
Ideas of the proof:
@ There is a classification of tiles for the m = 2 amplituhedron using
bicolored subdivisions (P-SB-W).
@ Just as each Parke-Taylor polytope has a decomposition into
w-simplices where w ranges over certain circular extensions,
each tile has a decomposition into “w-chambers” where w ranges
over certain circular extensions.
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The magic number theorem for the m = 2 amplituhedron

Magic Number Theorem (P-SB-T-W)
All tilings of ampl. A, x2(Z) have size M(k,n — k —2,1) = (" ).

k = 1: Thm says that all triangulations of an n-gon have size n — 2.
Ideas of the proof:
@ There is a classification of tiles for the m = 2 amplituhedron using
bicolored subdivisions (P-SB-W).
@ Just as each Parke-Taylor polytope has a decomposition into
w-simplices where w ranges over certain circular extensions,
each tile has a decomposition into “w-chambers” where w ranges
over certain circular extensions.
@ Use above decompositions to define the P-T function of A, x 2(Z)
and each tile, and show that this function is the same for ALL tiles.

Lauren K. Williams (Harvard) The magic number for A, , 2(Z)



The magic number theorem for the m = 2 amplituhedron

Magic Number Theorem (P-SB-T-W)
All tilings of ampl. A, x2(Z) have size M(k,n — k —2,1) = (" ).

k = 1: Thm says that all triangulations of an n-gon have size n — 2.
Ideas of the proof:
@ There is a classification of tiles for the m = 2 amplituhedron using
bicolored subdivisions (P-SB-W).
@ Just as each Parke-Taylor polytope has a decomposition into
w-simplices where w ranges over certain circular extensions,
each tile has a decomposition into “w-chambers” where w ranges
over certain circular extensions.
@ Use above decompositions to define the P-T function of A, x 2(Z)
and each tile, and show that this function is the same for ALL tiles.

@ Therefore each tiling of A, x2(Z) has the same size.
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The magic number theorem for the m = 2 amplituhedron

Magic Number Theorem (P-SB-T-W)
All tilings of ampl. A, x2(Z) have size M(k,n — k —2,1) = (" ).

k = 1: Thm says that all triangulations of an n-gon have size n — 2.
Ideas of the proof:
@ There is a classification of tiles for the m = 2 amplituhedron using
bicolored subdivisions (P-SB-W).
@ Just as each Parke-Taylor polytope has a decomposition into
w-simplices where w ranges over certain circular extensions,
each tile has a decomposition into “w-chambers” where w ranges
over certain circular extensions.
@ Use above decompositions to define the P-T function of A, x 2(Z)
and each tile, and show that this function is the same for ALL tiles.
@ Therefore each tiling of A, x2(Z) has the same size.
e Rk: total number of w-chambers of A, x2(Z) is the Eulerian number.
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Tiles of the amplituhedron

Recall: Z(SW) is a tile for Z : Grkzg — A km(2) if Z is injective on
km-dim’l cell S;.
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Tiles of the amplituhedron

Recall: Z(SW) is a tile for Z : Grkzg — A km(2) if Z is injective on
km-dim'l cell S;.. Lukowski—Parisi-Spradlin—Volovich conjectured:
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Tiles of the amplituhedron

Recall: f(SW) is a tile for Z : Grkzg — A km(2) if Z is injective on
km-dim'l cell S;.. Lukowski—Parisi-Spradlin—Volovich conjectured:

Theorem (Parisi-Sherman-Bennett-W)
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Tiles of the amplituhedron

Recall: f(SW) is a tile for Z : Grkzﬁ — A km(2) if Z is injective on
km-dim'l cell S;.. Lukowski—Parisi-Spradlin—Volovich conjectured:
Theorem (Parisi-Sherman-Bennett-W)

The tiles for A, x 2(Z) <> collections of bicolored subdivisions of an n-gon
with total “area” k.
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Tiles of the amplituhedron

Recall: f(SW) is a tile for Z : Grkzg — A km(2) if Z is injective on
km-dim'l cell S;.. Lukowski—Parisi-Spradlin—Volovich conjectured:

Theorem (Parisi-Sherman-Bennett-W)

The tiles for A, x 2(Z) <> collections of bicolored subdivisions of an n-gon
with total “area” k. To construct the cell S;:
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Tiles of the amplituhedron

Recall: f(SW) is a tile for Z : Grkzﬁ — A km(2) if Z is injective on
km-dim'l cell S;.. Lukowski—Parisi-Spradlin—Volovich conjectured:
Theorem (Parisi-Sherman-Bennett-W)

The tiles for A, x 2(Z) <> collections of bicolored subdivisions of an n-gon
with total “area” k. To construct the cell S;:

@ Choose triangulation of black polygons into k black triangles.
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Tiles of the amplituhedron

Recall: f(SW) is a tile for Z : Grkzg — A km(2) if Z is injective on
km-dim'l cell S;.. Lukowski—Parisi-Spradlin—Volovich conjectured:

Theorem (Parisi-Sherman-Bennett-W)

The tiles for A, x 2(Z) <> collections of bicolored subdivisions of an n-gon
with total “area” k. To construct the cell S;:

@ Choose triangulation of black polygons into k black triangles.
@ Put white vertex in every black triangle, connected to three vertices.
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Tiles of the amplituhedron

Recall: f(SW) is a tile for Z : Grkzg — A km(2) if Z is injective on
km-dim'l cell S;.. Lukowski—Parisi-Spradlin—Volovich conjectured:

Theorem (Parisi-Sherman-Bennett-W)

The tiles for A, x 2(Z) <> collections of bicolored subdivisions of an n-gon
with total “area” k. To construct the cell S;:

@ Choose triangulation of black polygons into k black triangles.
@ Put white vertex in every black triangle, connected to three vertices.

o Elements of S; are the k x n Kasteleyn matrices with rows/columns
indexed by the white and black vertices.

1 2 3 4 5 6 7 8 9
000000 % % x
*+ 00 0 0 0 % 0 =
0« x 000 00
00 x % 00 = 00
000 x x 0 x 00
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Chambers of the amplituhedron A, 2(Z)
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Chambers of the amplituhedron A, 2(Z)

Let Z € Mati?(H. Let Z be map Grkzg — Gry k42 sending C — CZ.

Recall Apk2(2) := 2(Grk272) C Gri k+2-
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Chambers of the amplituhedron A, 2(Z)

Let Z € Mati?(H. Let Z be map Grkzg — Gry k42 sending C — CZ.

Recall Apk2(2) := 2(Grk272) C Gri k+2-

o Let Zy,...,Z, berows of Z. Let Y € Gry k12 (viewed as matrix).
°
°
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Chambers of the amplituhedron A, 2(Z)

Let Z € Mati?(H. Let Z be map Grkzg — Gry k42 sending C — CZ.

Recall Apk2(2) := 2(Grk272) C Gri k+2-

o Let Zy,...,Z, berows of Z. Let Y € Gry k12 (viewed as matrix).
e Given | = {ii < i} C [n], define the twistor coordinate
°
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Chambers of the amplituhedron A, 2(Z)

Let Z € Mati?(H. Let Z be map Grkzg — Gry k42 sending C — CZ.

Recall Apk2(2) := 2(Grk272) C Gri k+2-

o Let Zy,...,Z, berows of Z. Let Y € Gry k12 (viewed as matrix).
e Given | = {ii < i} C [n], define the twistor coordinate

o
_ Yy _
(YZ[> = <YZ,'IZ,'2> =det |- Z
Z,
o
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Chambers of the amplituhedron A, 2(Z)

Let Z € Mati?(H. Let Z be map Grkzﬁ — Gry k42 sending C — CZ.
Recall A, x2(Z) = 2(Grk272) C Gry k2.

o Let Zy,...,Z, berows of Z. Let Y € Gry k12 (viewed as matrix).
e Given | = {ii < i} C [n], define the twistor coordinate

_ Yy _
(YZ[> = <YZ,'IZ,'2> =det |- Z
4

@ Inspired by matroid stratification, we define the amplituhedron sign
stratification — decompose A,  2(Z) into pieces based on the signs of
twistor coordinates. (Parisi-Sherman-Bennett-W.; Karp-W.)
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Chambers of the amplituhedron A, 2(Z)

Let Z € Mati?(H. Let Z be map Grkzg — Gry k42 sending C — CZ.

Recall Apk2(2) := 2(Grk272) C Gri k+2-

o Let Zy,...,Z, berows of Z. Let Y € Gry k12 (viewed as matrix).
e Given | = {ii < i} C [n], define the twistor coordinate

_ Yy _
(YZ[> = <YZ,'IZ,'2> =det |- Z
4

@ Inspired by matroid stratification, we define the amplituhedron sign
stratification — decompose A,  2(Z) into pieces based on the signs of
twistor coordinates. (Parisi-Sherman-Bennett-W.; Karp-W.)

o Call the top-dimensional pieces chambers.

°

Lauren K. Williams (Harvard) The magic number for A, , 2(Z)



Chambers of the amplituhedron A, 2(Z)

Let Z € Mati?(H. Let Z be map Grkzﬁ — Gry k42 sending C — CZ.
Recall A, x2(Z) = 2(Grk272) C Gry k2.

o Let Zy,...,Z, berows of Z. Let Y € Gry k12 (viewed as matrix).
e Given | = {ii < i} C [n], define the twistor coordinate
_ vy —
(YZ[> = <YZ,'IZ,'2> =det |- Z
4

Inspired by matroid stratification, we define the amplituhedron sign
stratification — decompose A,  2(Z) into pieces based on the signs of
twistor coordinates. (Parisi-Sherman-Bennett-W.; Karp-W.)

o Call the top-dimensional pieces chambers.

@ Thm: (P-SB-W) The number of nonempty chambers of A, x5 is the
Eulerian number.
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The Magic Number Theorem for A, x2(Z)

Lauren K. Williams (Harvard) The magic number for A, , 2(Z)



The Magic Number Theorem for A, x2(2)

e Given any region R of A, x2(Z) that admits a tiling, we define its
weight function
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The Magic Number Theorem for A, x2(2)

e Given any region R of A, x2(Z) that admits a tiling, we define its
weight function

Q(R) =) _PT(A{,).
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The Magic Number Theorem for A, x2(2)

e Given any region R of A, x2(Z) that admits a tiling, we define its
weight function

Q(R) =) _PT(A{,).

where the sum is over all w-chambers A(ZW) C R.
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The Magic Number Theorem for A, x2(2)

e Given any region R of A, x2(Z) that admits a tiling, we define its
weight function

Q(R) =) _PT(A{,).

where the sum is over all w-chambers A(ZW) C R.

o We prove that for any tile Z. of A, «2(Z),
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The Magic Number Theorem for A, x2(2)

e Given any region R of A, x2(Z) that admits a tiling, we define its
weight function

Q(R) ==Y _PT(A],)
where the sum is over all w-chambers A(ZW) C R.

o We prove that for any tile Z. of A, «2(Z),

Q(Z;) = (-1)*PT(1,),

Lauren K. Williams (Harvard) The magic number for A, , 2(Z)



The Magic Number Theorem for A, x2(2)

e Given any region R of A, x2(Z) that admits a tiling, we define its
weight function

Q(R) ==Y _PT(A],)
where the sum is over all w-chambers A(ZW) C R.
o We prove that for any tile Z. of A, «2(Z),
Q(Z;) = (-1)*PT(1,),

where 1, is the identity permutation.
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The Magic Number Theorem for A, x2(2)

e Given any region R of A, x2(Z) that admits a tiling, we define its
weight function

Q(R) =) _PT(A{,).

where the sum is over all w-chambers A(ZW) C R.

o We prove that for any tile Z. of A, «2(Z),

Q(Z;) = (-1)*PT(1,),

where 1, is the identity permutation.

@ It is known that there is a tiling of A, x 2(Z) consisting of (";2) tiles,
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The Magic Number Theorem for A, x2(2)

e Given any region R of A, x2(Z) that admits a tiling, we define its
weight function

Q(R) ==Y _PT(A],)
where the sum is over all w-chambers A(ZW) C R.

o We prove that for any tile Z. of A, «2(Z),
Q(Z;) = (-1)*PT(1),

where 1, is the identity permutation.

@ It is known that there is a tiling of A, x 2(Z) consisting of (";2) tiles,
s0 QAnk2(2)) = (=1)5("2) PT(1,).
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The Magic Number Theorem for A, x2(2)

e Given any region R of A, x2(Z) that admits a tiling, we define its

weight function
=Y PT(Aa],)

where the sum is over all w-chambers A(W) C R.

o We prove that for any tile Z. of A, «2(Z),

Q(Z;) = (-1)*PT(1,),

where 1, is the identity permutation.
@ It is known that there is a tiling of A, x 2(Z) consisting of (";2) tiles,
s0 QAnk2(2)) = (=1)5("2) PT(1,).
@ It follows that all tilings have cardinality (” 2).
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@ The magic number conjecture for the m = 2 amplituhedron and
Parke-Taylor identities arXiv:2404.03026, joint with Matteo Parisi,
Melissa Sherman-Bennett, and Ran Tessler.

@ “The m = 2 amplituhedron and the hypersimplex: signs, clusters,
triangulations, Eulerian numbers, arXiv:2104.08254, joint with
Matteo Parisi and Melissa Sherman-Bennett.
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