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Tricolored subdivisions and cyclic orders

A tricolored subdivision τ of an n-gon is a subdivision of the polygon
into smaller polygons (black, grey, or white) in which every edge
connects two vertices of the n-gon.

From each τ , can read off a cyclic order Cτ (is a cyclic analogue of
partial order). To get Cτ from τ , read vertices of white (resp black)
polygons clockwise (resp counterclockwise), and ignore the grey.

The Cτ from our example requires that (2, 5, 7), (5, 7, 6), and
(1, 8, 7, 2) are circularly ordered.

A circular extension of Cτ is a total circular order compatible with Cτ .
E.g. one circular extension of our example is: (2, 5, 1, 8, 7, 6, 3, 4).
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The Grassmannian and Plücker coordinates

The Grassmannian Grk,n(C) := {V | V ⊂ Cn, dimV = k}
Represent an element of Grk,n by a full-rank k × n matrix C .(

1 0 0 −3
0 1 2 1

)
Given I ∈

([n]
k

)
, the Plücker coordinate pI (C ) is the minor of the k × k

submatrix of C in column set I .
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Grassmannian identities from tricolored subdivisions

Given a permutation w = w1 . . .wn, define the Parke-Taylor function

PT(w) :=
1

Pw1w2Pw2w3 . . .Pwnw1

,

where the Pij are Plücker coordinates on the Grassmannian Gr◦2,n.

We get the following identity.

Theorem (Parisi–ShermanBennett–Tessler–W)

Let τ be a tricolored subdivision with at least one grey polygon, and let Cτ

be the cyclic partial order. Then∑
w

PT(w) = 0,

where the sum is over all circular extensions (w) of Cτ .
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Grassmannian identities from tricolored subdivisions

The Parke-Taylor function is PT(w1 . . .wn) :=
1

Pw1w2Pw2w3 ...Pwnw1
.

Theorem (P–SB–T–W)

Let τ be a tricolored subdivision with at least one grey polygon, and let Cτ

be the cyclic partial order. Then∑
w

PT(w) = 0,

where the sum is over all circular extensions (w) of Cτ .

Example:
The circular extensions of Cτ are (1234), (1243), (1423),
so Thm says 1

P12P23P34P41
+ 1

P12P24P43P31
+ 1

P14P42P23P31
= 0.

(Rk: 3-term Plücker relation)
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Parke-Taylor identities from tricolored subdivisions

Theorem (P–SB–T–W)

Let τ be a tricolored subdivision with at least one grey polygon, and let Cτ

be the cyclic partial order. Then∑
w

PT(w) = 0,

where the sum is over all circular extensions (w) of Cτ .

PT functions related to: cohomology of M0,n and scattering eqns
(Cachazo-He-Yuan); Lie polynomials (Frost-Mason); non-planar
plabic graphs (Arkani-Hamed-Bourjaily-Cachazo-Postnikov-Trnka).
Thm above implies the U(1) decoupling identities and shuffle
identities for Parke-Taylor functions.
There are some analogous results for linear extensions of posets due
to Curtis Greene, in connection to the Murnaghan-Nakayama formula
(rep theory of Sn).
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Tricolored subdivisions and Parke-Taylor polytopes

We can associate a Parke-Taylor polytope Γτ ⊂ Rn−1 to each
tricolored subdivision on [n]: for any compatible arc i → j with i < j ,

area(i → j) ≤ xi +xi+1+ · · ·+xj−1 ≤ area(i → j)+gr-area(i → j)+1.

A compatible arc is an edge of a polygon or lies entirely inside a black
or white polygon.
area(i → j) (resp gr-area(i → j)) is the “black area” (resp. “grey
area”) to the left of the arc.
Above, 2 → 7 is a compatible arc. Gives inequality:

1 ≤ x2 + x3 + x4 + x5 + x6 ≤ 1 + 2 + 1.

Lauren K. Williams (Harvard) The magic number for An,k,2(Z) 2024 8 / 22
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Decompositions of Parke-Taylor polytopes

We’ve seen how each tricolored subdivision τ gives rise to:
a partial cyclic order Cτ and a Parke-Taylor polytope Γτ .

Theorem (Parisi–Sherman-Bennett–Tessler–W.)

Let τ be a tricolored subdivision. Then the Parke-Taylor polytope Γτ has
a triangulation

Γτ =
⋃

∆(w)

into unit simplices ∆(w), where w ranges over all circular extensions of the
partial cyclic order Cτ . In particular, the normalized volume of Γτ equals
the number of circular extensions of Cτ .
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Decompositions of Parke-Taylor polytopes

Theorem (Parisi–Sherman-Bennett–Tessler–W.)

Let τ be a tricolored subdivision. Then the Parke-Taylor polytope Γτ has a
triangulation

Γτ =
⋃

∆(w)

into unit simplices ∆(w), where w ranges over circular extensions of Cτ .

Reminiscent of Stanley’s result that the volume of the order polytope
of a poset P equals the number of linear extensions of P.
Related to work of Ayyer–Josuat-Verges–Ramassamy, and
Gonzalez D’Leon–Hanusa–Morales–Yip.
Yuhan Jiang (in progress): gives formula for the h∗ vector of Γτ .
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The Grassmannian and the matroid stratification

Recall: the Grassmannian Grk,n(C) := {V | V ⊂ Cn, dimV = k}
Represent an element of Grk,n by a full-rank k × n matrix C .(

1 0 0 −3
0 1 2 1

)
Given I ∈

([n]
k

)
, the Plücker coordinate pI (C ) is the minor of the k × k

submatrix of C in column set I .

The matroid associated to C ∈ Grk,n is M(C ) := {I ∈
([n]
k

)
| pI (C ) ̸= 0.}

Gelfand-Goresky-MacPherson-Serganova ’87 introduced the matroid
stratification of Grk,n.

Given M ⊂
([n]
k

)
, let SM = {C ∈ Grk,n | pI (C ) ̸= 0 iff I ∈ M}.

Matroid stratification: Grk,n = ⊔MSM.

However, the topology of matroid strata is terrible –
Mnev’s universality theorem (1987).
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What is the positive Grassmannian?

Background: 1994 Lusztig total positivity for G/P, 1997 Rietsch, 2006 Postnikov

preprint on totally non-negative (TNN) or “positive” Grassmannian.

Let Gr≥0
k,n be subset of Grk,n(R) where Plucker coords pI ≥ 0 for all I .

Inspired by matroid stratification, one can partition Gr≥0
k,n into pieces based

on which Plücker coordinates are positive and which are 0.

Let M ⊆
([n]
k

)
. Let SM := {C ∈ Gr≥0

k,n | pI (C ) > 0 iff I ∈ M}.

In contrast to terrible topology of matroid strata ...

(Postnikov, see also Rietsch) If SM is non-empty it is a (positroid) cell, i.e.
homeomorphic to an open ball. So we have positroid cell decomposition

Gr≥0
k,n = ⊔SM.

Can classify the (nonempty) cells . . .
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on which Plücker coordinates are positive and which are 0.

Let M ⊆
([n]
k

)
. Let SM := {C ∈ Gr≥0

k,n | pI (C ) > 0 iff I ∈ M}.

In contrast to terrible topology of matroid strata ...

(Postnikov, see also Rietsch) If SM is non-empty it is a (positroid) cell, i.e.
homeomorphic to an open ball. So we have positroid cell decomposition

Gr≥0
k,n = ⊔SM.

Can classify the (nonempty) cells . . .

Lauren K. Williams (Harvard) The magic number for An,k,2(Z) 2024 12 / 22



What is the positive Grassmannian?

Background: 1994 Lusztig total positivity for G/P, 1997 Rietsch, 2006 Postnikov
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What is the amplituhedron?

The amplituhedron An,k,m(Z ), Arkani-Hamed–Trnka (2013).

Fix n, k,m with k +m ≤ n.
Let Z ∈ Mat>0

n,k+m be an n × (k +m) matrix with max’l minors positive.

Let Z̃ be map Gr≥0
k,n → Grk,k+m sending a k × n matrix C to span(CZ ).

Set An,k,m(Z ) := Z̃ (Gr≥0
k,n) ⊂ Grk,k+m.

Motivation for the amplituhedron (N = 4 SYM):

the recurrence of Britto–Cachazo–Feng–Witten (2005) expresses
scattering amplitudes as sums of rat’l functions of momenta. Indiv
terms have “spurious poles” – singularities not present in amplitude.
Hodges (2009) observed that in some cases, the amplitude is the
volume of a polytope, with spurious poles arising from internal
boundaries of a triangulation of the polytope. Asked if in general each
amplitude is the volume of some geometric object.
AH–T found the amplituhedron as the answer to this question;
BCFW recurrence is interpreted as “triangulation” of An,k,4(Z ).
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What is the amplituhedron?

The amplituhedron An,k,m(Z )

Fix n, k,m with k +m ≤ n, let Z ∈ Mat>0
n,k+m (max minors > 0).

Let Z̃ be map Gr≥0
k,n → Grk,k+m sending a k × n matrix C to CZ .

Set An,k,m(Z ) := Z̃ (Gr≥0
k,n) ⊂ Grk,k+m.

Special cases:

If m = n − k , An,k,m(Z ) = Gr≥0
k,n .

If k = 1 and m = 2, An,k,m ⊂ Gr1,3 is equivalent to an n-gon in RP2:
For k = 1 and general m, get cyclic polytope in RPm.

Lauren K. Williams (Harvard) The magic number for An,k,2(Z) 2024 14 / 22
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We’d like to “triangulate” or “tile” the amplituhedron

Have Gr≥0
k,n = ⊔πSπ cell complex, and Z̃ : Gr≥0

k,n → An,k,m(Z ) a continuous
surjective map onto km-dim’l amplituhedron An,k,m(Z ).

A tiling of An,k,m(Z ) is a collection {Z̃ (Sπ) | π ∈ C} of closures of images
of km-dimensional cells, such that:

Z̃ is injective on each Sπ for π ∈ C (Z̃ (Sπ) a tile)

their union equals An,k,m(Z )

their interiors are pairwise disjoint
We will work with all-Z tilings, coming from collections of cells that give tilings for all Z .

Motivation:
the “volume” of the amplituhedron computes scattering amplitudes;
AH-T conjectured that certain “BCFW cells” give a tiling of An,k,4(Z );
(proved for the “standard” BCFW tiling by EvenZohar–Lakrec–Tessler and
generalized to all BCFW tilings by EZ–L–P–SB–T–W.)
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Tilings of the amplituhedron

Tilings have been studied in special cases. Their cardinalities are interesting!

special case cardinality of tiling of An,k,m explanation

m = 0 or k = 0 1 A is a point

k +m = n 1 A ∼= Gr≥0
k,n

m = 1

(
n − 1

k

)
Karp-W.

m = 2

(
n − 2

k

)
AH-T-T, Bao-He, P-SB-W

m = 4
1

n − 3

(
n − 3

k + 1

)(
n − 3

k

)
AH-T, EZ–L–T, EZ–L–P–SB–T–W

k = 1, m even

(
n − 1− m

2
m
2

)
A ∼= cyclic polytope C(n,m)
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Tilings of the amplituhedron

Observation (Karp-Zhang-W)

Let M(a, b, c) :=
a∏

i=1

b∏
j=1

c∏
k=1

i + j + k − 1

i + j + k − 2
.

All known tilings of An,k,m for even m have cardinality M(k, n− k −m, m
2 ).

Call this prediction the Magic Number Conjecture.

Remark: Consistent with results for m = 2,m = 4, k = 1. Symmetries!
The number M(a, b, c) counts: (In figure, a, b, c = 2, 4, 3.)

noncrossing
lattice paths plane partition

3 3 2 2

1 1 1

rhombic tiling
perfect
matching
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The magic number theorem for the m = 2 amplituhedron

Magic Number Theorem (P–SB–T–W)

All tilings of ampl. An,k,2(Z ) have size M(k, n − k − 2, 1) =
(n−2

k

)
.

k = 1: Thm says that all triangulations of an n-gon have size n − 2.
Ideas of the proof:

There is a classification of tiles for the m = 2 amplituhedron using
bicolored subdivisions (P–SB–W).

Just as each Parke-Taylor polytope has a decomposition into
w -simplices where w ranges over certain circular extensions,
each tile has a decomposition into “w -chambers” where w ranges
over certain circular extensions.

Use above decompositions to define the P-T function of An,k,2(Z )
and each tile, and show that this function is the same for ALL tiles.

Therefore each tiling of An,k,2(Z ) has the same size.

Rk: total number of w -chambers of An,k,2(Z ) is the Eulerian number.
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Tiles of the amplituhedron

Recall: Z̃ (Sπ) is a tile for Z̃ : Gr≥0
k,n → An,k,m(Z ) if Z̃ is injective on

km-dim’l cell Sπ. Lukowski–Parisi–Spradlin–Volovich conjectured:

Theorem (Parisi–Sherman-Bennett–W)

The tiles for An,k,2(Z ) ↔ collections of bicolored subdivisions of an n-gon
with total “area” k . To construct the cell Sπ:

Choose triangulation of black polygons into k black triangles.

Put white vertex in every black triangle, connected to three vertices.

Elements of Sπ are the k × n Kasteleyn matrices with rows/columns
indexed by the white and black vertices.

1
9

8

7

6 5

4

3

2

1
9

8

7

6 5

4

3

2

1
9

8

7

6 5

4

3

2 

1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 ∗ ∗ ∗
∗ 0 0 0 0 0 ∗ 0 ∗
0 ∗ ∗ 0 0 0 ∗ 0 0
0 0 ∗ ∗ 0 0 ∗ 0 0
0 0 0 ∗ ∗ 0 ∗ 0 0
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Lauren K. Williams (Harvard) The magic number for An,k,2(Z) 2024 19 / 22



Tiles of the amplituhedron

Recall: Z̃ (Sπ) is a tile for Z̃ : Gr≥0
k,n → An,k,m(Z ) if Z̃ is injective on

km-dim’l cell Sπ. Lukowski–Parisi–Spradlin–Volovich conjectured:

Theorem (Parisi–Sherman-Bennett–W)

The tiles for An,k,2(Z ) ↔ collections of bicolored subdivisions of an n-gon
with total “area” k . To construct the cell Sπ:

Choose triangulation of black polygons into k black triangles.

Put white vertex in every black triangle, connected to three vertices.

Elements of Sπ are the k × n Kasteleyn matrices with rows/columns
indexed by the white and black vertices.

1
9

8

7

6 5

4

3

2

1
9

8

7

6 5

4

3

2

1
9

8

7

6 5

4

3

2 

1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 ∗ ∗ ∗
∗ 0 0 0 0 0 ∗ 0 ∗
0 ∗ ∗ 0 0 0 ∗ 0 0
0 0 ∗ ∗ 0 0 ∗ 0 0
0 0 0 ∗ ∗ 0 ∗ 0 0


Lauren K. Williams (Harvard) The magic number for An,k,2(Z) 2024 19 / 22



Tiles of the amplituhedron

Recall: Z̃ (Sπ) is a tile for Z̃ : Gr≥0
k,n → An,k,m(Z ) if Z̃ is injective on

km-dim’l cell Sπ. Lukowski–Parisi–Spradlin–Volovich conjectured:

Theorem (Parisi–Sherman-Bennett–W)

The tiles for An,k,2(Z ) ↔ collections of bicolored subdivisions of an n-gon
with total “area” k . To construct the cell Sπ:

Choose triangulation of black polygons into k black triangles.

Put white vertex in every black triangle, connected to three vertices.

Elements of Sπ are the k × n Kasteleyn matrices with rows/columns
indexed by the white and black vertices.

1
9

8

7

6 5

4

3

2

1
9

8

7

6 5

4

3

2

1
9

8

7

6 5

4

3

2 

1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 ∗ ∗ ∗
∗ 0 0 0 0 0 ∗ 0 ∗
0 ∗ ∗ 0 0 0 ∗ 0 0
0 0 ∗ ∗ 0 0 ∗ 0 0
0 0 0 ∗ ∗ 0 ∗ 0 0


Lauren K. Williams (Harvard) The magic number for An,k,2(Z) 2024 19 / 22



Tiles of the amplituhedron

Recall: Z̃ (Sπ) is a tile for Z̃ : Gr≥0
k,n → An,k,m(Z ) if Z̃ is injective on

km-dim’l cell Sπ. Lukowski–Parisi–Spradlin–Volovich conjectured:

Theorem (Parisi–Sherman-Bennett–W)

The tiles for An,k,2(Z ) ↔ collections of bicolored subdivisions of an n-gon
with total “area” k . To construct the cell Sπ:

Choose triangulation of black polygons into k black triangles.

Put white vertex in every black triangle, connected to three vertices.

Elements of Sπ are the k × n Kasteleyn matrices with rows/columns
indexed by the white and black vertices.

1
9

8

7

6 5

4

3

2

1
9

8

7

6 5

4

3

2

1
9

8

7

6 5

4

3

2 

1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 ∗ ∗ ∗
∗ 0 0 0 0 0 ∗ 0 ∗
0 ∗ ∗ 0 0 0 ∗ 0 0
0 0 ∗ ∗ 0 0 ∗ 0 0
0 0 0 ∗ ∗ 0 ∗ 0 0


Lauren K. Williams (Harvard) The magic number for An,k,2(Z) 2024 19 / 22



Tiles of the amplituhedron

Recall: Z̃ (Sπ) is a tile for Z̃ : Gr≥0
k,n → An,k,m(Z ) if Z̃ is injective on

km-dim’l cell Sπ. Lukowski–Parisi–Spradlin–Volovich conjectured:

Theorem (Parisi–Sherman-Bennett–W)

The tiles for An,k,2(Z ) ↔ collections of bicolored subdivisions of an n-gon
with total “area” k . To construct the cell Sπ:

Choose triangulation of black polygons into k black triangles.

Put white vertex in every black triangle, connected to three vertices.

Elements of Sπ are the k × n Kasteleyn matrices with rows/columns
indexed by the white and black vertices.

1
9

8

7

6 5

4

3

2

1
9

8

7

6 5

4

3

2

1
9

8

7

6 5

4

3

2 

1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 ∗ ∗ ∗
∗ 0 0 0 0 0 ∗ 0 ∗
0 ∗ ∗ 0 0 0 ∗ 0 0
0 0 ∗ ∗ 0 0 ∗ 0 0
0 0 0 ∗ ∗ 0 ∗ 0 0


Lauren K. Williams (Harvard) The magic number for An,k,2(Z) 2024 19 / 22



Tiles of the amplituhedron

Recall: Z̃ (Sπ) is a tile for Z̃ : Gr≥0
k,n → An,k,m(Z ) if Z̃ is injective on

km-dim’l cell Sπ. Lukowski–Parisi–Spradlin–Volovich conjectured:

Theorem (Parisi–Sherman-Bennett–W)

The tiles for An,k,2(Z ) ↔ collections of bicolored subdivisions of an n-gon
with total “area” k . To construct the cell Sπ:

Choose triangulation of black polygons into k black triangles.

Put white vertex in every black triangle, connected to three vertices.

Elements of Sπ are the k × n Kasteleyn matrices with rows/columns
indexed by the white and black vertices.

1
9

8

7

6 5

4

3

2

1
9

8

7

6 5

4

3

2

1
9

8

7

6 5

4

3

2 

1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 ∗ ∗ ∗
∗ 0 0 0 0 0 ∗ 0 ∗
0 ∗ ∗ 0 0 0 ∗ 0 0
0 0 ∗ ∗ 0 0 ∗ 0 0
0 0 0 ∗ ∗ 0 ∗ 0 0


Lauren K. Williams (Harvard) The magic number for An,k,2(Z) 2024 19 / 22



Tiles of the amplituhedron

Recall: Z̃ (Sπ) is a tile for Z̃ : Gr≥0
k,n → An,k,m(Z ) if Z̃ is injective on

km-dim’l cell Sπ. Lukowski–Parisi–Spradlin–Volovich conjectured:

Theorem (Parisi–Sherman-Bennett–W)

The tiles for An,k,2(Z ) ↔ collections of bicolored subdivisions of an n-gon
with total “area” k . To construct the cell Sπ:

Choose triangulation of black polygons into k black triangles.

Put white vertex in every black triangle, connected to three vertices.

Elements of Sπ are the k × n Kasteleyn matrices with rows/columns
indexed by the white and black vertices.

1
9

8

7

6 5

4

3

2

1
9

8

7

6 5

4

3

2

1
9

8

7

6 5

4

3

2 

1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 ∗ ∗ ∗
∗ 0 0 0 0 0 ∗ 0 ∗
0 ∗ ∗ 0 0 0 ∗ 0 0
0 0 ∗ ∗ 0 0 ∗ 0 0
0 0 0 ∗ ∗ 0 ∗ 0 0


Lauren K. Williams (Harvard) The magic number for An,k,2(Z) 2024 19 / 22



Tiles of the amplituhedron

Recall: Z̃ (Sπ) is a tile for Z̃ : Gr≥0
k,n → An,k,m(Z ) if Z̃ is injective on

km-dim’l cell Sπ. Lukowski–Parisi–Spradlin–Volovich conjectured:

Theorem (Parisi–Sherman-Bennett–W)

The tiles for An,k,2(Z ) ↔ collections of bicolored subdivisions of an n-gon
with total “area” k . To construct the cell Sπ:

Choose triangulation of black polygons into k black triangles.

Put white vertex in every black triangle, connected to three vertices.

Elements of Sπ are the k × n Kasteleyn matrices with rows/columns
indexed by the white and black vertices.

1
9

8

7

6 5

4

3

2

1
9

8

7

6 5

4

3

2

1
9

8

7

6 5

4

3

2 

1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 ∗ ∗ ∗
∗ 0 0 0 0 0 ∗ 0 ∗
0 ∗ ∗ 0 0 0 ∗ 0 0
0 0 ∗ ∗ 0 0 ∗ 0 0
0 0 0 ∗ ∗ 0 ∗ 0 0


Lauren K. Williams (Harvard) The magic number for An,k,2(Z) 2024 19 / 22



Chambers of the amplituhedron An,k ,2(Z )

Let Z ∈ Mat>0
n,k+2. Let Z̃ be map Gr≥0

k,n → Grk,k+2 sending C 7→ CZ .

Recall An,k,2(Z ) := Z̃ (Gr≥0
k,n) ⊂ Grk,k+2.

Let Z1, . . . ,Zn be rows of Z . Let Y ∈ Grk,k+2 (viewed as matrix).

Given I = {i1 < i2} ⊂ [n], define the twistor coordinate

⟨YZI ⟩ = ⟨YZi1Zi2⟩ := det

− Y −
− Zi1 −
− Zi2 −


Inspired by matroid stratification, we define the amplituhedron sign
stratification – decompose An,k,2(Z ) into pieces based on the signs of
twistor coordinates. (Parisi–Sherman-Bennett–W.; Karp-W.)

Call the top-dimensional pieces chambers.

Thm: (P-SB-W) The number of nonempty chambers of An,k,2 is the
Eulerian number.
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The Magic Number Theorem for An,k ,2(Z )

Given any region R of An,k,2(Z ) that admits a tiling, we define its
weight function

Ω(R) :=
∑

PT(∆Z
(w)),

where the sum is over all w -chambers ∆Z
(w) ⊂ R.

We prove that for any tile Zτ of An,k,2(Z ),

Ω(Zτ ) = (−1)k PT(In),

where In is the identity permutation.

It is known that there is a tiling of An,k,2(Z ) consisting of
(n−2

k

)
tiles,

so Ω(An,k,2(Z )) = (−1)k
(n−2

k

)
PT(In).

It follows that all tilings have cardinality
(n−2

k

)
.
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We prove that for any tile Zτ of An,k,2(Z ),

Ω(Zτ ) = (−1)k PT(In),

where In is the identity permutation.

It is known that there is a tiling of An,k,2(Z ) consisting of
(n−2

k

)
tiles,

so Ω(An,k,2(Z )) = (−1)k
(n−2

k

)
PT(In).

It follows that all tilings have cardinality
(n−2

k

)
.
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Thank you!

The magic number conjecture for the m = 2 amplituhedron and
Parke-Taylor identities arXiv:2404.03026, joint with Matteo Parisi,
Melissa Sherman-Bennett, and Ran Tessler.

“The m = 2 amplituhedron and the hypersimplex: signs, clusters,
triangulations, Eulerian numbers, arXiv:2104.08254, joint with
Matteo Parisi and Melissa Sherman-Bennett.
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