The magic number conjecture for the m = 2amplituhedron and Parke-Taylor identities

Lauren K. Williams, Harvard

Based on: arXiv:2404.03026,

joint with Matteo Parisi, Melissa Sherman-Bennett, and Ran Tessler

1/22

- Tricolored subdivisions and partial cyclic orders
- Applications to Parke-Taylor identities and Parke-Taylor polytopes
- What is the amplituhedron?
- Magic number conjecture for the amplituhedron
- Proof of Magic number conjecture when m = 2

2/22

• Tricolored subdivisions and partial cyclic orders

- Applications to Parke-Taylor identities and Parke-Taylor polytopes
- What is the amplituhedron?
- Magic number conjecture for the amplituhedron
- Proof of Magic number conjecture when m = 2

- Tricolored subdivisions and partial cyclic orders
- Applications to Parke-Taylor identities and Parke-Taylor polytopes
- What is the amplituhedron?
- Magic number conjecture for the amplituhedron
- Proof of Magic number conjecture when m = 2

- Tricolored subdivisions and partial cyclic orders
- Applications to Parke-Taylor identities and Parke-Taylor polytopes
- What is the amplituhedron?
- Magic number conjecture for the amplituhedron
- Proof of Magic number conjecture when m = 2

- Tricolored subdivisions and partial cyclic orders
- Applications to Parke-Taylor identities and Parke-Taylor polytopes
- What is the amplituhedron?
- Magic number conjecture for the amplituhedron
- Proof of Magic number conjecture when m = 2

- Tricolored subdivisions and partial cyclic orders
- Applications to Parke-Taylor identities and Parke-Taylor polytopes
- What is the amplituhedron?
- Magic number conjecture for the amplituhedron
- Proof of Magic number conjecture when m = 2

- A tricolored subdivision τ of an n-gon is a subdivision of the polygon into smaller polygons (black, grey, or white) in which every edge connects two vertices of the n-gon.
- From each τ, can read off a cyclic order C_τ (is a cyclic analogue of partial order). To get C_τ from τ, read vertices of white (resp black) polygons clockwise (resp counterclockwise), and ignore the grey.
- The C_{τ} from our example requires that (2,5,7), (5,7,6), and (1,8,7,2) are circularly ordered.
- A *circular extension* of C_{τ} is a total circular order compatible with C_{τ} . E.g. one circular extension of our example is: (2, 5, 1, 8, 7, 6, 3, 4).

 A tricolored subdivision τ of an n-gon is a subdivision of the polygon into smaller polygons (black, grey, or white) in which every edge connects two vertices of the n-gon.

- From each τ, can read off a cyclic order C_τ (is a cyclic analogue of partial order). To get C_τ from τ, read vertices of white (resp black) polygons clockwise (resp counterclockwise), and ignore the grey.
- The C_{τ} from our example requires that (2,5,7), (5,7,6), and (1,8,7,2) are circularly ordered.
- A circular extension of C_τ is a total circular order compatible with C_τ.
 E.g. one circular extension of our example is: (2,5,1,8,7,6,3,4).

 A tricolored subdivision τ of an n-gon is a subdivision of the polygon into smaller polygons (black, grey, or white) in which every edge connects two vertices of the n-gon.

- From each τ, can read off a cyclic order C_τ (is a cyclic analogue of partial order). To get C_τ from τ, read vertices of white (resp black) polygons clockwise (resp counterclockwise), and ignore the grey.
- The C_τ from our example requires that (2,5,7), (5,7,6), and (1,8,7,2) are circularly ordered.
- A circular extension of C_τ is a total circular order compatible with C_τ.
 E.g. one circular extension of our example is: (2,5,1,8,7,6,3,4).

 A tricolored subdivision τ of an n-gon is a subdivision of the polygon into smaller polygons (black, grey, or white) in which every edge connects two vertices of the n-gon.

- From each τ, can read off a cyclic order C_τ (is a cyclic analogue of partial order). To get C_τ from τ, read vertices of white (resp black) polygons clockwise (resp counterclockwise), and ignore the grey.
- The C_{τ} from our example requires that (2,5,7), (5,7,6), and (1,8,7,2) are circularly ordered.
- A circular extension of C_τ is a total circular order compatible with C_τ.
 E.g. one circular extension of our example is: (2,5,1,8,7,6,3,4).

Lauren K. Williams (Harvard)

The magic number for $\mathcal{A}_{n,k,2}(Z)$

 A tricolored subdivision τ of an n-gon is a subdivision of the polygon into smaller polygons (black, grey, or white) in which every edge connects two vertices of the n-gon.

- From each τ, can read off a cyclic order C_τ (is a cyclic analogue of partial order). To get C_τ from τ, read vertices of white (resp black) polygons clockwise (resp counterclockwise), and ignore the grey.
- The C_{τ} from our example requires that (2,5,7), (5,7,6), and (1,8,7,2) are circularly ordered.
- A circular extension of C_τ is a total circular order compatible with C_τ.
 E.g. one circular extension of our example is: (2,5,1,8,7,6,3,4).

 A tricolored subdivision τ of an n-gon is a subdivision of the polygon into smaller polygons (black, grey, or white) in which every edge connects two vertices of the n-gon.

- From each τ, can read off a cyclic order C_τ (is a cyclic analogue of partial order). To get C_τ from τ, read vertices of white (resp black) polygons clockwise (resp counterclockwise), and ignore the grey.
- The C_{τ} from our example requires that (2,5,7), (5,7,6), and (1,8,7,2) are circularly ordered.
- A circular extension of C_τ is a total circular order compatible with C_τ.
 E.g. one circular extension of our example is: (2,5,1,8,7,6,3,4).

Lauren K. Williams (Harvard)

The magic number for $\mathcal{A}_{n,k,2}(Z)$

2024

3/22

 A tricolored subdivision τ of an n-gon is a subdivision of the polygon into smaller polygons (black, grey, or white) in which every edge connects two vertices of the n-gon.

- From each τ, can read off a cyclic order C_τ (is a cyclic analogue of partial order). To get C_τ from τ, read vertices of white (resp black) polygons clockwise (resp counterclockwise), and ignore the grey.
- The C_{τ} from our example requires that (2,5,7), (5,7,6), and (1,8,7,2) are circularly ordered.
- A circular extension of C_{τ} is a total circular order compatible with C_{τ} . E.g. one circular extension of our example is: (2, 5, 1, 8, 7, 6, 3, 4).

The **Grassmannian** $Gr_{k,n}(\mathbb{C}) := \{ V \mid V \subset \mathbb{C}^n, \dim V = k \}$

Represent an element of $Gr_{k,n}$ by a full-rank $k \times n$ matrix C.

$$\begin{pmatrix} 1 & 0 & 0 & -3 \\ 0 & 1 & 2 & 1 \end{pmatrix}$$

Given $I \in {[n] \choose k}$, the **Plücker coordinate** $p_I(C)$ is the minor of the $k \times k$ submatrix of C in column set I.

The **Grassmannian** $Gr_{k,n}(\mathbb{C}) := \{V \mid V \subset \mathbb{C}^n, \dim V = k\}$ Represent an element of $Gr_{k,n}$ by a full-rank $k \times n$ matrix C.

 $\begin{pmatrix} 1 & 0 & 0 & -3 \\ 0 & 1 & 2 & 1 \end{pmatrix}$

Given $I \in {[n] \choose k}$, the **Plücker coordinate** $p_I(C)$ is the minor of the $k \times k$ submatrix of C in column set I.

The **Grassmannian** $Gr_{k,n}(\mathbb{C}) := \{V \mid V \subset \mathbb{C}^n, \dim V = k\}$ Represent an element of $Gr_{k,n}$ by a full-rank $k \times n$ matrix C.

$$\begin{pmatrix} 1 & 0 & 0 & -3 \\ 0 & 1 & 2 & 1 \end{pmatrix}$$

Given $I \in {[n] \choose k}$, the **Plücker coordinate** $p_I(C)$ is the minor of the $k \times k$ submatrix of C in column set I.

The **Grassmannian** $Gr_{k,n}(\mathbb{C}) := \{V \mid V \subset \mathbb{C}^n, \dim V = k\}$ Represent an element of $Gr_{k,n}$ by a full-rank $k \times n$ matrix C.

$$\begin{pmatrix} 1 & 0 & 0 & -3 \\ 0 & 1 & 2 & 1 \end{pmatrix}$$

Given $I \in {[n] \choose k}$, the **Plücker coordinate** $p_I(C)$ is the minor of the $k \times k$ submatrix of C in column set I.

• Given a permutation $w = w_1 \dots w_n$, define the Parke-Taylor function

$$\mathsf{PT}(w) := \frac{1}{P_{w_1 w_2} P_{w_2 w_3} \dots P_{w_n w_1}},$$

where the P_{ij} are Plücker coordinates on the Grassmannian $Gr_{2,n}^{\circ}$. We get the following identity.

Theorem (Parisi–ShermanBennett–Tessler–W)

Let au be a tricolored subdivision with at least one grey polygon, and let $C_{ au}$ be the cyclic partial order. Then

$$\sum_{w} \mathsf{PT}(w) = 0,$$

where the sum is over all circular extensions (w) of C_r .

(日)

• Given a permutation $w = w_1 \dots w_n$, define the *Parke-Taylor function*

$$\mathsf{PT}(w) := \frac{1}{P_{w_1 w_2} P_{w_2 w_3} \dots P_{w_n w_1}},$$

$$\sum_{w} \mathsf{PT}(w) = 0,$$

< □ > < 同 > < 回 > < 回 > < 回 >

• Given a permutation $w = w_1 \dots w_n$, define the Parke-Taylor function

$$\mathsf{PT}(w) := \frac{1}{P_{w_1 w_2} P_{w_2 w_3} \dots P_{w_n w_1}},$$

where the P_{ij} are Plücker coordinates on the Grassmannian $Gr_{2,n}^{\circ}$. /e get the following identity.

Theorem (Parisi–ShermanBennett–Tessler–W)

Let au be a tricolored subdivision with at least one grey polygon, and let $C_{ au}$ be the cyclic partial order. Then

$$\sum_{w} \mathsf{PT}(w) = 0,$$

where the sum is over all circular extensions (w) of C_r

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

• Given a permutation $w = w_1 \dots w_n$, define the Parke-Taylor function

$$\mathsf{PT}(w) := \frac{1}{P_{w_1 w_2} P_{w_2 w_3} \dots P_{w_n w_1}},$$

where the P_{ij} are Plücker coordinates on the Grassmannian $Gr_{2,n}^{\circ}$. We get the following identity.

Theorem (Parisi–ShermanBennett–Tessler–W)

Let au be a tricolored subdivision with at least one grey polygon, and let $\mathcal{L}_{ au}$ be the cyclic partial order. Then

$$\sum_{w} \mathsf{PT}(w) = \mathbf{0},$$

where the sum is over all circular extensions (w) of C_r

< □ > < @ >

• Given a permutation $w = w_1 \dots w_n$, define the Parke-Taylor function

$$\mathsf{PT}(w) := \frac{1}{P_{w_1w_2}P_{w_2w_3}\dots P_{w_nw_1}},$$

where the P_{ij} are Plücker coordinates on the Grassmannian $Gr_{2,n}^{\circ}$. We get the following identity.

Theorem (Parisi-ShermanBennett-Tessler-W)

Let τ be a tricolored subdivision with at least one grey polygon, and let C_{τ} be the cyclic partial order. Then

$$\sum_{w} \mathsf{PT}(w) = 0,$$

where the sum is over all circular extensions (w) of C_{τ} .

Lauren K. Williams (Harvard)

The magic number for $\mathcal{A}_{n,k,2}(Z)$

< □ > < @ >

2024

5 / 22

• Given a permutation $w = w_1 \dots w_n$, define the Parke-Taylor function

$$\mathsf{PT}(w) := \frac{1}{P_{w_1w_2}P_{w_2w_3}\dots P_{w_nw_1}},$$

where the P_{ij} are Plücker coordinates on the Grassmannian $Gr_{2,n}^{\circ}$. We get the following identity.

Theorem (Parisi-ShermanBennett-Tessler-W)

Let τ be a tricolored subdivision with at least one grey polygon, and let C_{τ} be the cyclic partial order. Then

$$\sum_{w} \mathsf{PT}(w) = 0,$$

where the sum is over all circular extensions (w) of C_{τ} .

• Given a permutation $w = w_1 \dots w_n$, define the Parke-Taylor function

$$\mathsf{PT}(w) := \frac{1}{P_{w_1 w_2} P_{w_2 w_3} \dots P_{w_n w_1}},$$

where the P_{ij} are Plücker coordinates on the Grassmannian $Gr_{2,n}^{\circ}$. We get the following identity.

Theorem (Parisi-ShermanBennett-Tessler-W)

Let τ be a tricolored subdivision with at least one grey polygon, and let C_τ be the cyclic partial order. Then

$$\sum_w \mathsf{PT}(w) = 0,$$

where the sum is over all circular extensions (w) of C_{τ} .

• Given a permutation $w = w_1 \dots w_n$, define the Parke-Taylor function

$$\mathsf{PT}(w) := \frac{1}{P_{w_1 w_2} P_{w_2 w_3} \dots P_{w_n w_1}},$$

where the P_{ij} are Plücker coordinates on the Grassmannian $Gr_{2,n}^{\circ}$. We get the following identity.

Theorem (Parisi–ShermanBennett–Tessler–W)

Let τ be a tricolored subdivision with at least one grey polygon, and let C_τ be the cyclic partial order. Then

$$\sum_w \mathsf{PT}(w) = 0,$$

where the sum is over all circular extensions (w) of C_{τ} .

5/22

The Parke-Taylor function is
$$\mathsf{PT}(w_1 \dots w_n) := rac{1}{P_{w_1w_2}P_{w_2w_3} \dots P_{w_nw_1}}$$

Theorem (P–SB–T–W)

Let τ be a tricolored subdivision with at least one grey polygon, and let C_{τ} be the cyclic partial order. Then

$$\sum_{w} \mathsf{PT}(w) = 0,$$

where the sum is over all circular extensions (w) of C_{τ} .

Example:

The circular extensions of C_{τ} are (1234), (1243), (1423), so Thm says $\frac{1}{P_{12}P_{23}P_{34}P_{41}} + \frac{1}{P_{12}P_{24}P_{43}P_{31}} + \frac{1}{P_{14}P_{42}P_{23}P_{31}} = 0.$ (Rk: 3-term Plücker relation)

6 / 2<u>2</u>

The Parke-Taylor function is $PT(w_1 \dots w_n) := \frac{1}{P_{w_1w_2}P_{w_2w_3}\dots P_{w_nw_1}}$.

Theorem (P–SB–T–W)

Let τ be a tricolored subdivision with at least one grey polygon, and let C_{τ} be the cyclic partial order. Then

$$\sum_{w} \mathsf{PT}(w) = 0,$$

where the sum is over all circular extensions (w) of C_{τ} .

Example:

The circular extensions of C_{τ} are (1234), (1243), (1423), so Thm says $\frac{1}{P_{12}P_{23}P_{34}P_{41}} + \frac{1}{P_{12}P_{24}P_{43}P_{31}} + \frac{1}{P_{14}P_{42}P_{23}P_{31}} = 0.$ (Rk: 3-term Plücker relation)

6 / 22

The Parke-Taylor function is
$$\mathsf{PT}(w_1 \dots w_n) := rac{1}{P_{w_1 w_2} P_{w_2 w_3 \dots P_{w_n w_1}}}$$

Theorem (P–SB–T–W)

Let τ be a tricolored subdivision with at least one grey polygon, and let C_{τ} be the cyclic partial order. Then

$$\sum_{w} \mathsf{PT}(w) = 0,$$

where the sum is over all circular extensions (w) of C_{τ} .

Example:

The circular extensions of C_{τ} are (1234), (1243), (1423), so Thm says $\frac{1}{P_{12}P_{23}P_{34}P_{41}} + \frac{1}{P_{12}P_{24}P_{43}P_{31}} + \frac{1}{P_{14}P_{42}P_{23}P_{31}} = 0$ (Rk: 3-term Plücker relation)

Lauren K. Williams (Harvard)

6 / 22

The Parke-Taylor function is
$$\mathsf{PT}(w_1 \dots w_n) := rac{1}{P_{w_1 w_2} P_{w_2 w_3 \dots P_{w_n w_1}}}$$

Theorem (P–SB–T–W)

Let τ be a tricolored subdivision with at least one grey polygon, and let C_{τ} be the cyclic partial order. Then

$$\sum_{w} \mathsf{PT}(w) = 0,$$

where the sum is over all circular extensions (w) of C_{τ} .

Lauren K. Williams (Harvard)

The Parke-Taylor function is
$$\mathsf{PT}(w_1 \dots w_n) := rac{1}{P_{w_1 w_2} P_{w_2 w_3 \dots P_{w_n w_1}}}$$

Theorem (P–SB–T–W)

Let τ be a tricolored subdivision with at least one grey polygon, and let C_{τ} be the cyclic partial order. Then

$$\sum_{w} \mathsf{PT}(w) = 0,$$

where the sum is over all circular extensions (w) of C_{τ} .

Example: The circular extensions of C_{τ} are (1234), (1243), (1423), so Thm says $\frac{1}{P_{12}P_{23}P_{34}P_{41}} + \frac{1}{P_{12}P_{24}P_{43}P_{31}} + \frac{1}{P_{14}P_{42}P_{23}P_{31}} = 0.$ (Rk: 3-term Plücker relation) Lauren K. Williams (Harvard) The magic number for $A_{n,k,2}(Z)$ 2024 6/22

The Parke-Taylor function is
$$\mathsf{PT}(w_1 \dots w_n) := rac{1}{P_{w_1 w_2} P_{w_2 w_3 \dots P_{w_n w_1}}}$$

Theorem (P–SB–T–W)

Let τ be a tricolored subdivision with at least one grey polygon, and let C_{τ} be the cyclic partial order. Then

$$\sum_{w} \mathsf{PT}(w) = 0,$$

where the sum is over all circular extensions (w) of C_{τ} .

Example: The circular extensions of C_{τ} are (1234), (1243), (1423), so Thm says $\frac{1}{P_{12}P_{23}P_{34}P_{41}} + \frac{1}{P_{12}P_{24}P_{43}P_{31}} + \frac{1}{P_{14}P_{42}P_{23}P_{31}} = 0.$ (Rk: 3-term Plücker relation)

6 / 22

Parke-Taylor identities from tricolored subdivisions

Theorem (P–SB–T–W)

Let τ be a tricolored subdivision with at least one grey polygon, and let C_{τ} be the cyclic partial order. Then

$$\sum_{w} \mathsf{PT}(w) = 0,$$

where the sum is over all circular extensions (w) of $\mathcal{C}_ au.$

- PT functions related to: cohomology of M_{0,n} and scattering eqns (Cachazo-He-Yuan); Lie polynomials (Frost-Mason); non-planar plabic graphs (Arkani-Hamed-Bourjaily-Cachazo-Postnikov-Trnka).
- Thm above implies the *U*(1) *decoupling identities* and *shuffle identities* for Parke-Taylor functions.
- There are some analogous results for linear extensions of posets due to Curtis Greene, in connection to the Murnaghan-Nakayama formula (rep theory of S_n).

Lauren K. Williams (Harvard)

Parke-Taylor identities from tricolored subdivisions

Theorem (P–SB–T–W)

Let τ be a tricolored subdivision with at least one grey polygon, and let C_τ be the cyclic partial order. Then

$$\sum_{w} \mathsf{PT}(w) = 0,$$

where the sum is over all circular extensions (w) of C_{τ} .

- PT functions related to: cohomology of M_{0,n} and scattering eqns (Cachazo-He-Yuan); Lie polynomials (Frost-Mason); non-planar plabic graphs (Arkani-Hamed-Bourjaily-Cachazo-Postnikov-Trnka).
- Thm above implies the *U*(1) *decoupling identities* and *shuffle identities* for Parke-Taylor functions.
- There are some analogous results for linear extensions of posets due to Curtis Greene, in connection to the Murnaghan-Nakayama formula (rep theory of S_n).

Lauren K. Williams (Harvard)

2024

/ 22

Parke-Taylor identities from tricolored subdivisions

Theorem (P–SB–T–W)

Let τ be a tricolored subdivision with at least one grey polygon, and let C_τ be the cyclic partial order. Then

$$\sum_{w} \mathsf{PT}(w) = 0,$$

where the sum is over all circular extensions (w) of C_{τ} .

- PT functions related to: cohomology of M_{0,n} and scattering eqns (Cachazo-He-Yuan); Lie polynomials (Frost-Mason); non-planar plabic graphs (Arkani-Hamed-Bourjaily-Cachazo-Postnikov-Trnka).
- Thm above implies the *U*(1) *decoupling identities* and *shuffle identities* for Parke-Taylor functions.
- There are some analogous results for linear extensions of posets due to Curtis Greene, in connection to the Murnaghan-Nakayama formula (rep theory of S_n).

Lauren K. Williams (Harvard)

Theorem (P–SB–T–W)

Let τ be a tricolored subdivision with at least one grey polygon, and let C_τ be the cyclic partial order. Then

$$\sum_{w} \mathsf{PT}(w) = 0,$$

where the sum is over all circular extensions (w) of C_{τ} .

- PT functions related to: cohomology of M_{0,n} and scattering eqns (Cachazo-He-Yuan); Lie polynomials (Frost-Mason); non-planar plabic graphs (Arkani-Hamed-Bourjaily-Cachazo-Postnikov-Trnka).
- Thm above implies the U(1) decoupling identities and shuffle identities for Parke-Taylor functions.

 There are some analogous results for linear extensions of posets due to Curtis Greene, in connection to the Murnaghan-Nakayama formula (rep theory of S_n).

Lauren K. Williams (Harvard)
Theorem (P–SB–T–W)

Let τ be a tricolored subdivision with at least one grey polygon, and let C_τ be the cyclic partial order. Then

$$\sum_{w} \mathsf{PT}(w) = 0,$$

where the sum is over all circular extensions (w) of C_{τ} .

- PT functions related to: cohomology of $\mathcal{M}_{0,n}$ and *scattering eqns* (Cachazo-He-Yuan); Lie polynomials (Frost-Mason); non-planar plabic graphs (Arkani-Hamed-Bourjaily-Cachazo-Postnikov-Trnka).
- Thm above implies the U(1) decoupling identities and shuffle identities for Parke-Taylor functions.
- There are some analogous results for linear extensions of posets due to Curtis Greene, in connection to the Murnaghan-Nakayama formula (rep theory of S_n).

- We can associate a Parke-Taylor polytope Γ_τ ⊂ ℝⁿ⁻¹ to each tricolored subdivision on [n]: for any compatible arc i → j with i < j, area(i → j) ≤ x_i + x_{i+1} + ··· + x_{j-1} ≤ area(i → j) + gr-area(i → j) + 1.
- A *compatible arc* is an edge of a polygon or lies entirely inside a black or white polygon.
- area $(i \rightarrow j)$ (resp gr-area $(i \rightarrow j)$) is the "black area" (resp. "grey area") to the left of the arc.
- Above, $2 \rightarrow 7$ is a compatible arc. Gives inequality:

 $1 \le x_2 + x_3 + x_4 + x_5 + x_6 \le 1 + 2 + 1.$

- We can associate a Parke-Taylor polytope Γ_τ ⊂ ℝⁿ⁻¹ to each tricolored subdivision on [n]: for any compatible arc i → j with i < j, area(i → j) ≤ x_i + x_{i+1} + · · · + x_{j-1} ≤ area(i → j) + gr-area(i → j) + 1.
- A *compatible arc* is an edge of a polygon or lies entirely inside a black or white polygon.
- area(i → j) (resp gr-area(i → j)) is the "black area" (resp. "grey area") to the left of the arc.
- Above, $2 \rightarrow 7$ is a compatible arc. Gives inequality:

 $1 \le x_2 + x_3 + x_4 + x_5 + x_6 \le 1 + 2 + 1.$

- We can associate a Parke-Taylor polytope Γ_τ ⊂ ℝⁿ⁻¹ to each tricolored subdivision on [n]: for any compatible arc i → j with i < j, area(i → j) ≤ x_i + x_{i+1} + ··· + x_{j-1} ≤ area(i → j) + gr-area(i → j) + 1
- A *compatible arc* is an edge of a polygon or lies entirely inside a black or white polygon.
- area(i → j) (resp gr-area(i → j)) is the "black area" (resp. "grey area") to the left of the arc.
- Above, $2 \rightarrow 7$ is a compatible arc. Gives inequality:

 $1 \le x_2 + x_3 + x_4 + x_5 + x_6 \le 1 + 2 + 1.$

- We can associate a Parke-Taylor polytope Γ_τ ⊂ ℝⁿ⁻¹ to each tricolored subdivision on [n]: for any compatible arc i → j with i < j, area(i → j) ≤ x_i + x_{i+1} + ··· + x_{j-1} ≤ area(i → j) + gr-area(i → j) + 1.
- A *compatible arc* is an edge of a polygon or lies entirely inside a black or white polygon.
- area(i → j) (resp gr-area(i → j)) is the "black area" (resp. "grey area") to the left of the arc.
- Above, $2 \rightarrow 7$ is a compatible arc. Gives inequality:

 $1 \le x_2 + x_3 + x_4 + x_5 + x_6 \le 1 + 2 + 1.$

- We can associate a Parke-Taylor polytope Γ_τ ⊂ ℝⁿ⁻¹ to each tricolored subdivision on [n]: for any compatible arc i → j with i < j, area(i → j) ≤ x_i + x_{i+1} + ··· + x_{j-1} ≤ area(i → j) + gr-area(i → j) + 1.
- A *compatible arc* is an edge of a polygon or lies entirely inside a black or white polygon.
- area(i → j) (resp gr-area(i → j)) is the "black area" (resp. "grey area") to the left of the arc.
- Above, $2 \rightarrow 7$ is a compatible arc. Gives inequality:

 $1 \le x_2 + x_3 + x_4 + x_5 + x_6 \le 1 + 2 + 1.$

- We can associate a Parke-Taylor polytope Γ_τ ⊂ ℝⁿ⁻¹ to each tricolored subdivision on [n]: for any compatible arc i → j with i < j, area(i → j) ≤ x_i + x_{i+1} + ··· + x_{j-1} ≤ area(i → j) + gr-area(i → j) + 1.
- A *compatible arc* is an edge of a polygon or lies entirely inside a black or white polygon.
- area(i → j) (resp gr-area(i → j)) is the "black area" (resp. "grey area") to the left of the arc.
- Above, $2 \rightarrow 7$ is a compatible arc. Gives inequality:

 $1 \le x_2 + x_3 + x_4 + x_5 + x_6 \le 1 + 2 + 1.$

- We can associate a Parke-Taylor polytope Γ_τ ⊂ ℝⁿ⁻¹ to each tricolored subdivision on [n]: for any compatible arc i → j with i < j, area(i → j) ≤ x_i + x_{i+1} + ··· + x_{j-1} ≤ area(i → j) + gr-area(i → j) + 1.
- A *compatible arc* is an edge of a polygon or lies entirely inside a black or white polygon.
- area(i → j) (resp gr-area(i → j)) is the "black area" (resp. "grey area") to the left of the arc.
- Above, $2 \rightarrow 7$ is a compatible arc. Gives inequality:

$$1 \le x_2 + x_3 + x_4 + x_5 + x_6 \le 1 + 2 + 1.$$

8/22

We've seen how each tricolored subdivision τ gives rise to: a partial cyclic order C_{τ} and a Parke-Taylor polytope Γ_{τ} .

Theorem (Parisi–Sherman-Bennett–Tessler–W.)

Let au be a tricolored subdivision. Then the Parke-Taylor polytope $\Gamma_ au$ has a triangulation

$$\Gamma_{\tau} = \bigcup \Delta_{(w)}$$

We've seen how each tricolored subdivision τ gives rise to: a partial cyclic order C_{τ} and a Parke-Taylor polytope Γ_{τ} .

Theorem (Parisi–Sherman-Bennett–Tessler–W.)

Let au be a tricolored subdivision. Then the Parke-Taylor polytope $\Gamma_ au$ has a triangulation

$$\overline{\tau}_{\tau} = \bigcup \Delta_{(w)}$$

We've seen how each tricolored subdivision τ gives rise to: a partial cyclic order C_{τ} and a Parke-Taylor polytope Γ_{τ} .

Theorem (Parisi–Sherman-Bennett–Tessler–W.)

Let au be a tricolored subdivision. Then the Parke-Taylor polytope $\Gamma_{ au}$ has a triangulation

$$\Gamma_{\tau} = \bigcup \Delta_{(w)}$$

into unit simplices $\Delta_{(w)}$, where *w* ranges over all circular extensions of the partial cyclic order C_{τ} . In particular, the normalized volume of Γ_{τ} equals the number of circular extensions of C_{τ} .

Lauren K. Williams (Harvard)

9/22

We've seen how each tricolored subdivision τ gives rise to: a partial cyclic order C_{τ} and a Parke-Taylor polytope Γ_{τ} .

Theorem (Parisi-Sherman-Bennett-Tessler-W.)

Let τ be a tricolored subdivision. Then the Parke-Taylor polytope Γ_τ has a triangulation

$$\Gamma_{\tau} = \bigcup \Delta_{(w)}$$

into unit simplices $\Delta_{(w)}$, where *w* ranges over all circular extensions of the partial cyclic order C_{τ} . In particular, the normalized volume of Γ_{τ} equals the number of circular extensions of C_{τ} .

Lauren K. Williams (Harvard)

2024

9/22

We've seen how each tricolored subdivision τ gives rise to: a partial cyclic order C_{τ} and a Parke-Taylor polytope Γ_{τ} .

Theorem (Parisi-Sherman-Bennett-Tessler-W.)

Let τ be a tricolored subdivision. Then the Parke-Taylor polytope Γ_τ has a triangulation

$$\Gamma_{ au} = \bigcup \Delta_{(w)}$$

We've seen how each tricolored subdivision τ gives rise to: a partial cyclic order C_{τ} and a Parke-Taylor polytope Γ_{τ} .

Theorem (Parisi-Sherman-Bennett-Tessler-W.)

Let τ be a tricolored subdivision. Then the Parke-Taylor polytope Γ_τ has a triangulation

$$\Gamma_{\tau} = \bigcup \Delta_{(w)}$$

We've seen how each tricolored subdivision τ gives rise to: a partial cyclic order C_{τ} and a Parke-Taylor polytope Γ_{τ} .

Theorem (Parisi-Sherman-Bennett-Tessler-W.)

Let τ be a tricolored subdivision. Then the Parke-Taylor polytope Γ_τ has a triangulation

$$\Gamma_{\tau} = \bigcup \Delta_{(w)}$$

Theorem (Parisi–Sherman-Bennett–Tessler–W.)

Let au be a tricolored subdivision. Then the Parke-Taylor polytope $\Gamma_{ au}$ has a triangulation

$$\bar{\tau}_{\tau} = \bigcup \Delta_{(w)}$$

into unit simplices $\Delta_{(w)}$, where w ranges over circular extensions of $\mathcal{C}_{ au}$.

- Reminiscent of Stanley's result that the volume of the order polytope of a poset P equals the number of linear extensions of P.
 Related to work of Ayyer–Josuat-Verges–Ramassamy, and Gonzalez D'Leon–Hanusa–Morales–Yip.
- Yuhan Jiang (in progress): gives formula for the harvestor of $\Gamma_{\tau,\Xi}$ one Lauren K. Williams (Harvard) The magic number for $\mathcal{A}_{n,k,2}(Z)$ 2024 10/22

Theorem (Parisi-Sherman-Bennett-Tessler-W.)

Let τ be a tricolored subdivision. Then the Parke-Taylor polytope Γ_τ has a triangulation

$$\Gamma_{ au} = \bigcup \Delta_{(w)}$$

into unit simplices $\Delta_{(w)}$, where w ranges over circular extensions of $C_{ au}$.

- Reminiscent of Stanley's result that the volume of the order polytope of a poset P equals the number of linear extensions of P.
 Related to work of Ayyer–Josuat-Verges–Ramassamy, and Gonzalez D'Leon–Hanusa–Morales–Yip.
- Yuhan Jiang (in progress): gives formula for the harvestor of $\Gamma_{\tau, \Xi}$ one Lauren K. Williams (Harvard) The magic number for $\mathcal{A}_{n,k,2}(Z)$ 2024 10/22

Theorem (Parisi-Sherman-Bennett-Tessler-W.)

Let τ be a tricolored subdivision. Then the Parke-Taylor polytope Γ_τ has a triangulation

$$\Gamma_{\tau} = \bigcup \Delta_{(w)}$$

into unit simplices $\Delta_{(w)}$, where w ranges over circular extensions of $C_{ au}$.

- Reminiscent of Stanley's result that the volume of the order polytope of a poset P equals the number of linear extensions of P. Related to work of Ayyer–Josuat-Verges–Ramassamy, and Gonzalez D'Leon–Hanusa–Morales–Yip.
- Yuhan Jiang (in progress): gives formula for the harvestor of Γ_{τ} : 200° Lauren K. Williams (Harvard) The magic number for $\mathcal{A}_{n,k,2}(Z)$ 2024 10/22

Theorem (Parisi-Sherman-Bennett-Tessler-W.)

Let τ be a tricolored subdivision. Then the Parke-Taylor polytope Γ_τ has a triangulation

$$\Gamma_{ au} = \bigcup \Delta_{(w)}$$

into unit simplices $\Delta_{(w)}$, where w ranges over circular extensions of C_{τ} .

- Reminiscent of Stanley's result that the volume of the order polytope of a poset P equals the number of linear extensions of P.
 Related to work of Ayyer–Josuat-Verges–Ramassamy, and Gonzalez D'Leon–Hanusa–Morales–Yip.
- Yuhan Jiang (in progress): gives formula for the harvestor of $\Gamma_{\tau,\Xi}$ one Lauren K. Williams (Harvard) The magic number for $\mathcal{A}_{n,k,2}(Z)$ 2024 10/22

Theorem (Parisi-Sherman-Bennett-Tessler-W.)

Let τ be a tricolored subdivision. Then the Parke-Taylor polytope Γ_τ has a triangulation

$$\Gamma_{\tau} = \bigcup \Delta_{(w)}$$

into unit simplices $\Delta_{(w)}$, where w ranges over circular extensions of C_{τ} .

- Reminiscent of Stanley's result that the volume of the order polytope of a poset P equals the number of linear extensions of P.
 Related to work of Ayyer–Josuat-Verges–Ramassamy, and Gonzalez D'Leon–Hanusa–Morales–Yip.
- Yuhan Jiang (in progress): gives formula for the h^{\pm} vector of Γ_{τ} . \Im \Im \square Lauren K. Williams (Harvard) The magic number for $\mathcal{A}_{n,k,2}(Z)$ 2024 10/22

Recall: the **Grassmannian** $Gr_{k,n}(\mathbb{C}) := \{V \mid V \subset \mathbb{C}^n, \dim V = k\}$ Represent an element of $Gr_{k,n}$ by a full-rank $k \times n$ matrix C.

 $\begin{pmatrix} 1 & 0 & 0 & -3 \\ 0 & 1 & 2 & 1 \end{pmatrix}$

Given $I \in {[n] \choose k}$, the **Plücker coordinate** $p_I(C)$ is the minor of the $k \times k$ submatrix of C in column set I.

The *matroid* associated to $C \in Gr_{k,n}$ is $\mathcal{M}(C) := \{I \in {[n] \choose k} \mid p_I(C)
eq 0.\}$

Gelfand-Goresky-MacPherson-Serganova '87 introduced the *matroid stratification* of *Gr*_{*k*,*n*}.

Given $\mathcal{M} \subset {\binom{[n]}{k}}$, let $S_{\mathcal{M}} = \{C \in Gr_{k,n} \mid p_I(C) \neq 0 \text{ iff } I \in \mathcal{M}\}.$

Matroid stratification: $Gr_{k,n} = \sqcup_{\mathcal{M}} S_{\mathcal{M}}$.

However, the topology of matroid strata is terrible – Mnev's *universality theorem* (1987).

Lauren K. Williams (Harvard)

Recall: the **Grassmannian** $Gr_{k,n}(\mathbb{C}) := \{V \mid V \subset \mathbb{C}^n, \dim V = k\}$ Represent an element of $Gr_{k,n}$ by a full-rank $k \times n$ matrix C.

$$\begin{pmatrix} 1 & 0 & 0 & -3 \\ 0 & 1 & 2 & 1 \end{pmatrix}$$

Given $I \in {\binom{[n]}{k}}$, the **Plücker coordinate** $p_I(C)$ is the minor of the $k \times k$ submatrix of C in column set I.

The matroid associated to $C \in Gr_{k,n}$ is $\mathcal{M}(C) := \{I \in {[n] \choose k} \mid p_I(C) \neq 0.\}$

Gelfand-Goresky-MacPherson-Serganova '87 introduced the *matroid* stratification of $Gr_{k,n}$.

Given $\mathcal{M} \subset {\binom{[n]}{k}}$, let $S_{\mathcal{M}} = \{ C \in Gr_{k,n} \mid p_I(C) \neq 0 \text{ iff } I \in \mathcal{M} \}.$

Matroid stratification: $Gr_{k,n} = \sqcup_{\mathcal{M}} S_{\mathcal{M}}$.

However, the topology of matroid strata is terrible – Mnev's *universality theorem* (1987).

Lauren K. Williams (Harvard)

Recall: the **Grassmannian** $Gr_{k,n}(\mathbb{C}) := \{V \mid V \subset \mathbb{C}^n, \dim V = k\}$ Represent an element of $Gr_{k,n}$ by a full-rank $k \times n$ matrix C.

 $\begin{pmatrix} 1 & 0 & 0 & -3 \\ 0 & 1 & 2 & 1 \end{pmatrix}$

Given $I \in {[n] \choose k}$, the **Plücker coordinate** $p_I(C)$ is the minor of the $k \times k$ submatrix of C in column set I.

The matroid associated to $C \in Gr_{k,n}$ is $\mathcal{M}(C) := \{I \in {[n] \choose k} \mid p_I(C) \neq 0.\}$ Gelfand-Goresky-MacPherson-Serganova '87 introduced the matroid stratification of $Gr_{k,n}$.

Given $\mathcal{M} \subset {[n] \choose k}$, let $S_{\mathcal{M}} = \{C \in Gr_{k,n} \mid p_I(C) \neq 0 \text{ iff } I \in \mathcal{M}\}.$

Matroid stratification: $Gr_{k,n} = \sqcup_{\mathcal{M}} S_{\mathcal{M}}$.

However, the topology of matroid strata is terrible – Mnev's *universality theorem* (1987).

Lauren K. Williams (Harvard)

Recall: the **Grassmannian** $Gr_{k,n}(\mathbb{C}) := \{V \mid V \subset \mathbb{C}^n, \dim V = k\}$ Represent an element of $Gr_{k,n}$ by a full-rank $k \times n$ matrix C.

 $\begin{pmatrix} 1 & 0 & 0 & -3 \\ 0 & 1 & 2 & 1 \end{pmatrix}$

Given $I \in {[n] \choose k}$, the **Plücker coordinate** $p_I(C)$ is the minor of the $k \times k$ submatrix of C in column set I.

The matroid associated to $C \in Gr_{k,n}$ is $\mathcal{M}(C) := \{I \in {[n] \choose k} \mid p_I(C) \neq 0.\}$ Gelfand-Goresky-MacPherson-Serganova '87 introduced the matroid stratification of $Gr_{k,n}$.

Given
$$\mathcal{M} \subset {\binom{[n]}{k}}$$
, let $S_{\mathcal{M}} = \{C \in Gr_{k,n} \mid p_I(C) \neq 0 \text{ iff } I \in \mathcal{M}\}.$

Matroid stratification: $Gr_{k,n} = \sqcup_{\mathcal{M}} S_{\mathcal{M}}$.

However, the topology of matroid strata is terrible – Mnev's *universality theorem* (1987).

Lauren K. Williams (Harvard)

Recall: the **Grassmannian** $Gr_{k,n}(\mathbb{C}) := \{V \mid V \subset \mathbb{C}^n, \dim V = k\}$ Represent an element of $Gr_{k,n}$ by a full-rank $k \times n$ matrix C.

$$\begin{pmatrix} 1 & 0 & 0 & -3 \\ 0 & 1 & 2 & 1 \end{pmatrix}$$

Given $I \in {\binom{[n]}{k}}$, the **Plücker coordinate** $p_I(C)$ is the minor of the $k \times k$ submatrix of C in column set I.

The matroid associated to $C \in Gr_{k,n}$ is $\mathcal{M}(C) := \{I \in {[n] \choose k} \mid p_I(C) \neq 0.\}$ Gelfand-Goresky-MacPherson-Serganova '87 introduced the matroid stratification of $Gr_{k,n}$.

Given $\mathcal{M} \subset {\binom{[n]}{k}}$, let $S_{\mathcal{M}} = \{C \in Gr_{k,n} \mid p_I(C) \neq 0 \text{ iff } I \in \mathcal{M}\}.$

Matroid stratification: $Gr_{k,n} = \sqcup_{\mathcal{M}} S_{\mathcal{M}}$.

However, the topology of matroid strata is terrible – Mnev's *universality theorem* (1987).

Lauren K. Williams (Harvard)

The magic number for $\mathcal{A}_{n,k,2}(Z)$

11 / 22

Recall: the **Grassmannian** $Gr_{k,n}(\mathbb{C}) := \{V \mid V \subset \mathbb{C}^n, \dim V = k\}$ Represent an element of $Gr_{k,n}$ by a full-rank $k \times n$ matrix C.

$$\begin{pmatrix} 1 & 0 & 0 & -3 \\ 0 & 1 & 2 & 1 \end{pmatrix}$$

Given $I \in {\binom{[n]}{k}}$, the **Plücker coordinate** $p_I(C)$ is the minor of the $k \times k$ submatrix of C in column set I.

The matroid associated to $C \in Gr_{k,n}$ is $\mathcal{M}(C) := \{I \in {[n] \choose k} \mid p_I(C) \neq 0.\}$ Gelfand-Goresky-MacPherson-Serganova '87 introduced the matroid stratification of $Gr_{k,n}$.

Given
$$\mathcal{M} \subset {\binom{[n]}{k}}$$
, let $S_{\mathcal{M}} = \{C \in Gr_{k,n} \mid p_I(C) \neq 0 \text{ iff } I \in \mathcal{M}\}.$

Matroid stratification: $Gr_{k,n} = \sqcup_{\mathcal{M}} S_{\mathcal{M}}$.

However, the topology of matroid strata is terrible – Mnev's *universality theorem* (1987).

Lauren K. Williams (Harvard)

Recall: the **Grassmannian** $Gr_{k,n}(\mathbb{C}) := \{V \mid V \subset \mathbb{C}^n, \dim V = k\}$ Represent an element of $Gr_{k,n}$ by a full-rank $k \times n$ matrix C.

$$\begin{pmatrix} 1 & 0 & 0 & -3 \\ 0 & 1 & 2 & 1 \end{pmatrix}$$

Given $I \in {[n] \choose k}$, the **Plücker coordinate** $p_I(C)$ is the minor of the $k \times k$ submatrix of C in column set I.

The matroid associated to $C \in Gr_{k,n}$ is $\mathcal{M}(C) := \{I \in {[n] \choose k} \mid p_I(C) \neq 0.\}$ Gelfand-Goresky-MacPherson-Serganova '87 introduced the matroid stratification of $Gr_{k,n}$.

Given
$$\mathcal{M} \subset {\binom{[n]}{k}}$$
, let $S_{\mathcal{M}} = \{C \in Gr_{k,n} \mid p_I(C) \neq 0 \text{ iff } I \in \mathcal{M}\}.$

Matroid stratification: $Gr_{k,n} = \sqcup_{\mathcal{M}} S_{\mathcal{M}}$.

However, the topology of matroid strata is terrible – Mnev's *universality theorem* (1987).

Lauren K. Williams (Harvard)

Background: 1994 Lusztig total positivity for G/P, 1997 Rietsch, 2006 Postnikov preprint on *totally non-negative* (TNN) or "positive" Grassmannian.

Let $Gr_{k,n}^{\geq 0}$ be subset of $Gr_{k,n}(\mathbb{R})$ where Plucker coords $p_l \geq 0$ for all l.

Inspired by matroid stratification, one can partition $Gr_{k,n}^{\geq 0}$ into pieces based on which Plücker coordinates are positive and which are 0.

Let $\mathcal{M} \subseteq {\binom{[n]}{k}}$. Let $S_{\mathcal{M}} := \{C \in Gr_{k,n}^{\geq 0} \mid p_I(C) > 0 \text{ iff } I \in \mathcal{M}\}.$

In contrast to terrible topology of matroid strata ...

(Postnikov, see also Rietsch) If $S_{\mathcal{M}}$ is non-empty it is a (positroid) *cell*, i.e. homeomorphic to an open ball. So we have *positroid cell decomposition*

$$Gr_{k,n}^{\geq 0} = \sqcup S_{\mathcal{M}}.$$

Lauren K. Williams (Harvard)

Background: 1994 Lusztig total positivity for G/P, 1997 Rietsch, 2006 Postnikov preprint on *totally non-negative* (TNN) or "positive" Grassmannian.

Let $Gr_{k,n}^{\geq 0}$ be subset of $Gr_{k,n}(\mathbb{R})$ where Plucker coords $p_l \geq 0$ for all l.

Inspired by matroid stratification, one can partition $Gr_{k,n}^{\geq 0}$ into pieces based on which Plücker coordinates are positive and which are 0.

Let $\mathcal{M} \subseteq {\binom{[n]}{k}}$. Let $S_{\mathcal{M}} := \{C \in Gr_{k,n}^{\geq 0} \mid p_I(C) > 0 \text{ iff } I \in \mathcal{M}\}.$

In contrast to terrible topology of matroid strata ...

$$Gr_{k,n}^{\geq 0} = \sqcup S_{\mathcal{M}}.$$

Background: 1994 Lusztig total positivity for G/P, 1997 Rietsch, 2006 Postnikov preprint on *totally non-negative* (TNN) or "positive" Grassmannian.

Let $Gr_{k,n}^{\geq 0}$ be subset of $Gr_{k,n}(\mathbb{R})$ where Plucker coords $p_l \geq 0$ for all l.

Inspired by matroid stratification, one can partition $Gr_{k,n}^{\geq 0}$ into pieces based on which Plücker coordinates are positive and which are 0.

Let $\mathcal{M} \subseteq {\binom{[n]}{k}}$. Let $S_{\mathcal{M}} := \{ C \in Gr_{k,n}^{\geq 0} \mid p_I(C) > 0 \text{ iff } I \in \mathcal{M} \}.$

In contrast to terrible topology of matroid strata ...

Background: 1994 Lusztig total positivity for G/P, 1997 Rietsch, 2006 Postnikov preprint on *totally non-negative* (TNN) or "positive" Grassmannian.

Let $Gr_{k,n}^{\geq 0}$ be subset of $Gr_{k,n}(\mathbb{R})$ where Plucker coords $p_l \geq 0$ for all l.

Inspired by matroid stratification, one can partition $Gr_{k,n}^{\geq 0}$ into pieces based on which Plücker coordinates are positive and which are 0.

Let $\mathcal{M} \subseteq {\binom{[n]}{k}}$. Let $S_{\mathcal{M}} := \{C \in Gr_{k,n}^{\geq 0} \mid p_I(C) > 0 \text{ iff } I \in \mathcal{M}\}.$

In contrast to terrible topology of matroid strata ...

$$Gr_{k,n}^{\geq 0} = \sqcup S_{\mathcal{M}}.$$

Background: 1994 Lusztig total positivity for G/P, 1997 Rietsch, 2006 Postnikov preprint on *totally non-negative* (TNN) or "positive" Grassmannian.

Let $Gr_{k,n}^{\geq 0}$ be subset of $Gr_{k,n}(\mathbb{R})$ where Plucker coords $p_l \geq 0$ for all l.

Inspired by matroid stratification, one can partition $Gr_{k,n}^{\geq 0}$ into pieces based on which Plücker coordinates are positive and which are 0.

Let
$$\mathcal{M} \subseteq {\binom{[n]}{k}}$$
. Let $S_{\mathcal{M}} := \{ C \in Gr_{k,n}^{\geq 0} \mid p_I(C) > 0 \text{ iff } I \in \mathcal{M} \}.$

In contrast to terrible topology of matroid strata ...

$$Gr_{k,n}^{\geq 0} = \sqcup S_{\mathcal{M}}.$$

Background: 1994 Lusztig total positivity for G/P, 1997 Rietsch, 2006 Postnikov preprint on *totally non-negative* (TNN) or "positive" Grassmannian.

Let $Gr_{k,n}^{\geq 0}$ be subset of $Gr_{k,n}(\mathbb{R})$ where Plucker coords $p_l \geq 0$ for all l.

Inspired by matroid stratification, one can partition $Gr_{k,n}^{\geq 0}$ into pieces based on which Plücker coordinates are positive and which are 0.

Let
$$\mathcal{M} \subseteq {\binom{[n]}{k}}$$
. Let $S_{\mathcal{M}} := \{ C \in Gr_{k,n}^{\geq 0} \mid p_I(C) > 0 \text{ iff } I \in \mathcal{M} \}.$

In contrast to terrible topology of matroid strata ...

$$Gr_{k,n}^{\geq 0} = \sqcup S_{\mathcal{M}}.$$

Background: 1994 Lusztig total positivity for G/P, 1997 Rietsch, 2006 Postnikov preprint on *totally non-negative* (TNN) or "positive" Grassmannian.

Let $Gr_{k,n}^{\geq 0}$ be subset of $Gr_{k,n}(\mathbb{R})$ where Plucker coords $p_l \geq 0$ for all l.

Inspired by matroid stratification, one can partition $Gr_{k,n}^{\geq 0}$ into pieces based on which Plücker coordinates are positive and which are 0.

Let
$$\mathcal{M} \subseteq {\binom{[n]}{k}}$$
. Let $S_{\mathcal{M}} := \{C \in Gr_{k,n}^{\geq 0} \mid p_I(C) > 0 \text{ iff } I \in \mathcal{M}\}.$

In contrast to terrible topology of matroid strata ...

$$Gr_{k,n}^{\geq 0} = \sqcup S_{\mathcal{M}}.$$

Background: 1994 Lusztig total positivity for G/P, 1997 Rietsch, 2006 Postnikov preprint on *totally non-negative* (TNN) or "positive" Grassmannian.

Let $Gr_{k,n}^{\geq 0}$ be subset of $Gr_{k,n}(\mathbb{R})$ where Plucker coords $p_l \geq 0$ for all l.

Inspired by matroid stratification, one can partition $Gr_{k,n}^{\geq 0}$ into pieces based on which Plücker coordinates are positive and which are 0.

Let
$$\mathcal{M} \subseteq {\binom{[n]}{k}}$$
. Let $S_{\mathcal{M}} := \{C \in Gr_{k,n}^{\geq 0} \mid p_I(C) > 0 \text{ iff } I \in \mathcal{M}\}.$

In contrast to terrible topology of matroid strata ...

(Postnikov, see also Rietsch) If S_M is non-empty it is a (positroid) *cell*, i.e. homeomorphic to an open ball. So we have *positroid cell decomposition*

$$Gr_{k,n}^{\geq 0} = \sqcup S_{\mathcal{M}}.$$

Can classify the (nonempty) cells . .

Background: 1994 Lusztig total positivity for G/P, 1997 Rietsch, 2006 Postnikov preprint on *totally non-negative* (TNN) or "positive" Grassmannian.

Let $Gr_{k,n}^{\geq 0}$ be subset of $Gr_{k,n}(\mathbb{R})$ where Plucker coords $p_l \geq 0$ for all l.

Inspired by matroid stratification, one can partition $Gr_{k,n}^{\geq 0}$ into pieces based on which Plücker coordinates are positive and which are 0.

Let
$$\mathcal{M} \subseteq {\binom{[n]}{k}}$$
. Let $S_{\mathcal{M}} := \{C \in Gr_{k,n}^{\geq 0} \mid p_I(C) > 0 \text{ iff } I \in \mathcal{M}\}.$

In contrast to terrible topology of matroid strata ...

(Postnikov, see also Rietsch) If S_M is non-empty it is a (positroid) *cell*, i.e. homeomorphic to an open ball. So we have *positroid cell decomposition*

$$Gr_{k,n}^{\geq 0} = \sqcup S_{\mathcal{M}}.$$

Can classify the (nonempty) cells . .
What is the positive Grassmannian?

Background: 1994 Lusztig total positivity for G/P, 1997 Rietsch, 2006 Postnikov preprint on *totally non-negative* (TNN) or "positive" Grassmannian.

Let $Gr_{k,n}^{\geq 0}$ be subset of $Gr_{k,n}(\mathbb{R})$ where Plucker coords $p_l \geq 0$ for all l.

Inspired by matroid stratification, one can partition $Gr_{k,n}^{\geq 0}$ into pieces based on which Plücker coordinates are positive and which are 0.

Let
$$\mathcal{M} \subseteq {\binom{[n]}{k}}$$
. Let $S_{\mathcal{M}} := \{C \in Gr_{k,n}^{\geq 0} \mid p_I(C) > 0 \text{ iff } I \in \mathcal{M}\}.$

In contrast to terrible topology of matroid strata ...

(Postnikov, see also Rietsch) If S_M is non-empty it is a (positroid) *cell*, i.e. homeomorphic to an open ball. So we have *positroid cell decomposition*

$$Gr_{k,n}^{\geq 0} = \sqcup S_{\mathcal{M}}.$$

Can classify the (nonempty) cells ...

The amplituhedron $\mathcal{A}_{n,k,m}(Z)$, Arkani-Hamed–Trnka (2013).

Fix n, k, m with $k + m \le n$. Let $Z \in \operatorname{Mat}_{n,k+m}^{>0}$ be an $n \times (k + m)$ matrix with max'l minors positive. Let \widetilde{Z} be map $Gr_{k,n}^{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix C to span(CZ). Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}(Gr_{k,n}^{\ge 0}) \subset Gr_{k,k+m}$.

Motivation for the amplituhedron ($\mathcal{N} = 4$ SYM):

- the recurrence of Britto–Cachazo–Feng–Witten (2005) expresses scattering amplitudes as sums of rat'l functions of momenta. Indiv terms have "spurious poles" – singularities not present in amplitude.
- Hodges (2009) observed that in some cases, the amplitude is the volume of a polytope, with spurious poles arising from internal boundaries of a triangulation of the polytope. Asked if in general each amplitude is the volume of some geometric object.
- AH−T found the amplituhedron as the answer to this question; BCFW recurrence is interpreted as "triangulation" of A_{n:k:4}€Z). ≥

Lauren K. Williams (Harvard)

2024

The amplituhedron $\mathcal{A}_{n,k,m}(Z)$, Arkani-Hamed–Trnka (2013).

Fix n, k, m with $k + m \leq n$.

Let $Z \in \operatorname{Mat}_{n,k+m}^{>0}$ be an $n \times (k+m)$ matrix with max'l minors positive. Let \widetilde{Z} be map $Gr_{k,n}^{\geq 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix C to span(CZ). Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}(Gr_{k,n}^{\geq 0}) \subset Gr_{k,k+m}$.

Motivation for the amplituhedron ($\mathcal{N} = 4$ SYM):

- the recurrence of Britto-Cachazo-Feng-Witten (2005) expresses scattering amplitudes as sums of rat'l functions of momenta. Indiv terms have "spurious poles" – singularities not present in amplitude.
- Hodges (2009) observed that in some cases, the amplitude is the volume of a polytope, with spurious poles arising from internal boundaries of a triangulation of the polytope. Asked if in general each amplitude is the volume of some geometric object.
- AH−T found the amplituhedron as the answer to this question; BCFW recurrence is interpreted as "triangulation" of A_{n:k:4}€Z). ≥

Lauren K. Williams (Harvard)

2024

The amplituhedron $\mathcal{A}_{n,k,m}(Z)$, Arkani-Hamed–Trnka (2013).

Fix n, k, m with $k + m \le n$. Let $Z \in Mat_{n,k+m}^{>0}$ be an $n \times (k + m)$ matrix with max'l minors positive. Let \widetilde{Z} be map $Gr_{k,n}^{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix C to span(CZ). Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}(Gr_{k,n}^{\ge 0}) \subset Gr_{k,k+m}$.

Motivation for the amplituhedron ($\mathcal{N} = 4$ SYM):

- the recurrence of Britto-Cachazo-Feng-Witten (2005) expresses scattering amplitudes as sums of rat'l functions of momenta. Indiv terms have "spurious poles" – singularities not present in amplitude.
- Hodges (2009) observed that in some cases, the amplitude is the volume of a polytope, with spurious poles arising from internal boundaries of a triangulation of the polytope. Asked if in general each amplitude is the volume of some geometric object.
- AH−T found the amplituhedron as the answer to this question; BCFW recurrence is interpreted as "triangulation" of A_{n:k:4}€Z). ≥

Lauren K. Williams (Harvard)

13/22

The amplituhedron $\mathcal{A}_{n,k,m}(Z)$, Arkani-Hamed–Trnka (2013).

Fix n, k, m with $k + m \le n$. Let $Z \in Mat_{n,k+m}^{>0}$ be an $n \times (k + m)$ matrix with max'l minors positive. Let \widetilde{Z} be map $Gr_{k,n}^{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix C to span(CZ). Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}(Gr_{k,n}^{\ge 0}) \subset Gr_{k,k+m}$.

Motivation for the amplituhedron ($\mathcal{N} = 4$ SYM):

- the recurrence of Britto–Cachazo–Feng–Witten (2005) expresses scattering amplitudes as sums of rat'l functions of momenta. Indiv terms have "spurious poles" – singularities not present in amplitude.
- Hodges (2009) observed that in some cases, the amplitude is the volume of a polytope, with spurious poles arising from internal boundaries of a triangulation of the polytope. Asked if in general each amplitude is the volume of some geometric object.
- AH−T found the amplituhedron as the answer to this question; BCFW recurrence is interpreted as "triangulation" of A_{n:k:4}€Z). ≥

Lauren K. Williams (Harvard)

2024

The amplituhedron $\mathcal{A}_{n,k,m}(Z)$, Arkani-Hamed–Trnka (2013).

Fix n, k, m with $k + m \le n$. Let $Z \in \operatorname{Mat}_{n,k+m}^{>0}$ be an $n \times (k + m)$ matrix with max'l minors positive. Let \widetilde{Z} be map $Gr_{k,n}^{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix C to span(CZ). Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}(Gr_{k,n}^{\ge 0}) \subset Gr_{k,k+m}$.

Motivation for the amplituhedron ($\mathcal{N} = 4$ SYM):

- the recurrence of Britto-Cachazo-Feng-Witten (2005) expresses scattering amplitudes as sums of rat'l functions of momenta. Indiv terms have "spurious poles" – singularities not present in amplitude.
- Hodges (2009) observed that in some cases, the amplitude is the volume of a polytope, with spurious poles arising from internal boundaries of a triangulation of the polytope. Asked if in general each amplitude is the volume of some geometric object.
- AH−T found the amplituhedron as the answer to this question; BCFW recurrence is interpreted as "triangulation" of A_{n:k:4}€Z). ≥

Lauren K. Williams (Harvard)

2024

The amplituhedron $\mathcal{A}_{n,k,m}(Z)$, Arkani-Hamed–Trnka (2013).

Fix n, k, m with $k + m \le n$. Let $Z \in \operatorname{Mat}_{n,k+m}^{>0}$ be an $n \times (k + m)$ matrix with max'l minors positive. Let \widetilde{Z} be map $Gr_{k,n}^{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix C to span(CZ). Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}(Gr_{k,n}^{\ge 0}) \subset Gr_{k,k+m}$.

Motivation for the amplituhedron ($\mathcal{N} = 4$ SYM):

- the recurrence of Britto–Cachazo–Feng–Witten (2005) expresses scattering amplitudes as sums of rat'l functions of momenta. Indiv terms have "spurious poles" – singularities not present in amplitude.
- Hodges (2009) observed that in some cases, the amplitude is the volume of a polytope, with spurious poles arising from internal boundaries of a triangulation of the polytope. Asked if in general each amplitude is the volume of some geometric object.
- AH−T found the amplituhedron as the answer to this question; BCFW recurrence is interpreted as "triangulation" of A_{n:k:4}€Z). ≥

Lauren K. Williams (Harvard)

13/22

The amplituhedron $\mathcal{A}_{n,k,m}(Z)$, Arkani-Hamed–Trnka (2013).

Fix n, k, m with $k + m \le n$. Let $Z \in \operatorname{Mat}_{n,k+m}^{>0}$ be an $n \times (k + m)$ matrix with max'l minors positive. Let \widetilde{Z} be map $Gr_{k,n}^{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix C to span(CZ). Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}(Gr_{k,n}^{\ge 0}) \subset Gr_{k,k+m}$.

Motivation for the amplituhedron ($\mathcal{N} = 4$ SYM):

- the recurrence of Britto–Cachazo–Feng–Witten (2005) expresses scattering amplitudes as sums of rat'l functions of momenta. Indiv terms have "spurious poles" – singularities not present in amplitude
- Hodges (2009) observed that in some cases, the amplitude is the volume of a polytope, with spurious poles arising from internal boundaries of a triangulation of the polytope. Asked if in general each amplitude is the volume of some geometric object.
- AH−T found the amplituhedron as the answer to this question; BCFW recurrence is interpreted as "triangulation" of A_{n,k,4}∉Z).

Lauren K. Williams (Harvard)

2024

The amplituhedron $\mathcal{A}_{n,k,m}(Z)$, Arkani-Hamed–Trnka (2013).

Fix n, k, m with $k + m \le n$. Let $Z \in \operatorname{Mat}_{n,k+m}^{>0}$ be an $n \times (k + m)$ matrix with max'l minors positive. Let \widetilde{Z} be map $Gr_{k,n}^{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix C to span(CZ). Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}(Gr_{k,n}^{\ge 0}) \subset Gr_{k,k+m}$.

Motivation for the amplituhedron ($\mathcal{N} = 4$ SYM):

- the recurrence of Britto–Cachazo–Feng–Witten (2005) expresses scattering amplitudes as sums of rat'l functions of momenta. Indiv terms have "spurious poles" – singularities not present in amplitude.
- Hodges (2009) observed that in some cases, the amplitude is the volume of a polytope, with spurious poles arising from internal boundaries of a triangulation of the polytope. Asked if in general each amplitude is the volume of some geometric object.
- AH−T found the amplituhedron as the answer to this question; BCFW recurrence is interpreted as "triangulation" of A_{n:k:4}€Z). ≥

Lauren K. Williams (Harvard)

2024

The amplituhedron $\mathcal{A}_{n,k,m}(Z)$, Arkani-Hamed–Trnka (2013).

Fix n, k, m with $k + m \le n$. Let $Z \in \operatorname{Mat}_{n,k+m}^{>0}$ be an $n \times (k + m)$ matrix with max'l minors positive. Let \widetilde{Z} be map $Gr_{k,n}^{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix C to span(CZ). Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}(Gr_{k,n}^{\ge 0}) \subset Gr_{k,k+m}$.

Motivation for the amplituhedron ($\mathcal{N} = 4$ SYM):

- the recurrence of Britto–Cachazo–Feng–Witten (2005) expresses scattering amplitudes as sums of rat'l functions of momenta. Indiv terms have "spurious poles" – singularities not present in amplitude.
- Hodges (2009) observed that in some cases, the amplitude is the volume of a polytope, with spurious poles arising from internal boundaries of a triangulation of the polytope. Asked if in general each amplitude is the volume of some geometric object.
- AH−T found the amplituhedron as the answer to this question; BCFW recurrence is interpreted as "triangulation" of A_{n:k,4}(Z). ≥

Lauren K. Williams (Harvard)

13/22

The amplituhedron $\mathcal{A}_{n,k,m}(Z)$, Arkani-Hamed–Trnka (2013).

Fix n, k, m with $k + m \leq n$. Let $Z \in \operatorname{Mat}_{n,k+m}^{>0}$ be an $n \times (k+m)$ matrix with max'l minors positive. Let \widetilde{Z} be map $Gr_{k,n}^{\geq 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix C to span(CZ). Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}(Gr_{k,n}^{\geq 0}) \subset Gr_{k,k+m}$.

Motivation for the amplituhedron ($\mathcal{N} = 4$ SYM):

- the recurrence of Britto-Cachazo-Feng-Witten (2005) expresses scattering amplitudes as sums of rat'l functions of momenta. Indiv terms have "spurious poles" - singularities not present in amplitude.
- Hodges (2009) observed that in some cases, the amplitude is the volume of a polytope, with spurious poles arising from internal boundaries of a triangulation of the polytope. Asked if in general each amplitude is the volume of some geometric object.

• AH–T found the amplituhedron as the answer to this question; BCFW recurrence is interpreted as "triangulation" of $A_{n'k} \neq Z$). 2024

Lauren K. Williams (Harvard)

The magic number for $\mathcal{A}_{n,k,2}(Z)$

The amplituhedron $\mathcal{A}_{n,k,m}(Z)$, Arkani-Hamed–Trnka (2013).

Fix n, k, m with $k + m \le n$. Let $Z \in \operatorname{Mat}_{n,k+m}^{>0}$ be an $n \times (k + m)$ matrix with max'l minors positive. Let \widetilde{Z} be map $Gr_{k,n}^{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix C to span(CZ). Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}(Gr_{k,n}^{\ge 0}) \subset Gr_{k,k+m}$.

Motivation for the amplituhedron ($\mathcal{N} = 4$ SYM):

- the recurrence of Britto–Cachazo–Feng–Witten (2005) expresses scattering amplitudes as sums of rat'l functions of momenta. Indiv terms have "spurious poles" – singularities not present in amplitude.
- Hodges (2009) observed that in some cases, the amplitude is the volume of a polytope, with spurious poles arising from internal boundaries of a triangulation of the polytope. Asked if in general each amplitude is the volume of some geometric object.
- AH-T found the amplituhedron as the answer to this question; BCFW recurrence is interpreted as "triangulation" of Answer Z). ≥

Lauren K. Williams (Harvard)

The amplituhedron $\mathcal{A}_{n,k,m}(Z)$, Arkani-Hamed–Trnka (2013).

Fix n, k, m with $k + m \le n$. Let $Z \in \operatorname{Mat}_{n,k+m}^{>0}$ be an $n \times (k + m)$ matrix with max'l minors positive. Let \widetilde{Z} be map $Gr_{k,n}^{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix C to span(CZ). Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}(Gr_{k,n}^{\ge 0}) \subset Gr_{k,k+m}$.

Motivation for the amplituhedron ($\mathcal{N} = 4$ SYM):

- the recurrence of Britto–Cachazo–Feng–Witten (2005) expresses scattering amplitudes as sums of rat'l functions of momenta. Indiv terms have "spurious poles" – singularities not present in amplitude.
- Hodges (2009) observed that in some cases, the amplitude is the volume of a polytope, with spurious poles arising from internal boundaries of a triangulation of the polytope. Asked if in general each amplitude is the volume of some geometric object.
- AH−T found the amplituhedron as the answer to this question; BCFW recurrence is interpreted as "triangulation" of A_{n,k,4}(Z). ■

Lauren K. Williams (Harvard)

The amplituhedron $\mathcal{A}_{n,k,m}(Z)$

Fix n, k, m with $k + m \le n$, let $Z \in Mat_{n,k+m}^{>0}$ (max minors > 0). Let \widetilde{Z} be map $Gr_{k,n}^{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix C to CZ. Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}(Gr_{k,n}^{\ge 0}) \subset Gr_{k,k+m}$.

Special cases:

- If m = n k, $A_{n,k,m}(Z) = Gr_{k,n}^{\geq 0}$.
- If k = 1 and m = 2, $\mathcal{A}_{n,k,m} \subset Gr_{1,3}$ is equivalent to an *n*-gon in \mathbb{RP}^2 :
- For k = 1 and general *m*, get cyclic polytope in \mathbb{RP}^m .

The amplituhedron $\mathcal{A}_{n,k,m}(Z)$

Fix n, k, m with $k + m \le n$, let $Z \in Mat_{n,k+m}^{>0}$ (max minors > 0). Let \widetilde{Z} be map $Gr_{k,n}^{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix C to CZ. Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}(Gr_{k,n}^{\ge 0}) \subset Gr_{k,k+m}$.

Special cases:

- If m = n k, $A_{n,k,m}(Z) = Gr_{k,n}^{\geq 0}$.
- If k = 1 and m = 2, $\mathcal{A}_{n,k,m} \subset Gr_{1,3}$ is equivalent to an *n*-gon in \mathbb{RP}^2 :
- For k = 1 and general *m*, get cyclic polytope in \mathbb{RP}^m .

The amplituhedron $\mathcal{A}_{n,k,m}(Z)$

Fix n, k, m with $k + m \le n$, let $Z \in \operatorname{Mat}_{n,k+m}^{>0}$ (max minors > 0). Let \widetilde{Z} be map $Gr_{k,n}^{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix C to CZ. Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}(Gr_{k,n}^{\ge 0}) \subset Gr_{k,k+m}$.

Special cases:

- If m = n k, $A_{n,k,m}(Z) = Gr_{k,n}^{\geq 0}$.
- If k = 1 and m = 2, $\mathcal{A}_{n,k,m} \subset Gr_{1,3}$ is equivalent to an *n*-gon in \mathbb{RP}^2 :
- For k = 1 and general *m*, get cyclic polytope in \mathbb{RP}^m .

The amplituhedron $\mathcal{A}_{n,k,m}(Z)$

Fix n, k, m with $k + m \le n$, let $Z \in \operatorname{Mat}_{n,k+m}^{>0}$ (max minors > 0). Let \widetilde{Z} be map $Gr_{k,n}^{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix C to CZ. Set $\mathcal{A}_{n,k,m}(Z) := \overline{Z}(Gr_{k,n}^{\ge 0}) \subset Gr_{k,k+m}$.

Special cases:

- If m = n k, $A_{n,k,m}(Z) = Gr_{k,n}^{\geq 0}$.
- If k = 1 and m = 2, $\mathcal{A}_{n,k,m} \subset Gr_{1,3}$ is equivalent to an *n*-gon in \mathbb{RP}^2 :
- For k = 1 and general *m*, get cyclic polytope in \mathbb{RP}^m .

The amplituhedron $\mathcal{A}_{n,k,m}(Z)$

Fix n, k, m with $k + m \le n$, let $Z \in \operatorname{Mat}_{n,k+m}^{>0}$ (max minors > 0). Let \widetilde{Z} be map $Gr_{k,n}^{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix C to CZ. Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}(Gr_{k,n}^{\ge 0}) \subset Gr_{k,k+m}$.

Special cases:

- If m = n k, $\mathcal{A}_{n,k,m}(Z) = Gr_{k,n}^{\geq 0}$.
- If k = 1 and m = 2, $\mathcal{A}_{n,k,m} \subset Gr_{1,3}$ is equivalent to an *n*-gon in \mathbb{RP}^2 :
- For k = 1 and general *m*, get cyclic polytope in \mathbb{RP}^m .

The amplituhedron $\mathcal{A}_{n,k,m}(Z)$

Fix n, k, m with $k + m \le n$, let $Z \in \operatorname{Mat}_{n,k+m}^{>0}$ (max minors > 0). Let \widetilde{Z} be map $Gr_{k,n}^{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix C to CZ. Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}(Gr_{k,n}^{\ge 0}) \subset Gr_{k,k+m}$.

Special cases:

• If
$$m = n - k$$
, $A_{n,k,m}(Z) = Gr_{k,n}^{\geq 0}$.

- If k = 1 and m = 2, $A_{n,k,m} \subset Gr_{1,3}$ is equivalent to an *n*-gon in \mathbb{RP}^2 :
- For k = 1 and general *m*, get cyclic polytope in \mathbb{RP}^m .

The amplituhedron $\mathcal{A}_{n,k,m}(Z)$

Fix n, k, m with $k + m \le n$, let $Z \in \operatorname{Mat}_{n,k+m}^{>0}$ (max minors > 0). Let \widetilde{Z} be map $Gr_{k,n}^{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix C to CZ. Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}(Gr_{k,n}^{\ge 0}) \subset Gr_{k,k+m}$.

Special cases:

• If
$$m = n - k$$
, $A_{n,k,m}(Z) = Gr_{k,n}^{\geq 0}$.

- If k = 1 and m = 2, $A_{n,k,m} \subset Gr_{1,3}$ is equivalent to an *n*-gon in \mathbb{RP}^2 :
- For k = 1 and general *m*, get cyclic polytope in \mathbb{RP}^m .

The amplituhedron $\mathcal{A}_{n,k,m}(Z)$

Fix n, k, m with $k + m \le n$, let $Z \in \operatorname{Mat}_{n,k+m}^{>0}$ (max minors > 0). Let \widetilde{Z} be map $Gr_{k,n}^{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix C to CZ. Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}(Gr_{k,n}^{\ge 0}) \subset Gr_{k,k+m}$.

Special cases:

• If
$$m = n - k$$
, $A_{n,k,m}(Z) = Gr_{k,n}^{\geq 0}$.

- If k = 1 and m = 2, $A_{n,k,m} \subset Gr_{1,3}$ is equivalent to an *n*-gon in \mathbb{RP}^2 :
- For k = 1 and general m, get cyclic polytope in \mathbb{RP}^m .

The amplituhedron $\mathcal{A}_{n,k,m}(Z)$

Fix n, k, m with $k + m \le n$, let $Z \in \operatorname{Mat}_{n,k+m}^{>0}$ (max minors > 0). Let \widetilde{Z} be map $Gr_{k,n}^{\ge 0} \to Gr_{k,k+m}$ sending a $k \times n$ matrix C to CZ. Set $\mathcal{A}_{n,k,m}(Z) := \widetilde{Z}(Gr_{k,n}^{\ge 0}) \subset Gr_{k,k+m}$.

Special cases:

• If
$$m = n - k$$
, $A_{n,k,m}(Z) = Gr_{k,n}^{\geq 0}$.

- If k = 1 and m = 2, $A_{n,k,m} \subset Gr_{1,3}$ is equivalent to an *n*-gon in \mathbb{RP}^2 :
- For k = 1 and general *m*, get cyclic polytope in \mathbb{RP}^m .

Have $Gr_{k,n}^{\geq 0} = \bigsqcup_{\pi} S_{\pi}$ cell complex, and $\tilde{Z} : Gr_{k,n}^{\geq 0} \to \mathcal{A}_{n,k,m}(Z)$ a continuous surjective map onto km-dim'l amplituhedron $\mathcal{A}_{n,k,m}(Z)$.

A tiling of $\mathcal{A}_{n,k,m}(Z)$ is a collection $\{\tilde{Z}(S_{\pi}) \mid \pi \in \mathcal{C}\}$ of closures of images of *km*-dimensional cells, such that:

- \tilde{Z} is injective on each S_{π} for $\pi \in \mathcal{C}$
- their union equals $\mathcal{A}_{n,k,m}(Z)$
- their interiors are pairwise disjoint

We will work with all-Z tilings, coming from collections of cells that give tilings for all Z

Motivation:

Have $Gr_{k,n}^{\geq 0} = \sqcup_{\pi} S_{\pi}$ cell complex, and $\tilde{Z} : Gr_{k,n}^{\geq 0} \to \mathcal{A}_{n,k,m}(Z)$ a continuous surjective map onto km-dim'l amplituhedron $\mathcal{A}_{n,k,m}(Z)$.

A tiling of $\mathcal{A}_{n,k,m}(Z)$ is a collection $\{\tilde{Z}(S_{\pi}) \mid \pi \in \mathcal{C}\}$ of closures of images of *km*-dimensional cells, such that:

- $ilde{Z}$ is injective on each S_{π} for $\pi \in \mathcal{C}$
- their union equals $\mathcal{A}_{n,k,m}(Z)$
- their interiors are pairwise disjoint

We will work with all-Z tilings, coming from collections of cells that give tilings for all Z

Motivation:

Have $Gr_{k,n}^{\geq 0} = \bigsqcup_{\pi} S_{\pi}$ cell complex, and $\tilde{Z} : Gr_{k,n}^{\geq 0} \to \mathcal{A}_{n,k,m}(Z)$ a continuous surjective map onto km-dim'l amplituhedron $\mathcal{A}_{n,k,m}(Z)$.

A tiling of $\mathcal{A}_{n,k,m}(Z)$ is a collection $\{\tilde{Z}(S_{\pi}) \mid \pi \in \mathcal{C}\}$ of closures of images of km-dimensional cells, such that:

- \tilde{Z} is injective on each S_{π} for $\pi \in \mathcal{C}$
- their union equals $\mathcal{A}_{n,k,m}(Z)$
- their interiors are pairwise disjoint

We will work with all-Z tilings, coming from collections of cells that give tilings for all Z

Motivation:

Have $Gr_{k,n}^{\geq 0} = \bigsqcup_{\pi} S_{\pi}$ cell complex, and $\tilde{Z} : Gr_{k,n}^{\geq 0} \to \mathcal{A}_{n,k,m}(Z)$ a continuous surjective map onto km-dim'l amplituhedron $\mathcal{A}_{n,k,m}(Z)$.

A tiling of $\mathcal{A}_{n,k,m}(Z)$ is a collection $\{\tilde{Z}(S_{\pi}) \mid \pi \in \mathcal{C}\}$ of closures of images of *km*-dimensional cells, such that:

- \tilde{Z} is injective on each S_{π} for $\pi \in \mathcal{C}$
- their union equals $\mathcal{A}_{n,k,m}(Z)$
- their interiors are pairwise disjoint

We will work with all-Z tilings, coming from collections of cells that give tilings for all Z.

Motivation:

Have $Gr_{k,n}^{\geq 0} = \bigsqcup_{\pi} S_{\pi}$ cell complex, and $\tilde{Z} : Gr_{k,n}^{\geq 0} \to \mathcal{A}_{n,k,m}(Z)$ a continuous surjective map onto km-dim'l amplituhedron $\mathcal{A}_{n,k,m}(Z)$.

A tiling of $\mathcal{A}_{n,k,m}(Z)$ is a collection $\{\tilde{Z}(S_{\pi}) \mid \pi \in \mathcal{C}\}$ of closures of images of *km*-dimensional cells, such that:

- $ilde{Z}$ is injective on each S_{π} for $\pi \in \mathcal{C}$
- their union equals $\mathcal{A}_{n,k,m}(Z)$
- their interiors are pairwise disjoint

We will work with all-Z tilings, coming from collections of cells that give tilings for all Z.

Motivation:

the "volume" of the amplituhedron computes scattering amplitudes; AH-T conjectured that certain "BCFW cells" give a tiling of $A_{n,k,4}(Z)$; (proved for the "standard" BCFW tiling by EvenZohar–Lakrec–Tessler and generalized to all BCFW tilings by EZ–L–P–SB–T–W.)

Have $Gr_{k,n}^{\geq 0} = \bigsqcup_{\pi} S_{\pi}$ cell complex, and $\tilde{Z} : Gr_{k,n}^{\geq 0} \to \mathcal{A}_{n,k,m}(Z)$ a continuous surjective map onto km-dim'l amplituhedron $\mathcal{A}_{n,k,m}(Z)$.

A tiling of $\mathcal{A}_{n,k,m}(Z)$ is a collection $\{\tilde{Z}(S_{\pi}) \mid \pi \in \mathcal{C}\}$ of closures of images of *km*-dimensional cells, such that:

- $ilde{Z}$ is injective on each S_π for $\pi \in \mathcal{C}$
- their union equals $\mathcal{A}_{n,k,m}(Z)$
- their interiors are pairwise disjoint

We will work with all-Z tilings, coming from collections of cells that give tilings for all Z.

Motivation:

the "volume" of the amplituhedron computes scattering amplitudes; AH-T conjectured that certain "BCFW cells" give a tiling of $A_{n,k,4}(Z)$; (proved for the "standard" BCFW tiling by EvenZohar–Lakrec–Tessler and generalized to all BCFW tilings by EZ–L–P–SB–T–W.)

Have $Gr_{k,n}^{\geq 0} = \bigsqcup_{\pi} S_{\pi}$ cell complex, and $\tilde{Z} : Gr_{k,n}^{\geq 0} \to \mathcal{A}_{n,k,m}(Z)$ a continuous surjective map onto km-dim'l amplituhedron $\mathcal{A}_{n,k,m}(Z)$.

A tiling of $\mathcal{A}_{n,k,m}(Z)$ is a collection $\{\tilde{Z}(S_{\pi}) \mid \pi \in \mathcal{C}\}$ of closures of images of *km*-dimensional cells, such that:

- $ilde{Z}$ is injective on each S_π for $\pi \in \mathcal{C}$
- their union equals $\mathcal{A}_{n,k,m}(Z)$
- their interiors are pairwise disjoint

We will work with all-Z tilings, coming from collections of cells that give tilings for all Z.

Motivation:

the "volume" of the amplituhedron computes scattering amplitudes; AH-T conjectured that certain "BCFW cells" give a tiling of $A_{n,k,4}(Z)$; (proved for the "standard" BCFW tiling by EvenZohar–Lakrec–Tessler and generalized to all BCFW tilings by EZ–L–P–SB–T–W.)

Have $Gr_{k,n}^{\geq 0} = \bigsqcup_{\pi} S_{\pi}$ cell complex, and $\tilde{Z} : Gr_{k,n}^{\geq 0} \to \mathcal{A}_{n,k,m}(Z)$ a continuous surjective map onto km-dim'l amplituhedron $\mathcal{A}_{n,k,m}(Z)$.

A tiling of $\mathcal{A}_{n,k,m}(Z)$ is a collection $\{\tilde{Z}(S_{\pi}) \mid \pi \in \mathcal{C}\}$ of closures of images of *km*-dimensional cells, such that:

• $ilde{Z}$ is injective on each S_π for $\pi \in \mathcal{C}$

 $(\overline{ ilde{Z}(S_{\pi})}$ a tile)

- their union equals $\mathcal{A}_{n,k,m}(Z)$
- their interiors are pairwise disjoint

We will work with all-Z tilings, coming from collections of cells that give tilings for all Z.

Motivation:

Have $Gr_{k,n}^{\geq 0} = \bigsqcup_{\pi} S_{\pi}$ cell complex, and $\tilde{Z} : Gr_{k,n}^{\geq 0} \to \mathcal{A}_{n,k,m}(Z)$ a continuous surjective map onto km-dim'l amplituhedron $\mathcal{A}_{n,k,m}(Z)$.

A tiling of $\mathcal{A}_{n,k,m}(Z)$ is a collection $\{\tilde{Z}(S_{\pi}) \mid \pi \in \mathcal{C}\}$ of closures of images of *km*-dimensional cells, such that:

- $ilde{Z}$ is injective on each S_{π} for $\pi \in \mathcal{C}$
- their union equals $\mathcal{A}_{n,k,m}(Z)$
- their interiors are pairwise disjoint

We will work with all-Z tilings, coming from collections of cells that give tilings for all Z.

Motivation:

the "volume" of the amplituhedron computes scattering amplitudes;

AH-T conjectured that certain "BCFW cells" give a tiling of $A_{n,k,4}(Z)$; (proved for the "standard" BCFW tiling by EvenZohar–Lakrec–Tessler and generalized to all BCFW tilings by EZ–L–P–SB–T–W.)

Have $Gr_{k,n}^{\geq 0} = \bigsqcup_{\pi} S_{\pi}$ cell complex, and $\tilde{Z} : Gr_{k,n}^{\geq 0} \to \mathcal{A}_{n,k,m}(Z)$ a continuous surjective map onto km-dim'l amplituhedron $\mathcal{A}_{n,k,m}(Z)$.

A tiling of $\mathcal{A}_{n,k,m}(Z)$ is a collection $\{\tilde{Z}(S_{\pi}) \mid \pi \in \mathcal{C}\}$ of closures of images of *km*-dimensional cells, such that:

- $ilde{Z}$ is injective on each S_{π} for $\pi \in \mathcal{C}$
- their union equals $\mathcal{A}_{n,k,m}(Z)$
- their interiors are pairwise disjoint

We will work with all-Z tilings, coming from collections of cells that give tilings for all Z.

Motivation:

the "volume" of the amplituhedron computes scattering amplitudes; AH-T conjectured that certain "BCFW cells" give a tiling of $\mathcal{A}_{n,k,4}(Z)$; (proved for the "standard" BCFW tiling by EvenZohar–Lakrec–Tessler and generalized to all BCFW tilings by EZ–L–P–SB–T–W.)

Lauren K. Williams (Harvard)

The magic number for $\mathcal{A}_{n,k,2}(Z)$

 $(\tilde{Z}(S_{\pi}) \text{ a tile})$

Have $Gr_{k,n}^{\geq 0} = \bigsqcup_{\pi} S_{\pi}$ cell complex, and $\tilde{Z} : Gr_{k,n}^{\geq 0} \to \mathcal{A}_{n,k,m}(Z)$ a continuous surjective map onto km-dim'l amplituhedron $\mathcal{A}_{n,k,m}(Z)$.

A tiling of $\mathcal{A}_{n,k,m}(Z)$ is a collection $\{\tilde{Z}(S_{\pi}) \mid \pi \in \mathcal{C}\}$ of closures of images of *km*-dimensional cells, such that:

• $ilde{Z}$ is injective on each S_π for $\pi \in \mathcal{C}$

$$(\overline{\widetilde{Z}(S_{\pi})}$$
 a tile)

- their union equals $\mathcal{A}_{n,k,m}(Z)$
- their interiors are pairwise disjoint

We will work with all-Z tilings, coming from collections of cells that give tilings for all Z.

Motivation:

Tilings of the amplituhedron

Tilings have been studied in special cases. Their cardinalities are interesting!

special case	cardinality of tiling of $A_{n,k,m}$	explanation
m = 0 or $k = 0$	1	${\mathcal A}$ is a point
k + m = n	1	$\mathcal{A}\cong { m Gr}_{k,n}^{\geq 0}$
m = 1	$\binom{n-1}{k}$	Karp-W.
<i>m</i> = 2	$\binom{n-2}{k}$	AH-T-T, Bao-He, P-SB-W
<i>m</i> = 4	$\frac{1}{n-3}\binom{n-3}{k+1}\binom{n-3}{k}$	AH-T, EZ-L-T, EZ-L-P-SB-T-W
k = 1, m even	$\begin{pmatrix} n-1-\frac{m}{2} \\ \frac{m}{2} \end{pmatrix}$	$\mathcal{A}\cong$ cyclic polytope $\mathit{C}(n,m)$
이야, 들, 《글》《글》《曰》		

Lauren K. Williams (Harvard)

The magic number for $\mathcal{A}_{n,k,2}(Z)$

16 / 22

Tilings of the amplituhedron

Tilings have been studied in special cases. Their cardinalities are interesting!

special case	cardinality of tiling of $A_{n,k,m}$	explanation
m = 0 or $k = 0$	1	${\mathcal A}$ is a point
k+m=n	1	$\mathcal{A}\cong Gr_{k,n}^{\geq 0}$
<i>m</i> = 1	$\binom{n-1}{k}$	Karp-W.
<i>m</i> = 2	$\binom{n-2}{k}$	AH-T-T, Bao-He, P-SB-W
<i>m</i> = 4	$\frac{1}{n-3}\binom{n-3}{k+1}\binom{n-3}{k}$	AH-T, EZ-L-T, EZ-L-P-SB-T-W
k=1, m even	$\binom{n-1-\frac{m}{2}}{\frac{m}{2}}$	$\mathcal{A}\cong$ cyclic polytope $\mathcal{C}(n,m)$

Lauren K. Williams (Harvard)

16 / 22

Tilings of the amplituhedron

Observation (Karp-Zhang-W)

All known tilings of $A_{n,k,m}$ for even *m* have cardinality $M(k, n-k-m, \frac{m}{2})$. Call this prediction the *Magic Number Conjecture*.

Remark: Consistent with results for m = 2, m = 4, k = 1. Symmetries! The number M(a, b, c) counts: (In figure, a, b, c = 2, 4, 3.)

Observation (Karp-Zhang-W)

Let
$$M(a, b, c) := \prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2}.$$

All known tilings of $A_{n,k,m}$ for even *m* have cardinality $M(k, n-k-m, \frac{m}{2})$. Call this prediction the *Magic Number Conjecture*.

Observation (Karp-Zhang-W)

Let
$$M(a, b, c) := \prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2}.$$

All known tilings of $A_{n,k,m}$ for even *m* have cardinality $M(k, n-k-m, \frac{m}{2})$. Call this prediction the *Magic Number Conjecture*.

Observation (Karp-Zhang-W)

Let
$$M(a, b, c) := \prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2}$$
.

All known tilings of $A_{n,k,m}$ for even *m* have cardinality $M(k, n-k-m, \frac{m}{2})$. Call this prediction the *Magic Number Conjecture*.

Observation (Karp-Zhang-W)

Let
$$M(a, b, c) := \prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2}$$
.

All known tilings of $A_{n,k,m}$ for even *m* have cardinality $M(k, n-k-m, \frac{m}{2})$. Call this prediction the *Magic Number Conjecture*.

Observation (Karp-Zhang-W)

Let
$$M(a, b, c) := \prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2}$$
.

All known tilings of $A_{n,k,m}$ for even *m* have cardinality $M(k, n-k-m, \frac{m}{2})$. Call this prediction the *Magic Number Conjecture*.

Observation (Karp-Zhang-W)

Let
$$M(a, b, c) := \prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2}$$
.

All known tilings of $A_{n,k,m}$ for even *m* have cardinality $M(k, n-k-m, \frac{m}{2})$. Call this prediction the *Magic Number Conjecture*.

Observation (Karp-Zhang-W)

Let
$$M(a, b, c) := \prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2}$$
.

All known tilings of $A_{n,k,m}$ for even *m* have cardinality $M(k, n-k-m, \frac{m}{2})$. Call this prediction the *Magic Number Conjecture*.

Observation (Karp-Zhang-W)

Let
$$M(a, b, c) := \prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2}$$

All known tilings of $A_{n,k,m}$ for even *m* have cardinality $M(k, n-k-m, \frac{m}{2})$. Call this prediction the *Magic Number Conjecture*.

Observation (Karp-Zhang-W)

Let
$$M(a, b, c) := \prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2}$$

All known tilings of $A_{n,k,m}$ for even *m* have cardinality $M(k, n-k-m, \frac{m}{2})$. Call this prediction the *Magic Number Conjecture*.

Magic Number Theorem (P–SB–T–W)

All tilings of ampl. $A_{n,k,2}(Z)$ have size $M(k, n-k-2, 1) = \binom{n-2}{k}$

- There is a classification of tiles for the *m* = 2 amplituhedron using *bicolored subdivisions* (P–SB–W).
- Just as each Parke-Taylor polytope has a decomposition into *w*-simplices where *w* ranges over certain circular extensions, each tile has a decomposition into "*w*-chambers" where *w* ranges over certain circular extensions.
- Use above decompositions to define the P-T function of $\mathcal{A}_{n,k,2}(Z)$ and each tile, and show that this function is the same for ALL tiles.
- Therefore each tiling of $A_{n,k,2}(Z)$ has the same size.
- Rk: total number of w-chambers of $\mathcal{A}_{n,k,2}(Z)$ is the Eulerian number.

Magic Number Theorem (P–SB–T–W)

All tilings of ampl. $\mathcal{A}_{n,k,2}(Z)$ have size $M(k, n-k-2, 1) = \binom{n-2}{k}$.

- There is a classification of tiles for the *m* = 2 amplituhedron using *bicolored subdivisions* (P–SB–W).
- Just as each Parke-Taylor polytope has a decomposition into *w*-simplices where *w* ranges over certain circular extensions, each tile has a decomposition into "*w*-chambers" where *w* ranges over certain circular extensions.
- Use above decompositions to define the P-T function of $A_{n,k,2}(Z)$ and each tile, and show that this function is the same for ALL tiles.
- Therefore each tiling of $\mathcal{A}_{n,k,2}(Z)$ has the same size.
- Rk: total number of w-chambers of $\mathcal{A}_{n,k,2}(Z)$ is the Eulerian number.

Magic Number Theorem (P–SB–T–W)

All tilings of ampl. $\mathcal{A}_{n,k,2}(Z)$ have size $M(k, n-k-2, 1) = \binom{n-2}{k}$.

- There is a classification of tiles for the *m* = 2 amplituhedron using *bicolored subdivisions* (P–SB–W).
- Just as each Parke-Taylor polytope has a decomposition into *w*-simplices where *w* ranges over certain circular extensions, each tile has a decomposition into "*w*-chambers" where *w* ranges over certain circular extensions.
- Use above decompositions to define the P-T function of $A_{n,k,2}(Z)$ and each tile, and show that this function is the same for ALL tiles.
- Therefore each tiling of $\mathcal{A}_{n,k,2}(Z)$ has the same size.
- Rk: total number of w-chambers of $\mathcal{A}_{n,k,2}(Z)$ is the Eulerian number.

Magic Number Theorem (P–SB–T–W)

All tilings of ampl. $\mathcal{A}_{n,k,2}(Z)$ have size $M(k, n-k-2, 1) = \binom{n-2}{k}$.

- There is a classification of tiles for the *m* = 2 amplituhedron using *bicolored subdivisions* (P–SB–W).
- Just as each Parke-Taylor polytope has a decomposition into *w*-simplices where *w* ranges over certain circular extensions, each tile has a decomposition into "*w*-chambers" where *w* ranges over certain circular extensions.
- Use above decompositions to define the P-T function of $A_{n,k,2}(Z)$ and each tile, and show that this function is the same for ALL tiles.
- Therefore each tiling of $\mathcal{A}_{n,k,2}(Z)$ has the same size.
- Rk: total number of w-chambers of $\mathcal{A}_{n,k,2}(Z)$ is the Eulerian number.

Magic Number Theorem (P–SB–T–W)

All tilings of ampl. $\mathcal{A}_{n,k,2}(Z)$ have size $M(k, n-k-2, 1) = \binom{n-2}{k}$.

- There is a classification of tiles for the *m* = 2 amplituhedron using *bicolored subdivisions* (P–SB–W).
- Just as each Parke-Taylor polytope has a decomposition into *w*-simplices where *w* ranges over certain circular extensions, each tile has a decomposition into "*w*-chambers" where *w* ranges over certain circular extensions.
- Use above decompositions to define the P-T function of $\mathcal{A}_{n,k,2}(Z)$ and each tile, and show that this function is the same for ALL tiles.
- Therefore each tiling of $A_{n,k,2}(Z)$ has the same size.
- Rk: total number of w-chambers of $\mathcal{A}_{n,k,2}(Z)$ is the Eulerian number.

Magic Number Theorem (P–SB–T–W)

All tilings of ampl. $\mathcal{A}_{n,k,2}(Z)$ have size $M(k, n-k-2, 1) = \binom{n-2}{k}$.

- There is a classification of tiles for the m = 2 amplituhedron using bicolored subdivisions (P–SB–W).
- Just as each Parke-Taylor polytope has a decomposition into w-simplices where w ranges over certain circular extensions, each tile has a decomposition into "w-chambers" where w ranges over certain circular extensions.
- Use above decompositions to define the P-T function of $\mathcal{A}_{n,k,2}(Z)$ and each tile, and show that this function is the same for ALL tiles.
- Therefore each tiling of $A_{n,k,2}(Z)$ has the same size.
- Rk: total number of w-chambers of $\mathcal{A}_{n,k,2}(Z)$ is the Eulerian number.

Magic Number Theorem (P–SB–T–W)

All tilings of ampl. $\mathcal{A}_{n,k,2}(Z)$ have size $M(k, n-k-2, 1) = \binom{n-2}{k}$.

- There is a classification of tiles for the m = 2 amplituhedron using bicolored subdivisions (P–SB–W).
- Just as each Parke-Taylor polytope has a decomposition into *w*-simplices where *w* ranges over certain circular extensions, each tile has a decomposition into "*w*-chambers" where *w* ranges over certain circular extensions.
- Use above decompositions to define the P-T function of $\mathcal{A}_{n,k,2}(Z)$ and each tile, and show that this function is the same for ALL tiles.
- Therefore each tiling of $A_{n,k,2}(Z)$ has the same size.
- Rk: total number of w-chambers of $\mathcal{A}_{n,k,2}(Z)$ is the Eulerian number.

Magic Number Theorem (P–SB–T–W)

All tilings of ampl. $\mathcal{A}_{n,k,2}(Z)$ have size $M(k, n-k-2, 1) = \binom{n-2}{k}$.

k = 1: Thm says that all triangulations of an *n*-gon have size n - 2. Ideas of the proof:

- There is a classification of tiles for the m = 2 amplituhedron using bicolored subdivisions (P–SB–W).
- Just as each Parke-Taylor polytope has a decomposition into *w*-simplices where *w* ranges over certain circular extensions, each tile has a decomposition into "*w*-chambers" where *w* ranges over certain circular extensions.
- Use above decompositions to define the P-T function of $\mathcal{A}_{n,k,2}(Z)$ and each tile, and show that this function is the same for ALL tiles.
- Therefore each tiling of $\mathcal{A}_{n,k,2}(Z)$ has the same size.
- Rk: total number of w-chambers of $\mathcal{A}_{n,k,2}(Z)$ is the Eulerian number.

Magic Number Theorem (P–SB–T–W)

All tilings of ampl. $\mathcal{A}_{n,k,2}(Z)$ have size $M(k, n-k-2, 1) = \binom{n-2}{k}$.

k = 1: Thm says that all triangulations of an *n*-gon have size n - 2. Ideas of the proof:

- There is a classification of tiles for the m = 2 amplituhedron using bicolored subdivisions (P–SB–W).
- Just as each Parke-Taylor polytope has a decomposition into *w*-simplices where *w* ranges over certain circular extensions, each tile has a decomposition into "*w*-chambers" where *w* ranges over certain circular extensions.
- Use above decompositions to define the P-T function of $\mathcal{A}_{n,k,2}(Z)$ and each tile, and show that this function is the same for ALL tiles.
- Therefore each tiling of $\mathcal{A}_{n,k,2}(Z)$ has the same size.

• Rk: total number of w-chambers of $\mathcal{A}_{n,k,2}(Z)$ is the Eulerian number.

Magic Number Theorem (P–SB–T–W)

All tilings of ampl. $\mathcal{A}_{n,k,2}(Z)$ have size $M(k, n-k-2, 1) = \binom{n-2}{k}$.

- There is a classification of tiles for the m = 2 amplituhedron using bicolored subdivisions (P–SB–W).
- Just as each Parke-Taylor polytope has a decomposition into *w*-simplices where *w* ranges over certain circular extensions, each tile has a decomposition into "*w*-chambers" where *w* ranges over certain circular extensions.
- Use above decompositions to define the P-T function of $\mathcal{A}_{n,k,2}(Z)$ and each tile, and show that this function is the same for ALL tiles.
- Therefore each tiling of $\mathcal{A}_{n,k,2}(Z)$ has the same size.
- Rk: total number of w-chambers of $A_{n,k,2}(Z)$ is the Eulerian number.

Recall: $\overline{\tilde{Z}(S_{\pi})}$ is a *tile* for $\tilde{Z} : Gr_{k,n}^{\geq 0} \to \mathcal{A}_{n,k,m}(Z)$ if \tilde{Z} is injective on *km*-dim'l cell S_{π} . Lukowski–Parisi–Spradlin–Volovich conjectured:

Theorem (Parisi–Sherman-Bennett–W)

The tiles for $\mathcal{A}_{n,k,2}(Z) \leftrightarrow$ collections of **bicolored** subdivisions of an *n*-gon with total "area" k. To construct the cell S_{π} :

- Choose triangulation of black polygons into k black triangles.
- Put white vertex in every black triangle, connected to three vertices.
- Elements of S_π are the k × n Kasteleyn matrices with rows/columns indexed by the white and black vertices.

2024

Recall: $\overline{\tilde{Z}(S_{\pi})}$ is a *tile* for $\tilde{Z} : Gr_{k,n}^{\geq 0} \to \mathcal{A}_{n,k,m}(Z)$ if \tilde{Z} is injective on *km*-dim'l cell S_{π} . Lukowski–Parisi–Spradlin–Volovich conjectured:

Theorem (Parisi–Sherman-Bennett–W)

The tiles for $\mathcal{A}_{n,k,2}(Z) \leftrightarrow$ collections of **bicolored** subdivisions of an *n*-gon with total "area" k. To construct the cell S_{π} :

- Choose triangulation of black polygons into k black triangles.
- Put white vertex in every black triangle, connected to three vertices

 Elements of S_π are the k × n Kasteleyn matrices with rows/columns indexed by the white and black vertices.

	4			

2024

Recall: $\overline{\tilde{Z}(S_{\pi})}$ is a *tile* for $\tilde{Z} : Gr_{k,n}^{\geq 0} \to \mathcal{A}_{n,k,m}(Z)$ if \tilde{Z} is injective on *km*-dim'l cell S_{π} . Lukowski–Parisi–Spradlin–Volovich conjectured:

Theorem (Parisi–Sherman-Bennett–W)

The tiles for $\mathcal{A}_{n,k,2}(Z) \leftrightarrow$ collections of **bicolored** subdivisions of an *n*-gon with total "area" *k*. To construct the cell S_{π} :

- Choose triangulation of black polygons into k black triangles.
- Put white vertex in every black triangle, connected to three vertices.
- Elements of S_π are the k × n Kasteleyn matrices with rows/columns indexed by the white and black vertices.

2024

Recall: $\overline{\tilde{Z}(S_{\pi})}$ is a *tile* for $\tilde{Z} : Gr_{k,n}^{\geq 0} \to \mathcal{A}_{n,k,m}(Z)$ if \tilde{Z} is injective on *km*-dim'l cell S_{π} . Lukowski–Parisi–Spradlin–Volovich conjectured:

Theorem (Parisi–Sherman-Bennett–W)

The tiles for $\mathcal{A}_{n,k,2}(Z) \leftrightarrow$ collections of **bicolored** subdivisions of an *n*-gon with total "area" k. To construct the cell S_{π} :

- Choose triangulation of black polygons into k black triangles.
- Put white vertex in every black triangle, connected to three vertices.
- Elements of S_{π} are the $k \times n$ Kasteleyn matrices with rows/columns indexed by the white and black vertices.

2024

Recall: $\overline{\tilde{Z}(S_{\pi})}$ is a *tile* for $\tilde{Z} : Gr_{k,n}^{\geq 0} \to \mathcal{A}_{n,k,m}(Z)$ if \tilde{Z} is injective on *km*-dim'l cell S_{π} . Lukowski–Parisi–Spradlin–Volovich conjectured:

Theorem (Parisi–Sherman-Bennett–W)

The tiles for $\mathcal{A}_{n,k,2}(Z) \leftrightarrow$ collections of **bicolored** subdivisions of an *n*-gon with total "area" *k*. To construct the cell S_{π} :

- Choose triangulation of black polygons into k black triangles.
- Put white vertex in every black triangle, connected to three vertices.
- Elements of S_{π} are the $k \times n$ Kasteleyn matrices with rows/columns indexed by the white and black vertices.

	4			

2024

Recall: $\overline{\tilde{Z}(S_{\pi})}$ is a *tile* for $\tilde{Z} : Gr_{k,n}^{\geq 0} \to \mathcal{A}_{n,k,m}(Z)$ if \tilde{Z} is injective on *km*-dim'l cell S_{π} . Lukowski–Parisi–Spradlin–Volovich conjectured:

Theorem (Parisi–Sherman-Bennett–W)

The tiles for $\mathcal{A}_{n,k,2}(Z) \leftrightarrow$ collections of **bicolored** subdivisions of an *n*-gon with total "area" *k*. To construct the cell S_{π} :

- Choose triangulation of black polygons into k black triangles.
- Put white vertex in every black triangle, connected to three vertices.
- Elements of S_π are the k × n Kasteleyn matrices with rows/columns indexed by the white and black vertices.

2024

Recall: $\overline{\tilde{Z}(S_{\pi})}$ is a *tile* for $\tilde{Z} : Gr_{k,n}^{\geq 0} \to \mathcal{A}_{n,k,m}(Z)$ if \tilde{Z} is injective on *km*-dim'l cell S_{π} . Lukowski–Parisi–Spradlin–Volovich conjectured:

Theorem (Parisi–Sherman-Bennett–W)

The tiles for $\mathcal{A}_{n,k,2}(Z) \leftrightarrow$ collections of **bicolored** subdivisions of an *n*-gon with total "area" *k*. To construct the cell S_{π} :

- Choose triangulation of black polygons into k black triangles.
- Put white vertex in every black triangle, connected to three vertices.
- Elements of S_π are the k × n Kasteleyn matrices with rows/columns indexed by the white and black vertices.

		4			

2024

Recall: $\overline{\tilde{Z}(S_{\pi})}$ is a *tile* for $\tilde{Z} : Gr_{k,n}^{\geq 0} \to \mathcal{A}_{n,k,m}(Z)$ if \tilde{Z} is injective on *km*-dim'l cell S_{π} . Lukowski–Parisi–Spradlin–Volovich conjectured:

Theorem (Parisi–Sherman-Bennett–W)

The tiles for $\mathcal{A}_{n,k,2}(Z) \leftrightarrow$ collections of **bicolored** subdivisions of an *n*-gon with total "area" *k*. To construct the cell S_{π} :

- Choose triangulation of black polygons into k black triangles.
- Put white vertex in every black triangle, connected to three vertices.
- Elements of S_π are the k × n Kasteleyn matrices with rows/columns indexed by the white and black vertices.

Let $Z \in \operatorname{Mat}_{n,k+2}^{>0}$. Let \widetilde{Z} be map $Gr_{k,n}^{\geq 0} \to Gr_{k,k+2}$ sending $C \mapsto CZ$. Recall $\mathcal{A}_{n,k,2}(Z) := \widetilde{Z}(Gr_{k,n}^{\geq 0}) \subset Gr_{k,k+2}$.

Let Z₁,..., Z_n be rows of Z. Let Y ∈ Gr_{k,k+2} (viewed as matrix).
Given I = {i₁ < i₂} ⊂ [n], define the *twistor coordinate*

$$\langle YZ_I \rangle = \langle YZ_{i_1}Z_{i_2} \rangle := \det \begin{bmatrix} - & Y & - \\ - & Z_{i_1} & - \\ - & Z_{i_2} & - \end{bmatrix}$$

 Inspired by matroid stratification, we define the *amplituhedron sign* stratification – decompose A_{n,k,2}(Z) into pieces based on the signs of twistor coordinates. (Parisi–Sherman-Bennett–W.; Karp-W.)

- Call the top-dimensional pieces chambers.
- Thm: (P-SB-W) The number of nonempty chambers of $A_{n,k,2}$ is the *Eulerian number*.

Lauren K. Williams (Harvard)

20 / 22

Let $Z \in \operatorname{Mat}_{n,k+2}^{>0}$. Let \widetilde{Z} be map $\operatorname{Gr}_{k,n}^{\geq 0} \to \operatorname{Gr}_{k,k+2}$ sending $C \mapsto CZ$. Recall $\mathcal{A}_{n,k,2}(Z) := \widetilde{Z}(\operatorname{Gr}_{k,n}^{\geq 0}) \subset \operatorname{Gr}_{k,k+2}$.

Let Z₁,..., Z_n be rows of Z. Let Y ∈ Gr_{k,k+2} (viewed as matrix).
Given I = {i₁ < i₂} ⊂ [n], define the *twistor coordinate*

$$\langle YZ_I \rangle = \langle YZ_{i_1}Z_{i_2} \rangle := \det \begin{bmatrix} - & Y & - \\ - & Z_{i_1} & - \\ - & Z_{i_2} & - \end{bmatrix}$$

 Inspired by matroid stratification, we define the *amplituhedron sign* stratification – decompose A_{n,k,2}(Z) into pieces based on the signs of twistor coordinates. (Parisi–Sherman-Bennett–W.; Karp-W.)

- Call the top-dimensional pieces chambers.
- Thm: (P-SB-W) The number of nonempty chambers of $A_{n,k,2}$ is the *Eulerian number*.

Lauren K. Williams (Harvard)

20 / 22

Let $Z \in \operatorname{Mat}_{n,k+2}^{>0}$. Let \widetilde{Z} be map $Gr_{k,n}^{\geq 0} \to Gr_{k,k+2}$ sending $C \mapsto CZ$. Recall $\mathcal{A}_{n,k,2}(Z) := \widetilde{Z}(Gr_{k,n}^{\geq 0}) \subset Gr_{k,k+2}$.

Let Z₁,..., Z_n be rows of Z. Let Y ∈ Gr_{k,k+2} (viewed as matrix).
Given I = {i₁ < i₂} ⊂ [n], define the twistor coordinate

$$\langle YZ_I \rangle = \langle YZ_{i_1}Z_{i_2} \rangle := \det \begin{bmatrix} - & Y & - \\ - & Z_{i_1} & - \\ - & Z_{i_2} & - \end{bmatrix}$$

- Inspired by matroid stratification, we define the *amplituhedron sign* stratification – decompose A_{n,k,2}(Z) into pieces based on the signs of twistor coordinates. (Parisi–Sherman-Bennett–W.; Karp-W.)
- Call the top-dimensional pieces chambers.
- Thm: (P-SB-W) The number of nonempty chambers of A_{n,k,2} is the Eulerian number.

Lauren K. Williams (Harvard)

20 / 22

Let
$$Z \in \operatorname{Mat}_{n,k+2}^{>0}$$
. Let \widetilde{Z} be map $Gr_{k,n}^{\geq 0} \to Gr_{k,k+2}$ sending $C \mapsto CZ$.
Recall $\mathcal{A}_{n,k,2}(Z) := \widetilde{Z}(Gr_{k,n}^{\geq 0}) \subset Gr_{k,k+2}$.

Let Z₁,..., Z_n be rows of Z. Let Y ∈ Gr_{k,k+2} (viewed as matrix).
Given I = {i₁ < i₂} ⊂ [n], define the *twistor coordinate*

$$\langle YZ_I \rangle = \langle YZ_{i_1}Z_{i_2} \rangle := \det \begin{bmatrix} - & Y & - \\ - & Z_{i_1} & - \\ - & Z_{i_2} & - \end{bmatrix}$$

- Inspired by matroid stratification, we define the *amplituhedron sign* stratification – decompose A_{n,k,2}(Z) into pieces based on the signs of twistor coordinates. (Parisi–Sherman-Bennett–W.; Karp-W.)
- Call the top-dimensional pieces chambers.
- Thm: (P-SB-W) The number of nonempty chambers of $A_{n,k,2}$ is the *Eulerian number*.

Lauren K. Williams (Harvard)

20 / 22

Let
$$Z \in \operatorname{Mat}_{n,k+2}^{>0}$$
. Let \widetilde{Z} be map $Gr_{k,n}^{\geq 0} \to Gr_{k,k+2}$ sending $C \mapsto CZ$.
Recall $\mathcal{A}_{n,k,2}(Z) := \widetilde{Z}(Gr_{k,n}^{\geq 0}) \subset Gr_{k,k+2}$.

Let Z₁,..., Z_n be rows of Z. Let Y ∈ Gr_{k,k+2} (viewed as matrix).
Given I = {i₁ < i₂} ⊂ [n], define the twistor coordinate
[- Y -]

$$\langle YZ_I \rangle = \langle YZ_{i_1}Z_{i_2} \rangle := \det \begin{bmatrix} -& & -\\ -& & Z_{i_1} & -\\ -& & Z_{i_2} & - \end{bmatrix}$$

- Inspired by matroid stratification, we define the *amplituhedron sign* stratification – decompose A_{n,k,2}(Z) into pieces based on the signs of twistor coordinates. (Parisi–Sherman-Bennett–W.; Karp-W.)
- Call the top-dimensional pieces chambers.
- Thm: (P-SB-W) The number of nonempty chambers of $A_{n,k,2}$ is the *Eulerian number*.

Lauren K. Williams (Harvard)

2024

Let
$$Z \in \operatorname{Mat}_{n,k+2}^{>0}$$
. Let \widetilde{Z} be map $Gr_{k,n}^{\geq 0} \to Gr_{k,k+2}$ sending $C \mapsto CZ$.
Recall $\mathcal{A}_{n,k,2}(Z) := \widetilde{Z}(Gr_{k,n}^{\geq 0}) \subset Gr_{k,k+2}$.

Let Z₁,..., Z_n be rows of Z. Let Y ∈ Gr_{k,k+2} (viewed as matrix).
Given I = {i₁ < i₂} ⊂ [n], define the twistor coordinate
[- Y -]

$$\langle YZ_I \rangle = \langle YZ_{i_1}Z_{i_2} \rangle := \det \begin{bmatrix} -& & -\\ -& & Z_{i_1} & -\\ -& & Z_{i_2} & - \end{bmatrix}$$

- Inspired by matroid stratification, we define the *amplituhedron sign* stratification – decompose A_{n,k,2}(Z) into pieces based on the signs of twistor coordinates. (Parisi–Sherman-Bennett–W.; Karp-W.)
- Call the top-dimensional pieces chambers.
- Thm: (P-SB-W) The number of nonempty chambers of $A_{n,k,2}$ is the *Eulerian number*.

Lauren K. Williams (Harvard)

20 / 22

Let
$$Z \in \operatorname{Mat}_{n,k+2}^{>0}$$
. Let \widetilde{Z} be map $Gr_{k,n}^{\geq 0} \to Gr_{k,k+2}$ sending $C \mapsto CZ$.
Recall $\mathcal{A}_{n,k,2}(Z) := \widetilde{Z}(Gr_{k,n}^{\geq 0}) \subset Gr_{k,k+2}$.

Let Z₁,..., Z_n be rows of Z. Let Y ∈ Gr_{k,k+2} (viewed as matrix).
Given I = {i₁ < i₂} ⊂ [n], define the *twistor coordinate*

$$\langle YZ_I \rangle = \langle YZ_{i_1}Z_{i_2} \rangle := \det \begin{bmatrix} - & Y & - \\ - & Z_{i_1} & - \\ - & Z_{i_2} & - \end{bmatrix}$$

- Inspired by matroid stratification, we define the *amplituhedron sign* stratification – decompose A_{n,k,2}(Z) into pieces based on the signs of twistor coordinates. (Parisi–Sherman-Bennett–W.; Karp-W.)
- Call the top-dimensional pieces chambers.
- Thm: (P-SB-W) The number of nonempty chambers of A_{n,k,2} is the Eulerian number.

Lauren K. Williams (Harvard)

20 / 22

Let
$$Z \in \operatorname{Mat}_{n,k+2}^{>0}$$
. Let \widetilde{Z} be map $Gr_{k,n}^{\geq 0} \to Gr_{k,k+2}$ sending $C \mapsto CZ$.
Recall $\mathcal{A}_{n,k,2}(Z) := \widetilde{Z}(Gr_{k,n}^{\geq 0}) \subset Gr_{k,k+2}$.

Let Z₁,..., Z_n be rows of Z. Let Y ∈ Gr_{k,k+2} (viewed as matrix).
Given I = {i₁ < i₂} ⊂ [n], define the twistor coordinate

$$\langle YZ_I \rangle = \langle YZ_{i_1}Z_{i_2} \rangle := \det \begin{bmatrix} - & Y & - \\ - & Z_{i_1} & - \\ - & Z_{i_2} & - \end{bmatrix}$$

- Inspired by matroid stratification, we define the *amplituhedron sign* stratification – decompose A_{n,k,2}(Z) into pieces based on the signs of twistor coordinates. (Parisi–Sherman-Bennett–W.; Karp-W.)
- Call the top-dimensional pieces chambers.
- Thm: (P-SB-W) The number of nonempty chambers of $A_{n,k,2}$ is the *Eulerian number*.

Lauren K. Williams (Harvard)

20 / 22

The Magic Number Theorem for $\mathcal{A}_{n,k,2}(Z)$

• Given any region R of $A_{n,k,2}(Z)$ that admits a tiling, we define its weight function

$$\Omega(R) := \sum \mathsf{PT}(\Delta_{(w)}^Z),$$

where the sum is over all *w*-chambers $\Delta_{(w)}^Z \subset R$.

• We prove that for any tile Z_{τ} of $\mathcal{A}_{n,k,2}(Z)$,

$$\Omega(Z_{\tau}) = (-1)^k \operatorname{PT}(\mathbf{I}_n),$$

where I_n is the identity permutation.

- It is known that there is a tiling of $\mathcal{A}_{n,k,2}(Z)$ consisting of $\binom{n-2}{k}$ tiles, so $\Omega(\mathcal{A}_{n,k,2}(Z)) = (-1)^k \binom{n-2}{k} \operatorname{PT}(\mathbf{I}_n)$.
- It follows that all tilings have cardinality $\binom{n-2}{k}$.
The Magic Number Theorem for $A_{n,k,2}(Z)$

• Given any region R of $A_{n,k,2}(Z)$ that admits a tiling, we define its weight function

$$\Omega(R) := \sum \mathsf{PT}(\Delta_{(w)}^Z),$$

where the sum is over all *w*-chambers $\Delta_{(w)}^Z \subset R$.

• We prove that for any tile Z_{τ} of $\mathcal{A}_{n,k,2}(Z)$,

$$\Omega(Z_{\tau}) = (-1)^k \operatorname{PT}(\mathbf{I}_n),$$

where I_n is the identity permutation.

- It is known that there is a tiling of $\mathcal{A}_{n,k,2}(Z)$ consisting of $\binom{n-2}{k}$ tiles, so $\Omega(\mathcal{A}_{n,k,2}(Z)) = (-1)^k \binom{n-2}{k} \operatorname{PT}(\mathbf{I}_n)$.
- It follows that all tilings have cardinality $\binom{n-2}{k}$.

The Magic Number Theorem for $A_{n,k,2}(Z)$

• Given any region R of $A_{n,k,2}(Z)$ that admits a tiling, we define its weight function

$$\Omega(R) := \sum \mathsf{PT}(\Delta^Z_{(w)}),$$

where the sum is over all *w*-chambers $\Delta_{(w)}^Z \subset R$.

• We prove that for any tile Z_{τ} of $\mathcal{A}_{n,k,2}(Z)$,

$$\Omega(Z_{\tau}) = (-1)^k \operatorname{PT}(\mathbf{I}_n),$$

where I_n is the identity permutation.

- It is known that there is a tiling of $\mathcal{A}_{n,k,2}(Z)$ consisting of $\binom{n-2}{k}$ tiles, so $\Omega(\mathcal{A}_{n,k,2}(Z)) = (-1)^k \binom{n-2}{k} \operatorname{PT}(\mathbb{I}_n)$.
- It follows that all tilings have cardinality $\binom{n-2}{k}$.

• Given any region R of $A_{n,k,2}(Z)$ that admits a tiling, we define its weight function

$$\Omega(R) := \sum \mathsf{PT}(\Delta^Z_{(w)}),$$

where the sum is over all *w*-chambers $\Delta_{(w)}^Z \subset R$.

• We prove that for any tile Z_{τ} of $\mathcal{A}_{n,k,2}(Z)$,

$$\Omega(Z_{\tau}) = (-1)^k \operatorname{PT}(\mathbf{I}_n),$$

where I_n is the identity permutation.

- It is known that there is a tiling of $\mathcal{A}_{n,k,2}(Z)$ consisting of $\binom{n-2}{k}$ tiles, so $\Omega(\mathcal{A}_{n,k,2}(Z)) = (-1)^k \binom{n-2}{k} \operatorname{PT}(\mathbf{I}_n)$.
- It follows that all tilings have cardinality $\binom{n-2}{k}$.

• Given any region R of $A_{n,k,2}(Z)$ that admits a tiling, we define its weight function

$$\Omega(R) := \sum \mathsf{PT}(\Delta^Z_{(w)}),$$

where the sum is over all *w*-chambers $\Delta_{(w)}^Z \subset R$.

• We prove that for any tile Z_{τ} of $\mathcal{A}_{n,k,2}(Z)$,

$$\Omega(Z_{\tau}) = (-1)^k \operatorname{PT}(\mathbf{I}_n),$$

where I_n is the identity permutation.

- It is known that there is a tiling of $\mathcal{A}_{n,k,2}(Z)$ consisting of $\binom{n-2}{k}$ tiles, so $\Omega(\mathcal{A}_{n,k,2}(Z)) = (-1)^k \binom{n-2}{k} \operatorname{PT}(\mathbb{I}_n)$.
- It follows that all tilings have cardinality $\binom{n-2}{k}$.

• Given any region R of $A_{n,k,2}(Z)$ that admits a tiling, we define its weight function

$$\Omega(R) := \sum \mathsf{PT}(\Delta^Z_{(w)}),$$

where the sum is over all *w*-chambers $\Delta_{(w)}^Z \subset R$.

• We prove that for any tile Z_{τ} of $\mathcal{A}_{n,k,2}(Z)$,

$$\Omega(Z_{\tau}) = (-1)^k \operatorname{PT}(\mathbf{I}_n),$$

where I_n is the identity permutation.

- It is known that there is a tiling of $\mathcal{A}_{n,k,2}(Z)$ consisting of $\binom{n-2}{k}$ tiles, so $\Omega(\mathcal{A}_{n,k,2}(Z)) = (-1)^k \binom{n-2}{k} \operatorname{PT}(\mathbf{I}_n)$.
- It follows that all tilings have cardinality $\binom{n-2}{k}$.

• Given any region R of $A_{n,k,2}(Z)$ that admits a tiling, we define its weight function

$$\Omega(R) := \sum \mathsf{PT}(\Delta^Z_{(w)}),$$

where the sum is over all *w*-chambers $\Delta_{(w)}^Z \subset R$.

• We prove that for any tile Z_{τ} of $\mathcal{A}_{n,k,2}(Z)$,

$$\Omega(Z_{\tau}) = (-1)^k \operatorname{PT}(\mathbf{I}_n),$$

where \mathbf{I}_n is the identity permutation.

- It is known that there is a tiling of $\mathcal{A}_{n,k,2}(Z)$ consisting of $\binom{n-2}{k}$ tiles, so $\Omega(\mathcal{A}_{n,k,2}(Z)) = (-1)^k \binom{n-2}{k} \operatorname{PT}(\mathbb{I}_n)$.
- It follows that all tilings have cardinality $\binom{n-2}{k}$.

• Given any region R of $A_{n,k,2}(Z)$ that admits a tiling, we define its weight function

$$\Omega(R) := \sum \mathsf{PT}(\Delta^Z_{(w)}),$$

where the sum is over all *w*-chambers $\Delta_{(w)}^Z \subset R$.

• We prove that for any tile Z_{τ} of $\mathcal{A}_{n,k,2}(Z)$,

$$\Omega(Z_{\tau}) = (-1)^k \operatorname{PT}(\mathbf{I}_n),$$

where \mathbf{I}_n is the identity permutation.

- It is known that there is a tiling of $\mathcal{A}_{n,k,2}(Z)$ consisting of $\binom{n-2}{k}$ tiles, so $\Omega(\mathcal{A}_{n,k,2}(Z)) = (-1)^k \binom{n-2}{k} \operatorname{PT}(\mathbb{I}_n)$.
- It follows that all tilings have cardinality $\binom{n-2}{k}$.

• Given any region R of $A_{n,k,2}(Z)$ that admits a tiling, we define its weight function

$$\Omega(R) := \sum \mathsf{PT}(\Delta^Z_{(w)}),$$

where the sum is over all *w*-chambers $\Delta_{(w)}^Z \subset R$.

• We prove that for any tile Z_{τ} of $\mathcal{A}_{n,k,2}(Z)$,

$$\Omega(Z_{\tau}) = (-1)^k \operatorname{PT}(\mathbf{I}_n),$$

where \mathbf{I}_n is the identity permutation.

- It is known that there is a tiling of $\mathcal{A}_{n,k,2}(Z)$ consisting of $\binom{n-2}{k}$ tiles, so $\Omega(\mathcal{A}_{n,k,2}(Z)) = (-1)^k \binom{n-2}{k} \operatorname{PT}(\mathbf{I}_n)$.
- It follows that all tilings have cardinality $\binom{n-2}{k}$.

The Magic Number Theorem for $A_{n,k,2}(Z)$

• Given any region R of $A_{n,k,2}(Z)$ that admits a tiling, we define its weight function

$$\Omega(R) := \sum \mathsf{PT}(\Delta^Z_{(w)}),$$

where the sum is over all *w*-chambers $\Delta_{(w)}^Z \subset R$.

• We prove that for any tile Z_{τ} of $\mathcal{A}_{n,k,2}(Z)$,

$$\Omega(Z_{\tau}) = (-1)^k \operatorname{PT}(\mathbf{I}_n),$$

where \mathbf{I}_n is the identity permutation.

- It is known that there is a tiling of $\mathcal{A}_{n,k,2}(Z)$ consisting of $\binom{n-2}{k}$ tiles, so $\Omega(\mathcal{A}_{n,k,2}(Z)) = (-1)^k \binom{n-2}{k} \operatorname{PT}(\mathbf{I}_n)$.
- It follows that all tilings have cardinality $\binom{n-2}{k}$.

- The magic number conjecture for the m = 2 amplituhedron and Parke-Taylor identities arXiv:2404.03026, joint with Matteo Parisi, Melissa Sherman-Bennett, and Ran Tessler.
- "The m = 2 amplituhedron and the hypersimplex: signs, clusters, triangulations, Eulerian numbers, arXiv:2104.08254, joint with Matteo Parisi and Melissa Sherman-Bennett.

22 / 22